Table 2.
State-of-the-art AI techniques to detect COVID-19 using chest X-ray imagery.
Paper | Method Used: Preprocessing + Segmentation + Feature Extraction + Feature Selection + Classification or CNN + Classification | Result Obtained | Dataset Used (Most Are Public) |
No. of Classes | |
---|---|---|---|---|---|
[114] | Image enhancement + WS +deep CNN (ResNet50) and DWT and GLCM+ mRMR+ RF | Cvd.Acc: 99.45, Cvd.Sen:.99.17, Cvd.Pre: 97.51,F1-Score: 0.9833 | N:1500,C-19: 790,BP: 1304,VP: 1215 (after data augmentation) |
2 (C-19, NC) | |
Cvd.Acc: 98.48, Cvd.Sen: 98.72, Cvd.Pre: 97.89,F1-Score: 0.9829 | 4 | ||||
[115] | Color layout descriptor + k-NN | Cvd.Sen: 96.5, Cvd.Pre: 96.5 | Total:86 | ||
[116] | CNN model + Long short-term memory (LSTM) | Cvd.Acc: 99.4, Cvd.Sen: 99.3, Cvd.Spe: 99.2, F1-Score: 98.9, AUC: 99.9 | N: 1525, C-19: 1525,P: 1525 | 3 | |
[117] | Concatenation of the Xception and ResNet50V2 | Cvd.Acc (avg.): 91.4 | N: 8851,C-19: 180,P: 6054 | 3 | |
[118] | CNN model | Cvd.Acc: 95, Cvd.Sen: 96.9, Cvd.Spe: 97.5, Cvd.Pre: 95, F-measure: 95.6 | N: 310,C-19: 284,BP: 330,VP: 327 | 3(N, C-19, P) | |
Cvd.Acc: 89.6, Cvd.Sen: 89.92, Cvd.Spe: 96.4, Cvd.Pre: 90,F-measure: 96.4 | 4 | ||||
[119] | CNN model | AUROC: 0.96 | Pvt. + Public Dataset | 3 | |
[120] | DarkNet based CNN model | Cvd.Acc(avg.): 98.08, Cvd.Sen(avg.): 95.13, Cvd.Spe(avg.): 95.3, Cvd.Pre (avg.): 98.03,F1-Score (avg.): 96.51 | N: 500,C-19: 127,P: 500 | 2 (N, C-19) | |
Cvd.Acc(avg.): 87.02, Cvd.Sen(avg.): 85.35, Cvd.Spe(avg.): 92.18, Cvd.Pre (avg.): 89.96,F1-Score (avg.): 87.37 | 3 | ||||
[121] | 2D-CTf + CSSA+ EfficientNet-B0 | Cvd.Acc: 99.69, Cvd.Sen: 99.44, Cvd.Spe: 99.81, Cvd.Pre: 99.62, F-measure: 99.53 | N: 1281,C-19: 159,VP: 1285 | 3 | |
[122] | VGG-16 model | Cvd.Acc(avg.): 97 | N: 3520,C-19: 250,P: 2753 | 3 | |
[123] | ResNet50 + ResNet101 | Cvd.Acc: 97.77, Cvd.Sen: 97.14, Cvd.Pre: 97.14 | N: 315,C-19: 250, BP: 300,VP: 350 | 2(C-19,O) | |
[58] | ResExLBP + Relief-F+ SVM | Cvd.Acc: 99.69, Cvd.Sen: 98.85, Cvd.Spe: 100 | N: 234, C-19: 87 | 2 | |
[124] | VGG16 model | Cvd.Acc: 98.1 | N: 2880, C-19: 415, P: 5179 | 2(C-19,NC) | |
Cvd.Acc: 94.5 | 3 | ||||
[125] | ResNet18, ResNet50, SqueezeNet,& DenseNet121 | Cvd.Sen: 98, Cvd.Spe(avg.): 90 | C-19: 200, NC:5000 | 2 | |
[126] | Capsule Network-based architecture | Cvd.Acc: 95.7, Cvd.Sen: 90, Cvd.Spe: 95.8, AUC: 0.97 | 2(C-19,O) | ||
[127] | VGG16 model | Cvd.Sen: 97.62, Cvd.Spe: 78.57 | N:142, C-19: 142 | 2 | |
[128] | ResNet101 | Cvd.Acc: 71.9, Cvd.Sen: 77.3, Cvd.Spe: 71.8 | C-19: 154, NC: 5828 (test data) | 2 | |
[129] | Deep learning model | Cvd. Acc C-19: 100,P: 93.75,N: 100 | N: 66, C-19: 51,NC: 21,P: 160,TB: 54 | 5 | |
[130] | Sequential CNN model | Cvd.Acc: 98.3, Cvd.Sen: 100, Cvd.Pre: 96.72, F1-Score: 98.3,ROC area: 0.983 | N: 659, C-19: 295 | 2 | |
[131] | HE +VGG16-based model | Cvd.Acc (avg.): 86, Cvd.Sen (avg.): 86, Cvd.Spe(avg.): 93, Cvd.Pre(avg.):86,F1-Score: 86 | N: 132, C-19: 132,P: 132 | 3 | |
[132] | Histogram matching and autoencoder and CLAHE + Custom CNN model | Cvd.Acc (avg.):94.43, Cvd.Sen (avg.): 92.53, Cvd.Spe: 96.33, Cvd.Pre(avg.): 93.76, F1-Score (avg.): 93.14,AUC (avg): 0.988 |
N: 4337,C-19: 2589 | 2 | |
[133] | Ensemble of ResNet-18 Model | Cvd.Acc: 95.5, Cvd.Sen: 100, Cvd.Pre: 94 | N: 1579,C-19: 184,P: 4245 | 3 | |
[134] | HE+ lung segmentation using UNet + Various deep model are analyzed. | ||||
[135] | 4 models analyzed (Best: VGG16 and VGG19) | Cvd.Acc: 99.38, Cvd.Sen: 100, Cvd.Spe: 99.33 | N: 802, C-19: 790 | 2 | |
[136] | CLAHE+VGG16 and VGG19 used (Best: VGG16) | Cvd.Acc: 95.9, Cvd.Sen: 92.5, Cvd.Spe: 97.5,AUC: 0.950 (max. only for C-19) | N: 607,C-19: 607,P: 607 | 3 | |
[137] | CNN model to separate COVID-19 and pneumonia | ||||
[138] | Alexnet, Googlenet, and Restnet18 is used (Googlenet best for 4 classes) |
Cvd.Acc: 80.56, Cvd.Sen: 80.56, Cvd.Pre: 84.17, F1-Score: 82.32 | N: 79,C-19: 69, BP: 79, VP: 79 | 4 | |
[76] | MLP-CNN | Cvd.Acc: 95.4, Cvd.Sen: 95, Cvd.Pre: 92.5, F1-Score: 93.6 | C-19: 112, NC: 30 | 2 | |
[139] | LightCovidNet | Cvd.Acc (avg.): 96.97 | N: 1341,C-19: 446,P: 1345 | 3 | |
[140] | MobileNet v2 | Cvd.Acc: 96.78, Cvd.Sen: 98.66, Cvd.Spe: 96.46 | N: 504, C-19: 224, P: 714 | 2(C-19,O) | |
Cvd.Acc: 94.72 | 3(N,C-19,P) | ||||
[141] | Truncated InceptionNet | Cvd.Acc (avg.): 98.77, Cvd.Sen(avg.): 95, Cvd.Spe(avg.): 99, Cvd. Pre(avg.): 99 F1 score(avg.): 0.97, AUC (avg.):0.99 |
N:2003, C-19:162,P: 4280, TB:400 |
4 | |
[142] | CNN model | Cvd. Prec (avg.), Cvd. Sen (avg.), F1-score (avg.): 100 | C-19: 500, P: 500 | 2 | |
[143] | CNN model | Cvd.Acc (testing): 94.4 | N:8066, C-19:183,P: 5551 | 3 | |
[144] | COVID-Net model | Cvd.Acc: 93.3 | Total: 13,975 from 13,870 patients | 3(N,C-19,P) | |
[85] | CNN model (Inception) + FO-MPA + k-NN | Cvd.Acc: 98.7, F-score: 98.2 | DS1: C-19 +ve: 200, C-19 -ve: 1675 | 2 | |
Cvd.Acc: 99.6, F-score: 99 | DS2: C-19 +ve: 219, C-19 -ve: 1341 | ||||
[63] | FrMEMs + MRFO + k-NN | Cvd.Acc: 96.09, Cvd.Sen: 98.75, Cvd.Pre: 98.75 | DS1: C-19 +ve: 216,C-19 -ve: 1675 | 2 | |
Cvd.Acc: 98.09, Cvd.Sen: 98.91, Cvd.Pre: 98.91 | DS2: C-19 +ve: 219,C-19 -ve: 1341 | ||||
[145] | Xception model + SVM | Cvd.Acc: 99.33, Cvd.Sen: 99.27, Cvd.Spe: 99.38, Cvd.Pre: 99.27, F1-score:99.27,AUC: 99.32 | N: 565,C-19: 537 | 2 | |
[146] | Discriminative cost sensitive learning approach | Cvd.Acc: 97.01, Cvd.Pre: 97, Cvd.Sen: 97.09,F1-score: 96.98 | N: 1000,C-19: 239,P: 1000 | 3 | |
[147] | CNN model | Cvd.Sen (avg.): 91.05, Cvd.Spe(avg.): 99.61, Cvd.Acc(avg.): 98.34,ROC-AUC(avg.): 95.33 | N: 1583,C-19: 225 | 2 | |
Cvd.Sen (avg.): 92.88, Cvd.Spe(avg.): 99.79, Cvd.Acc(avg.): 99.44,ROC-AUC(avg.): 96.33 | C-19: 225, P: 4292 | 2 | |||
F1 score (avg.): 94.10 | N: 1583,C-19: 225,P: 4292 | 3 | |||
[148] | HE and GC + DenseNet103 + ResNet18 |
Cvd.Acc: 91.9 | N: 191, C-19: 180,BP: 54, VP: 20,TB: 57 | 4(N,BP,VP,TB) | |
[149] | VGG16 model | Cvd.Acc, Cvd.Sen, Cvd. Prec, F-score: 80 | C-19: 70, NC: 70 | 2 | |
[54] | ACGAN based model (CovidGAN) | Cvd.Acc: 95.00 | N: 403, C-19: 721 | 2(N, C-19) | |
[150] | CNN model | Cvd.Acc: 99.70, Cvd.Pre: 99.70, Cvd.Sen: 99.70, Cvd.Spe: 99.55 | N: 1579, C-19: 423,VP:1485 | 2(N,C-19VP) | |
[151] | Deep learning model | Cvd.Acc: 97.25, Cvd.Pre: 97.24,F1-score: 97.21 | N: 27,228, C-19: 209, P: 5794 | 3 | |
[152] | CNN + gated recurrent unit (GRU) | Cvd.Sen: 96, Cvd.Pre: 96, F1-score: 95 | N: 141, C-19: 142, P: 141 | 3 | |
[153] | Ensemble of deep CNN model (InceptionResNetV2 + ResNet152V2 + VGG16+ DenseNet201) | Cvd.Acc: 99.2, Cvd.Sen: 99.12, Cvd.Spe: 99.07, F-score: 99.17,AUC: 99.21 | N:2039, C-19:1663,P: 401,TB:394 | 4 | |
[154] | MCFF-Net66-Conv1-GAP | Cvd.Acc: 94.66 | N:1500,C-19:942, BP:1802,VP:1797 | 4 | |
[155] | ResNet50V2 + t-SNE | Cvd.Acc: 95.49, Cvd.Sen: 99.19, Cvd.Pre:96.19, F1-score: 98.0, AUC: 95.49 | N: 616, C-19: 616,P: 616 | 3 | |
[156] | CNN model | Cvd.Acc:100, Cvd.Sen:100, Cvd.Spe:100, Cvd.Prec:100, F1-score:100, AUC:100 | N:42, C-19:136 | 2 | |
[157] | Enhanced Inception-ResNetV2 model | Cvd.Acc(avg.): 98.80, Cvd.Sen(avg.): 99.11, Cvd.Prec(avg.): 98.61,F1 score(avg.): 98.86 | N:1341,C-19:219,VP: 1345 | 3 | |
[158] | CNN model and GoogLeNet | Cvd.Acc: 97.62, Cvd.Sen: 98.29, Cvd.Spe: 97.64, F-score: 98.30,AUC: 97.96 | N: 1421,C-19: 1332 | 2 | |
[159] | VGG16 Model | Cvd.Acc: 98.72, Cvd.Sen: 98.78, Cvd.Spe: 98.70, Cvd.Prec: 96.43, F1-score: 97.59 | N:1341,C-19:1200,VP:1345 | 3 | |
[160] | AlexNet | Cvd.Acc: 99.13, Cvd.Sen: 99.4, Cvd.Spe: 99.15,F-score: 99.49,AUC: 99.31 | Consists: N,C-19,P,TB | 4 | |
[161] | Ensemble of MobileNet and InceptionV3 | Cvd.Acc: 96.49, Cvd.Prec: 93.01, Cvd.Sen: 92.97,F-score: 92.97 | N:1050,C-19:1050,BP:1050,VP:1050 | 4 | |
[162] | VGG16 model | Cvd.Acc(avg.): 91.69, Cvd.Sen(avg): 95.92, Cvd.Spe(avg.): 100 | Total: 7720 | 3(N, C-19,P) | |
[163] | CLAHE + InceptionV3 + ANN | Cvd.Acc: 97.19 | N: 1583,P: 4273 | 2 | |
[97] | CNN with various optimization algorithm | Cvd.Acc:96, Cvd.Sen:100, Cvd.Spe:99, Cvd.Pre:96, F1-Score:0.98 | N: 1583, C-19: 576, VP:4273 | 3 | |
[164] | VGG16 model | Cvd.Acc: 96, Cvd.Sen: 92.64, Cvd.Spe: 97.27 | N: 504, C-19: 224 | 2 | |
Cvd.Acc: 92.53, Cvd.Sen: 86.7, Cvd.Spe: 95.1 | N:504, C-19: 224, P: 700 | 3 | |||
[50] | FOSF and GLCM and HOG + GWO + Ensemble of classifiers | Cvd.Acc: 98.06, Cvd.Sen: 98.83, Cvd.Spe: 96.51, Cvd.Pre: 98.26,F-measure: 98.55 AUC:0.97 | N: 782, C-19: 782, P: 782 | 2 (N,AB) | |
Cvd.Acc: 91.32, Cvd.Sen: 96.51, Cvd.Spe: 86.2, Cvd.Pre:87.36,F-measure: 91.71,AUC: 0.91 | 2(C-19,P) | ||||
[165] | Ensemble of deep CNN model (VGG19 + DenseNet121) + SVM | Cvd.Acc: 99.71 | N:2341, C-19: 798,P: 2345 | 2 (C-19,NC) | |
Cvd.Acc: 98.28, Cvd.Sen (avg), Cvd.Pre(avg.),F1-Score (avg.): 98.33 | 3 | ||||
[166] | CNN model + Ensemble of classifiers | Cvd.Acc: 98.91, Cvd.Sen: 97.82, Cvd.Pre: 100,F1-Score: 98.89 | N: 2300,C-19: 2300 | 2 | |
[167] | Deep learning model (Inception architecture) | Cvd.Acc: 96, Cvd.Sen: 93, Cvd.Spe: 97, Cvd.Pre: 97, F1-Score: 0.96 | C-19: 435,NC: 505 | 2 | |
[168] | UNet with ResNet + CNN model | Cvd.Acc (avg.): 96.32 | N:1840,C-19:433,BP:2780,VP:1345,TB: 394 | 5 | |
[169] | Two separate CNN models for binary and ternary classification | Cvd.Acc: 98.7, Cvd.Sen: 100, Cvd.Spe: 98.3 | N:145,C-19: 145, BP: 145 | 2(N, C-19) | |
Cvd.Acc: 98.3, Cvd.Sen: 99.3, Cvd.Spe: 98.1 | 3 | ||||
[170] | VGG16 and Xception model (Best: Xception) | Cvd.Sen: 100, Cvd.Spe: 97.6, F1-Score: 97.7 | N: 400, C-19: 402,P:200,I: 35 | 2 | |
[171] | Various DNN + Majority voting scheme | Cvd.Acc: 99.31 | N: 1338, C-19: 237, VP: 1336 | 3 | |
[172] | Customized CNN Model | Cvd.Acc: 92.95, Cvd.Sen (avg.): 90.72, Cvd.Pre(avg.): 94.04,F1-Score(avg.): 0.9204 | N: 1341, C-19: 744 (Independent set) | 2 | |
[173] | NanoChest-net model | Analyzed with various datasets. | |||
[174] | VGG16+ HS + k-NN | Cvd.Acc, Cvd.Sen, Cvd.Pre,F1-Score, AUC:100 | N: 480,C-19: 280 | 2 | |
[175] | OptiDCNN model | Cvd.Acc: 99.11 | N: 5000, C-19: 184 | 2 | |
[176] | HOG and CNN(VGG19) + ME + CNN classifier + WS | Cvd.Acc: 99.49, Cvd.Sen: 93.65, Cvd.Spe: 95.7 | C-19 +ve: 1979, C-19 -ve: 3111 | 2 | |
[177] | Ensemble-CNNs (based on ResNeXt-50, Inception-v3, and DenseNet-161) | Cvd.Acc: 75.23 ± 3.40, Cvd.Sen: 75.20, Cvd.Spe: 87.60, Cvd.Pre: 78.28, F1-Score: 73.43 AUC: 0.8140 |
N: 711, C-19: 711,P:711,BP:711,VP:711 Lung Opacity not Pneumonia:711 (public+Pvt.) |
3(N,C-19,P) | |
Cvd.Acc: 81.00 ± 2.39, Cvd.Sen: 82.96, Cvd.Spe: 85.24, Cvd.Pre: 82.99,F1-Score: 81.49, AUC: 0.8810 |
5 | ||||
[178] | Showed that a system with 2-class model are not valid for the diseases with similar symptoms, by conducting various experiments | ||||
[179] | Exemplar COVID-19FclNet9 + SVM | Cvd.Acc: 99.64 | N: 150,C-19:127 | 2 | |
Cvd.Acc: 98.84 | N: 4000,C-19: 3616, P: 1345 | 3 | |||
Cvd.Acc: 97.60 | N: 234,C-19:125,BP:242,VP:148 | 4 | |||
[180] | Decompose, Transfer, and Compose (DeTraC)+PCA | Cvd.Acc: 93.1, Cvd.Sen:100 | N: 80, C-19:105,SARS: 11 | 3 | |
[77] | UNet + HRNet | Cvd.Acc: 99.26, Cvd.Sen:98.53, Cvd.Spe: 98.82 | Total: 272 | 2 | |
[181] | Various CNN model used (Best:EfficientNetB0) | Cvd.Acc:92.93, Cvd.Sen: 90, Cvd.Spe: 95, Cvd. Prec: 88.3,F1- score: 0.88 | N: 1341, C-19: 420, P: 1345 | 3 | |
[182] | EfficientNet B3-X | Cvd.Acc: 93.9, Cvd.Sen: 96.8, Cvd.PPV: 100 | N:7966+100, C-19: 152+31 P: 5421+100 | 3 | |
[183] | Various pre-trained CNN models (Best: ResNet50) | Cvd.Acc: 96.1 (N,C-19), Cvd.Acc: 99.5(C-19,VP), Cvd.Acc: 99.7(C-19,BP) | N: 2800, C-19: 341, BP: 2772, VP: 1493 | 2 | |
[184] | CNN model + SVM | Cvd.Acc (avg.): 95.81, Cvd. Prec(avg.): 95.27, F1 score(avg.): 94.94 | N:1266 +317, C-19:460 + 116 P:3418 + 855 (Pvt.) | 3 | |
[185] | ResNet50+ SVM | Cvd.Sen:80, Cvd.Spe: 81, AUC: 0.81 | Training and validation C-19:250, NC:250 |
Testing independent set C-19:74,NC:36 (Pvt.) |
2 |
[186] | VisionPro Deep Learning™ + COGNEX’s | F-score: 95.3 (for segmented lung) | N: 7966+100,C-19: 258+100 P: 5451+100 |
3 | |
[84] | Pillow library + HSGO + SVM | Cvd.Acc:99.65 | C-19: 371, NC: 1341 | 2 | |
[187] | CNN model | Cvd.Acc (avg.): 98.03, Cvd.Sen(avg.): 98.83, Cvd.Spe(avg.): 97 | DS1:C-19: 217, NC: 1126 DS2:C-19: 2025, NC: 2025 |
2 | |
[188] | AlexNet + Relief + SVM | Cvd.Acc: 99.18 | N:1583, C-19: 219, P:4290 | 3 | |
[189] | RGB to YUV and YUV to RGB + CNN | Cvd.Acc: 84.76, Cvd.Sen: 98.99, Cvd.Spe: 92.19, F-score: 0.9389,AUC: 0.5948 | N:28,C-19:78,P: 79(each for BP and VP) | 4 | |
[190] | CNN model | Cvd.Acc: 98.44 | Total: 392, C-19: 196 | 2 | |
[191] | Deep CNN model | Cvd.Acc(avg.): 91.62, AUC:91.71 | C-19 +ve: 538, C-19 –ve: 468 | 2 | |
[192] | Deep CNN model | Cvd.Acc(avg.):99.2, Cvd.Sen(avg.):99.2,F1- score: 0.992 | N, C-19: 2484 (each) N, C-19,P: 3829 (each) |
2 | |
Cvd.Acc(avg.):95.2, Cvd.Sen(avg.):95.2,F1-score: 0.952 | 3 | ||||
[193] | MobileNetV2 | Cvd.Acc: 92.91, Cvd.Pre: 92 | N: 234, C-19: 390 | 2 | |
[49] | DenseNet201 model+ Quadratic SVM | Cvd.Acc: 98.16, Cvd.Sen: 98.93, Cvd.Spe: 98.77 | N: 2924, C-19: 683,P: 4272 | 3 | |
[194] | Cluster-based learning + Ensemble of classifiers | Cvd.Acc (avg.):100 | N:79,C-19: 69, BP:79, VP:79 | 2(N,C-19) | |
Cvd.Acc(avg.): 85.23 | 3(N,C-19,BP) | ||||
Cvd.Acc(avg.): 74.05 | 4 | ||||
[195] | Various deep CNN models are compared (Best: XCeptionNet) |
F1-score: 0.97 | N: 1345+238, C-19:490+ 86,P:3632+ 641 (Train + Test) |
3 | |
[196] | CNN model | Cvd.Acc: 98.19 | N: 10,456, C-19: 573, P: 11,673 (Pvt.) | 2(C-19,P) | |
Cvd.Acc: 91.21 | 3 | ||||
[197] | Federated learning model | Cvd.Acc: 98.72 | N: 1266, C-19: 460,P: 3418 (Pvt.) | 2(C-19,P) | |
Cvd.Acc: 95.96 | 3 | ||||
[80] | ResNet50 + ASSOA + MLP | Cvd.Acc: 99.70 | Total: 5863 | 2(C-19+ve, C-19-ve) | |
[198] | Several CNN models are analyzed (Best: VGG16) | Cvd.Acc: 91 | N:1341, C-19:219,P:1345 | 3 | |
[199] | Semi-supervised open set domain adversarial network (SODA) | Avg. AUC-ROC Score: 0.9006(C-19), 0.9082(P) | With different domain target dataset | ||
[200] | VGG16 model | Cvd.Acc: 97, Cvd.Sen: 99, Cvd.Spe: 99, Cvd.Pre: 97, F-score: 98 | N:1400, C-19: 210, P: 1400 | 3 | |
[201] | CovFrameNet (deep learning architecture) | Cvd.Acc: 100, Cvd.Sen: 85, Cvd.Spe: 100, Cvd.Pre: 85, F-score: 90, AUC: 50 | Using two different dataset | ||
[202] | Self-supervised super sample decomposition for transfer learning (4S-DT) model | Cvd.Acc: 97.54, Cvd.Sen: 97.88, Cvd.Spe: 97.15 | DS1: N: 296, C-19: 388, SARS: 41 | 3(N, C-19, SARS) | |
Cvd.Acc: 99.80, Cvd.Sen: 99.70, Cvd.Spe: 100 | DS2: N: 1583,C-19: 576,P: 4273 | 3 (N,C-19,P) | |||
[203] | VDI + Residual encoder + SVM | Cvd.Acc: 93.60, Cvd.Sen: 88, Cvd.Pre: 100, F1-score: 93.60 | C-19: 315, NC: 357 | 2 | |
[204] | RCoNetks | Cvd.Acc (avg.):97.89, Cvd.Sen(avg.):97.76, Cvd.Spe(avg.):98.24, Cvd.PPV(avg.):97.93, F1-score(avg.):97.63 | N: 8851, C-19: 238, P: 6045 | 3 |
Cvd.Acc (%): COVID accuracy, Cvd.Sen(%): COVID sensitivity, Cvd.Spe(%): COVID specificity, Cvd.Pre(%): COVID precision, Normal: N, COVID-19: C-19, Pneumonia: P, Bacterial pneumonia: BP, Viral pneumonia: VP, Tuberculosis: TB, Non-COVID: NC, Others: O, Abnormal: AB, Private: Pvt., DS: dataset, Severe: S, Non-severe: NS, Mild: M, Moderate: mod, Critical: cr, Infected/Infection: I, Not infected: NI, Community acquired pneumonia (CAP): P, Lung cancer: LC.