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Abstract: 2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as
acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted
as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react
with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole
derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct
spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to
molecular docking studies with DNA gyrase B and exhibited binding energy that extended from
−9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found
to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard
drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly
synthesized compounds were also examined and screened for their in vitro antimicrobial activity
against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus
niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity
against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro
findings showed that compounds 6a,b were the most active against bacterial strains, and could serve
as potential antimicrobial agents.

Keywords: benzimidazole; 1,3,4-thiadiazole; 1,2,3-triazoles; antimicrobial activity; docking study

1. Introduction

Nitrogen-containing heterocyclic analogues have received great interest in drug dis-
covery because of their well-known activity in pharmaceutical and medicinal fields [1–4].
Benzimidazole derivatives represent an important heterocyclic class of active therapeutic
agents because of their wide spectrum of biological and pharmaceutical applications in-
cluding antibacterial, antifungal, antiviral, anticancer, antidiabetic, anticonvulsant, and
anti-HIV agents [5,6]. In addition, 1,2,3-triazoles have attracted a great deal of interest
from medicinal chemists in the design and development of potential drug candidates
due to their high pharmacological properties such as antimicrobial, antitubercular, CNS
depressant, and antihypertensive activities [7–12]. They have diverse applications in drug
development for the treatment of some diseases including cancer, inflammation, malaria,
and tuberculosis [13–15].
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A wide range of antibacterial properties have been gained in hybrid molecules con-
taining benzimidazole and triazole moieties, as shown in Figure 1.
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and to understand the binding mode of the interactions of the screened compounds 
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2. Results and Discussion  
2.1. Chemistry 

In the present study, a preparation of the starting materials 1-(5-methyl-1-(7-aryl-1H-
benzo[d]imidazol-2-yl)-1H-1,2,3-triazol-4-yl) ethan-1-one 2a,b, were obtained by the reac-
tion of benzo[d]imidazoles 1a and/or 1b with β-ketoester acetylacetone in the presence of 
sodium ethoxide in ethanol under reflux (Scheme 1). Their structures were confirmed us-
ing spectral data and elemental analysis. The FT-IR spectrum of 2a and 2b exhibited sig-
nificant strong absorption bands at v 1715 and 1705 for the carbonyl group, respectively, 
indicated the formation of the acetyl group. In addition, the 1H-NMR spectrum of 2a and 
2b showed characteristic singlet signals at δ 2.10 and 2.42 ppm for compound 2a and at δ 
2.16 and 2.47 ppm for compound 2b for the two methyl groups formed in each compound. 
The 13C-NMR of 2a exhibited two signals at δ 9.52 and 27.42 ppm for the two methyl 
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Figure 1. Hybrid molecules bearing benzimidazole and triazole moieties I–III as antibacterial agents.

On the other hand, DNA gyrase is considered an important bacterial enzyme that
is involved in the control of topological transitions of DNA [16,17]. In addition, it is the
intercellular target for a number of antibacterial agents as a paradigm for other DNA
topoisomerases [18]. Therefore, DNA gyrase B has been selected as a therapeutic target for
the identification and development of antimicrobial agents [19–21].

In light of the potential therapeutic properties of these heterocyclic compounds and
with the contribution of our research work [18,22–31] to identify a new class of antimicrobial
agents, a novel set of hybrid derivatives bearing benzimidazole and triazole moieties
was synthesized. Their antimicrobial activities were performed in vitro. Moreover, the
molecular docking study [32–34] was performed both to support the antibacterial activity
and to understand the binding mode of the interactions of the screened compounds against
the binding site of the target enzyme DNA gyrase B. Furthermore, the in silico absorption,
distribution, metabolic, excretion, and toxicity (ADMET) and drug-likeness of the prepared
compounds were also calculated to identify their bioavailability and toxicity.

2. Results and Discussion
2.1. Chemistry

In the present study, a preparation of the starting materials 1-(5-methyl-1-(7-aryl-
1H-benzo[d]imidazol-2-yl)-1H-1,2,3-triazol-4-yl) ethan-1-one 2a,b, were obtained by the
reaction of benzo[d]imidazoles 1a and/or 1b with β-ketoester acetylacetone in the presence
of sodium ethoxide in ethanol under reflux (Scheme 1). Their structures were confirmed
using spectral data and elemental analysis. The FT-IR spectrum of 2a and 2b exhibited
significant strong absorption bands at v 1715 and 1705 for the carbonyl group, respectively,
indicated the formation of the acetyl group. In addition, the 1H-NMR spectrum of 2a and
2b showed characteristic singlet signals at δ 2.10 and 2.42 ppm for compound 2a and at δ
2.16 and 2.47 ppm for compound 2b for the two methyl groups formed in each compound.
The 13C-NMR of 2a exhibited two signals at δ 9.52 and 27.42 ppm for the two methyl groups
and at 195.9 ppm for the carbonyl group. Additionally, the 13C-NMR of 2b exhibited two
signals at δ 9.58 and 27.45 ppm for the two methyl groups and at 194.82 ppm for the
carbonyl group. Moreover, the structures were also supported by their mass spectrum,
which agree with their molecular formula.
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absorption band at 1685 for the carbamide group. Additionally, compound 6b exhibited a 
strong absorption band at 1692 for the carbamide group. Their 1H-NMR and 13C-NMR 
spectra showed characteristic signals; the 1H-NMR spectrum of compound 6a, for exam-
ple, showed significant two signals at δ 2.38 and 2.46 ppm for the two methyl groups in 
addition to the two singlet signals at δ 9.81 and 11.52 ppm for the two NH groups. Its 13C-
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Scheme 1. Synthesis of acetyl triazole derivatives 2a,b.

The two acetyl triazole derivatives were stirred with methyl hydrazinecarbodithioate
3 in isopropyl alcohol for 2h at RT to afford the desired carbodithioate derivatives 4a,b
(Scheme 2). The structures of 4a and 4b were confirmed on the basis of their spectral
and microanalytical data. The FT-IR spectra of the two compounds were devoid of any
signals for carbonyl groups. The 1H-NMR spectrum of 4a showed three singlet signals
at δ 2.16, 2.36, and 2.47 ppm for the three methyl groups and two singlet signals at δ 8.95
and 11.58 ppm for the NH groups. The 1H-NMR spectrum of 4b exhibited three singlet
signals at δ 2.18, 2.32, and 2.42 for the methyl groups and two singlet signals at δ 8.98 and
11.47 ppm for the NH groups. Their mass spectra agreed with their molecular formulas.
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Scheme 2. Synthesis of carbodithioate derivatives 4a,b.

Compounds 4a and 4b were treated with 2-oxo-N-phenyl-2-(phenylamino)aceto hy-
drazonoyl chloride in ethanol containing a catalytic amount of TEA (2–3 drops) to obtain
the corresponding 1,3,4-thiadiazole derivatives 6a,b (Scheme 3). Their chemical structures
were inferred from their data, while the FT-IR spectrum of compound 6a showed a strong
absorption band at 1685 for the carbamide group. Additionally, compound 6b exhibited a
strong absorption band at 1692 for the carbamide group. Their 1H-NMR and 13C-NMR
spectra showed characteristic signals; the 1H-NMR spectrum of compound 6a, for example,
showed significant two signals at δ 2.38 and 2.46 ppm for the two methyl groups in addition
to the two singlet signals at δ 9.81 and 11.52 ppm for the two NH groups. Its 13C-NMR
spectrum showed two significant signals at 10.1 and 20.5 ppm for the two methyl groups.
Their mass spectra supported their molecular formula.
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2.2. Computational Approach
2.2.1. Molecular Docking Study

Based on the bacterial activity results, the compounds (1a–6b) were docked to the
target enzyme DNA gyrase subunit b to check their binding profile. The docking results
exhibited that the compounds (1a–6b) were fitted well in the active site pockets of the target
and possessed good binding energy values ∆G (−6.4 to −9.8 kcal/mol), as summarized
in Table 1 and Figure 2. It has been observed that the derivative 1a and 1b formed arene-
σ with the target enzyme through the amino acid residue Asn46 at distances of 3.91 and
3.93 Å, respectively. Moreover, 1a docked to the target through one HB with the residue
Val71 at 1.87 Å. Compounds 2a and 2b showed the same interactions with the target
enzyme as they formed three HB and one arene–cation interactions with the residues Ala47,
Thr165, and Arg76. Compound 4a formed two HB interactions with Thr34 at 2.98 and
3.00 Å. On the other hand, derivative 4b exhibited one HB interaction with Asp49 at 2.20 Å.
Compound 6a showed one HB with the target through Thr164 at 2.45. Finally, compound
6b, with the highest binding affinity of −9.8 kcal/mol, docked to the target DNA gyrase
B through one HB with the residue Asp49 at 2.40 Å. The 2D and 3D representations of
the intermolecular interactions of the best docked compounds 6a and 6b with the target
enzyme are shown in Figure 2. The interactions of the other compounds and the reference
drug are shown in Figure S1 in the Supplementary File Section.
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Table 1. Energy-based interactions and intermolecular bindings between the prepared compounds and the target enzyme.

2D Structure
Binding
Energy

kcal/mol

Docked Complex
(Amino Acid–Ligand)

Interactions

Distance
(Å)

Ciprofloxacin
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Table 1. Cont.

2D Structure
Binding
Energy

kcal/mol

Docked Complex
(Amino Acid–Ligand)
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(Å)
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On the other hand, the standard drug ciprofloxacin docked to the target enzyme with
binding energy ∆G (−7.4 kcal/mol), and showed three HB interactions with the residues
Arg76, Thr165, and Val43 at 3.00, 2.74, and 2.04 Å, respectively (Figure 2).

The results justified that the compounds 6a,b firmly docked to the active site pockets
of the target enzyme of DNA gyrase subunit B, which functionally participates in DNA
inhibitions.
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models, and the active site pockets are shown by blue stick models. H-bond interactions are shown in green dashed lines.
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2.2.2. Predictive ADMAT and Drug-Likeness of the Compounds

With the help of free accessible servers such as admetSAR, mol inspiration, and Swis-
sADME, the pharmacokinetics, physicochemical, and drug-likeness of the newly prepared
compounds are summarized in Table 2. ADMET analysis of the screened compounds
exhibited that they have good absorption properties (%HIA) ranging from 99.57 to 100%.
For distribution, the compounds do not permeate the blood–brain barrier (BBB) except
compound 1a. Moreover, the molecules were negative in the AMES toxicity and carcino-
genicity test, which suggests that they are non-mutagenic. In addition, the physiochemical
properties results exhibited acceptable values as the compounds had M.W (molecular
weight) (<500 g/mol), except compounds 6a,b. The partition coefficients of the compounds
were <5. The TPSA (topological surface areas) were found to be in the favorable range
(<140). Further, the HBA (H-bond acceptors) and HBD (donors) in the compounds comply
with Lipinski′s rule of five and were found to be in the acceptable range. Overall, we can
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conclude that they showed good absorption, distribution, and oral bioavailability within
the body by not violating Lipinski′s rule of five more than once.

Table 2. ADMET and drug-likeness prediction of newly prepared molecules.

Ciprofloxacin Compound
1a

Compound
1b

Compound
2a

Compound
2b

Compound
4a

Compound
4b

Compound
6a

Compound
6b

Molecular
Weight
(g/mol)

331.13 159.15 193.60 241.25 275.70 345.46 379.90 534.61 569.05

BBB
permeant No No Yes No Yes No No No No

%Human
Intestinal

Absorption
(HIA+)

97.95 99.51 99.57 100.00 100.00 99.20 99.32 100.00 100.00

logp −0.7 2.80 3.43 1.72 2.35 2.80 3.43 3.91 4.38

TPSA A2 74.57 78.44 78.44 76.47 76.47 83.79 83.79 131.05 131.05

HBA 6 5 5 6 6 7 7 11 2

HBD 2 1 1 1 1 2 2 2 6

N rotatable 3 1 1 2 2 5 5 6 1

N
violations 0 0 0 0 0 0 0 1 1

Volume A3 285.46 133.76 147.29 209.43 222.97 288.66 302.20 454.50 468.04

Carcinogeni-
city

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

Noncarcinog-
enic

GI
absorption High High High High High Low Low Low Low

Bioavailabil-
ity score 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.17

2.3. Antimicrobial Activity

All the newly synthesized molecules were screened for their antimicrobial activity
against the pathogenic microorganisms Aspergillus niger, candida albicans, Pseudomonas
aeruginosa, Staphylococcus aureus, and E coli using the agar diffusion method. The inhibi-
tion zone diameters were measured and compared with that of the standard drugs, as
tabulated in Table 3. Ciprofloxacin (5µg/disc) and nystatin (100 units/disc) were used as
standard antibacterial and antifungal drugs, respectively. The results of the antimicrobial
screening showed that compounds 6a and 6b had strong activity against all the tested
pathogenic microbes. In addition, compounds 2a and 4a only showed effects against the
Gram-negative and Gram-positive bacteria and had no effect on the fungi tested. On the
other hand, compound 2b showed strong effects against the fungi tested and no effect
against the bacteria tested. Finally, compound 4b revealed moderate activity against all the
microorganisms tested, except Staphylococcus aureus.
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Table 3. In vitro antimicrobial screening of the newly synthesized derivatives using the agar diffusion method.

Compounds

Microorganism Inhibition Zone Diameters Using the Agar Diffusion
Method (mm)

Gram (+ve)
Bacteria Gram (−ve) Bacteria Fungi

Staphylococcus
aureus

Escherichia
coli

Pseudomonas
aeruginosa Aspergillus niger Candida albicans

2a 15 ± 0.14 12 ± 1.08 22 ± 1.01 −ve −ve

2b −ve 5 ± 0.2 −ve 30 ± 1.16 27 ± 1.1

4a 23 ± 0.8 −ve 13 ± 0.65 −ve −ve

4b −ve −ve 12 ± 08 14 ± 0.15 19 ± 1.04

6a 24 ± 0.6 25 ± 0.9 17 ± 0.75 20 ± 0.9 16 ± 0.89

6b 29 ± 1.2 21 ± 1.14 19 ± 0.79 18 ± 0.12 14 ± 0.58

Ciprofloxacin 20 ± 0.9 23 ± 1.02 21 ± 0.9 −ve −ve

Nystatin −ve −ve −ve 22 ± 0.18 23 ± 1.15

Values are expressed as mean ± standard deviation.

3. Experimental
3.1. Chemistry
3.1.1. Experimental Instrumentation

All melting points were determined on an electrothermal apparatus and are uncor-
rected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotome-
ter. 1H-NMR and 13C-NMR spectra were recorded in (CD3)2SO solutions on a BRUKER500
FT-NMR system spectrometer, and chemical shifts are expressed in ppm units using TMS
as an internal reference. Mass spectra were recorded on a GC-MS QP1000 EX Shimadzu.
Elemental analyses were carried out at the Microanalytical Center of Cairo University.

3.1.2. General Procedures for Synthesis of Derivatives 2a,b

2-azido-1H-benzo[d]imidazole 1a and/or 2-azido-7-chloro-1H-benzo[d]imidazole 1b
(10 mmol) were reacted with acetylacetone (2 mL, 20 mmol) under reflux in ethanol
containing sodium ethoxide (0.5 g, 10 mmol) for 5 h. The resulting solid that formed after
cooling was collected and recrystallized from ethanol to afford 2a and 2b, respectively.

1-(1-(1H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl)ethan-1-one derivatives 2a

White crystals, m.p. 218–220 ◦C, yield: 58%; FT-IR (KBr, cm−1): v 3461(NH), 2919,
2852 (CH), 1715(C=O), 1618 (C=N); 1600(C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.10 (s,
3H, CH3), 2.42 (s, 3H, CH3), 7.21 (d, 2H, J = 10Hz, ArH), 7.54 (d, 2H, J = 10Hz, ArH), 11.52
(s, 1H, NH); 13C-NMR (100 MHz, DMSO-d6): δ 9.5 (CH3), 27.4 (CH3), 115.2, 123.4, 133.1,
138.3, 138.7, 141.5, 195.9 (C=O); ESI-MS: m/z(%): 241 [M+] (11), 225 (12), 212 (13), 177 (50),
166 (18), 77 (91), 65 (100). Anal. Calcd. for C12H11N5O (241): C, 59.74; H, 4.60; N, 29.03%
found: C, 59.78; H, 4.52; N, 29.01%.

1-(1-(7-chloro-1H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl) ethan-1-one 2b

White crystals, m.p. 228–230 ◦C, yield: 52%; FT-IR (KBr, cm−1): v 3450 (NH), 2921,
2858 (CH), 1705 (C=O), 1622 (C=N); 1600 (C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.16 (s,
3H, CH3), 2.47 (s, 3H, CH3), 7.21–7.25 (m, 3H, ArH), 11.58 (s, 1H, NH); 13C-NMR (100 MHz,
DMSO-d6): δ 9.5 (CH3), 27.4 (CH3), 113.5, 120.2, 124.4, 133.1, 138.3, 140.7, 141.5, 194.8
(C=O); ESI-MS: m/z(%): 275 [M+] (15), 273 (17), 265 (18), 238 (12), 222 (14), 170 (100), 166
(28), 65 (50). Anal. Calcd. for C12H10ClN5O (275): C, 52.28; H, 3.66; N, 25.40% found: C,
52.34; H, 3.62; N, 25.37%.
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3.1.3. General Procedures for Synthesis of 4a,b

To a solution of 2a and/or 2b (10 mmol) in 2-propanol (20 mL), methyl hydrazine
carbodithioate 3 (1.22 g, 10 mmol) was added. The mixture was stirred at RT for 2 h. The
solid product was filtered off, recrystallized from Acetic acid to afford the target molecules
4a and 4b, respectively.

Methyl-2-(1-(1-(1H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl) ethylidene) hyd-
razine-1-carbodithioate 4a

Yellow crystals, m.p. 240–242 ◦C, yield: 75%; FT-IR (KBr, cm−1): v 3417 (broad, NH),
1622 (C=N); 1600 (C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.16 (s, 3H, CH3), 2.36 (s,3H,
CH3), 2.47 (s, 3H, CH3), 7.35–7.85 (m, 4H, ArH), 8.95 (s,1H, NH), 11.58 (s, 1H, NH); 13C-
NMR (100 MHz, DMSO-d6): δ 10.0 (CH3), 16.9 (CH3), 18.7 (CH3), 115.2, 123.2, 138.7, 141.5,
145.6 (C=N), 200.0 (C=S); ESI-MS: m/z(%): 345 [M+] (42), 325 (18), 293 (10), 271 (8), 240 (12),
222 (14), 197 (15), 181 (20), 166 (28), 77 (14), 50 (10). Anal. Calcd. for C14H15N7S2 (345): C,
48.68; H, 4.38; N, 28.38% found: C, 48.57; H, 4.32; N, 28.31%.

Methyl-2-(1-(1-(7-chloro-1H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl) ethyli-
dene) hydrazine-1-carbodithioate 4b

Yellow crystals, m.p. 263–265 ◦C, yield: 75%; FT-IR (KBr, cm−1): v 3419 (broad, NH),
1628 (C=N); 1612 (C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.18 (s, 3H, CH3), 2.32 (s,3H,
CH3), 2.42 (s, 3H, CH3), 7.14–7.42 (m, 3H, ArH), 8.98 (s,1H, NH), 11.47 (s, 1H, NH); 13C-
NMR (100 MHz, DMSO-d6): δ 9.1 (CH3), 16.9 (CH3), 19.7 (CH3), 117.2, 124.2, 139.7, 142.5,
142.6, 143.5 (C=N), 197.1 (C=S); ESI-MS: m/z(%): 379 [M+] (12), 352 (17), 287 (51), 252 (18),
250 (12), 227 (14), 170 (15), 165 (20), 70 (14), 65 (100). Anal. Calcd. for C14H14ClN7S2 (379):
C, 44.26; H, 3.71; N, 25.81% found: C, 44.32; H, 3.65; N, 25.73%.

3.1.4. General Procedures for Synthesis of Compounds 6a,b

To a mixture of methyl carbodithioate 4a and/or 4b (1 mmol) and the appropriate
2-oxo-N-phenyl-2-(phenylamino) aceto hydrazonoyl chloride (0.27 gm, 1 mmol) in ethanol
(20 mL), TEA (0.5 mL) was added; the mixture was stirred at RT for 2–4 h (monitored with
TLC). The resulting solid was collected and recrystallized from the proper solvent to obtain
the desired 1,3,4-thiadiazolines 6a and 6b, respectively.

5-(1-(1-(1-H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl)ethylidene) hydrazono)-
N,4-diphenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxamide 6a

Yellow crystals, m.p. 251–253 ◦C, yield: 67%; FT-IR (KBr, cm−1): v 3435 (broad, NH),
1685 (C=O), 1600 (C=N), 1590 (C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.38 (s,3H, CH3),
2.46 (s, 3H, CH3), 7.32–7.91 (m, 14H, ArH), 9.81 (s,1H, NH), 11.52 (s, 1H, NH); 13C-NMR
(100 MHz, DMSO-d6): δ 10.1 (CH3), 20.5 (CH3), 115.20, 122.40, 123.06, 129.60, 133.7, 138.30,
138.90, 141.50 (C=N), 158.20 (C=N), 160.00 (C=O), 164.60 (C=N); ESI-MS: m/z(%): 534 [M+]
(12), 520 (16), 492 (26), 478 (14), 425 (17), 357 (17), 312 (10), 287 (51%), 252 (18), 251 (12), 236
(14), 172 (15), 167 (21), 77 (12), 50 (100). Anal. Calcd. for C27H22N10OS (534): C, 60.66; H,
4.15; N, 26.20% found: C, 60.72; H, 4.11; N, 26.15%.

5-((1-(1-(7-chloro-1H-benzo[d]imidazol-2-yl)-5-methyl-1H-1,2,3-triazol-4-yl) ethylidene)hy-
drazono)-N,4-diphenyl-4,5-dihydro-1,3,4-thiadiazole-2-carboxamide 6b

Yellow crystals, m.p. 282–284 ◦C, yield: 65; FT-IR (KBr, cm−1): v 3447 (broad, NH),
1692 (C=O), 1611 (C=N), 1595 (C=C); 1H-NMR (500 MHz, DMSO-d6): δ 2.32 (s,3H, CH3),
2.48 (s, 3H, CH3), 7.37–7.81 (m, 13H, ArH), 9.82 (s,1H, NH), 11.57 (s, 1H, NH); 13C-NMR
(100 MHz, DMSO-d6): δ 10.1 (CH3), 20.5 (CH3), 115.2, 122.4, 123.0, 129.6, 133.7, 138.3, 138.9,
148.5 (C=N), 156.2 (C=N), 162.0 (C=O), 165.6 (C=N); ESI-MS: m/z(%): 570 [M + 2] (15) 568
[M+] (14), 530 (12), 467 (30), 420 (16), 397 (12), 342 (18), 278 (61), 251 (11), 245 (17), 226 (14),
167 (15), 165 (22), 77 (17), 50 (100). Anal. Calcd. for C27H21ClN10OS (568): C, 56.99; H, 3.72;
N, 24.61% found: C, 56.92; H, 3.65; N, 24.58%.



Molecules 2021, 26, 7119 11 of 13

3.2. Docking Study

In the present study, an in silico docking study was carried out to evaluate the binding
geometries of the ligand molecules with the target enzyme. To understand the interactions
of all the newly prepared compounds with DNA gyrase B, the crystallographic structure of
the enzyme was downloaded from the Protein Data Bank (PDB: 1KZN) with resolution
2.3 Å [35]. In addition, the 2D structures of the ligand molecules were drawn using
ChemDraw 16 (CambridgeSoft, Massachusetts, MA, USA), then converted to SDF format
using Open Babel GUI [36]. The docking-based virtual screening approach was achieved
using PyRx-tool [37]. To analyze the docking results, the discovery studio 3.5 was employed.
In silico ADMET and drug-likeness predictions of the molecules were performed using
free accessible servers such as admetSAR, mol inspiration, and SwissADME.

3.3. Antimicrobial Activity
3.3.1. Antimicrobial Assay

The antimicrobial activities of the tested compounds were tested against the pathogenic
microorganisms Aspergillus niger and candida albicans (NRRL Y-477) using sabouraud dex-
trose agar medium and Pseudomonas aeruginosa (NRRL B-23, Gram-negative bacteria), E.
coli (E. coli O157), and Staphylococcus aureus (NRRL B-313, Gram-positive bacteria) using
nutrient agar medium.

3.3.2. Agar Diffusion Medium

The synthesized compounds were tested for their antimicrobial activity using the agar
diffusion method (Cruickshank et al. 1975) [38].

4. Conclusions

Herein, in the present study, we reported the synthesis of a novel set of benzimidazole-
triazole hybrid analogues, and the compounds were characterized by means of FT-IR,
1H-NMR, 13C-NMR, ESI-MS, and elemental analysis. All the compounds were evaluated
for their antimicrobial activity against different strains of bacteria and fungi. Looking at
the biological activity, we can conclude that all the compounds showed good to excellent
results. In addition, the in vitro findings of the compounds were validated with the help
of the molecular docking study with the target enzyme DNA gyrase B by investigating
its binding modes of interaction. The molecular docking study revealed that all the
synthesized compounds exhibited good binding energy toward the target enzyme. The
in silico and in vitro findings showed that compounds 6a,b were the most active against
bacterial strains. The results suggested that the compounds 6a,b could be used as promising
scaffolds for the design and development of potential antimicrobial inhibitors.

Supplementary Materials: The following are available online. Figure S1. The molecular interactions
of the other docked compounds and standard drug with the target enzyme DNA gyrase B. Left side
(2D): the residues are represented in 3 letter codes. Hydrogen bonds are represented by green and
blue lines and pi-interactions are represented by orange lines. Right side (3D): the docked compounds
are represented by gray stick models, and the active site pockets are shown by blue stick models.
H-bond interactions are shown in green dashed lines. π-interactions are shown in orange lines.
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