Skip to main content
. 2021 Dec 1;21(23):8045. doi: 10.3390/s21238045

Table 3.

State-of-the-art AI techniques to detect COVID-19 using CT scans.

Paper Method Used: Preprocessing + Segmentation + Feature Extraction + Feature Selection + Classification or CNN + Classification Result Obtained Dataset
(Most Are Public)
No. of Classes
[205] Various deep models are analyzed (Best: ResNet101) Cvd.Acc: 99.51, Cvd.Sen: 100, Cvd.Spe: 99.02, AUC: 0.994 C-19: 108,NC: 86,Total: 1020 slice, (Pvt.) 2
[206] EfficientNet family based architecture Cvd.Acc: 98.99, Cvd.Sen: 98.80, Cvd.PPV:99.20 DS 1- NC: 1230, C-19: 1252 2
Cvd.Acc: 56.16, Cvd.Sen: 53.06, Cvd.PPV: 54.74 (Train DS 1 & Test DS2) DS 2: NC: 463,C-19: 349
[207] LinkNet + DenseNet + DT Cvd.Acc(avg.): 94.4, Cvd.Pre(avg.): 96.7, Cvd.Rec(avg.): 95.2, F1-score(avg.): 96.0 C-19:445,NC:233 2
[208] novel conditional generative model, called CoSinGAN Independent testing is done using 50 CT cases (for lung segmentation and infection learning)
[93] Intensity normalization and segmentation + Q-deformed entropy + ANOVA+ LSTM Cvd.Acc: 99.68 N: 107,C-19: 118,P: 96 3
[209] Modified Alexnet model Cvd.Acc: 94.75, Cvd.Sen: 93.22, Cvd.Spe: 96.69, Cvd.PPV:97.27 C-19:3482,NC:2751 (Pvt.) 2
[210] Ensemble various models using majority voting scheme Cvd.Acc: 85.2, Cvd.Sen: 85.4, Cvd.Pre: 85.7,F-score: 0.852,AUC: 0.91 C-19 + ve: 349,C-19 -ve: 397 2
[211] ResNet50 Cvd.Acc: 82.91, Cvd.Sen: 77.66, Cvd.Spe: 87.62 C-19:345,NC:397 2
[99] CNN model with MODE Cvd.Acc: outperforms competitive models by 1.9789% 2
[212] Ensemble is built using ResNet152V2, DenseNet201, and VGG16 Cvd.Acc: 98.83, Cvd.Sen: 98.83, Cvd.Spe: 98.82,F-measure: 98.30,AUC: 98.28 N:3038,C-19:2373,P: 2890
TB: 3193
4
[36] eXplainable Deep Learning approach (xDNN) F1-score: 97.31 SARS-CoV-2: 1252
Non SARS-CoV-2: 1230
2
[35] Multi-task and self-supervised learning Cvd.Acc: 89, F1- score: 0.90, AUC: 0.98 C-19:349,NC: 463 2
[213] Semi-Inf-Net Cvd.Sen: 0.725, Cvd.Spe: 0.960, Dice: 0.739 100 images from 19 patients (Pvt) C-19 lung Seg.
[214] 3D CNN model Cvd.Acc: 87.50, Cvd.Sen: 86.90, Cvd.Spe: 90.10,F1-score: 82,AUC: 94.40 Train: 2186, Test: 2796 (Pvt.) 2 (CAP,C-19)
[215] CNN model Cvd.Acc (avg): 94.03, Cvd.Sen(avg.): 94.44, Cvd.Spe (avg.): 93.63 N: 320, C-19: 320 (Pvt.) 2
[92] AlexNet + Guided WOA Cvd.Acc: 87.50, AUC: 99.50 C-19: 334, NC-19: 794 2
[216] Multi-task multi-slice deep learning system Cvd.Acc: 95.21 N: 251,C-19: 245,H1N1: 105
CAP: 123 (Pvt.)
4
[217] LBP and statistical features + ReliefF and NCA + DNN Cvd.Acc: 95.84 N: 397,C-19: 349 2
[218] Region growing + deep CNN model (ResNet101 as its backbone) Cvd.Acc: 94.9 Total: 1110 patients with 5 classes 5
[219] Radiomic features + mRMR + XGBoost AUC: 0.95 ± 0.02 Total: 152 Patients
[220] Segmentation of infectious lung as ResNet50 backbone
[221] DTCT and GLCM + RF Cvd.Acc (avg.): 72.2, Cvd.Sen(avg.): 77, Cvd.Spe(avg.): 68,AUROC (avg.): 0.8 C-19: 291, P: 279 (Pvt.) 2
[222] ResGNet (Graphs are generated using ResNet101-C features) Cvd.Acc (avg.): 96.62, Cvd.Sen(avg.): 97.33, Cvd.Spe(avg.): 95.91, Cvd.Pre(avg.): 96.21,F1-Score(avg.): 0.9665 N:148,C-19: 148 (Pvt.) 2
[223] CNN model (DenseNet201) + ELM Cvd.Acc: 98.36, Cvd.Sen: 98.28, Cvd.Spe: 98.44, Cvd.Pre: 98.22,F1-Score: 98.25,
AUC: 98.36
C-19: 349,NC: 397 2
[224] M 2 UNet (Multi-task multi-instance deep network) Cvd.Acc (avg.): 98.5, Cvd.Sen(avg.): 95.2, Cvd.Pre(avg.): 97.5,F1-Score(avg.): 0.963
AUC(avg.): 0.991
S:51,NS: 191(Pvt.) 2
[225] Dual-branch combination network (using UNet + ResNet50) Cvd.Acc: 96.74, Cvd.Sen: 97.91, Cvd.Spe: 96.00,AUC: 0.9864 N: 75 scans, C-19: 48 scans (Pvt.) 2
[226] Majority voting scheme with ResNet50 Cvd.Acc: 96, Cvd.Sen:100, Cvd.Spe: 96,AUC: 0.90 Two public datasets are used 2
[227] HE + WF + AlexNet + SVM Cvd.Acc: 96.69, Cvd.Sen: 96, Cvd.Spe: 98 N:500,C-19:488, P:500 3
[228] DenseNet-201 Cvd.Acc: 97.8, Cvd.Sen: 98.1, Cvd.Spe: 97.3, Cvd.Pre: 98.4, F1-score: 98.25 C-19: 1500, NC: 1500 2
[229] CLAHE + VGG-19 model Cvd.Acc: 95.75, Cvd.Sen: 97.13,F1- score: 95.75, ROC-AUC: 99.30 C-19 +ve: 1252, C-19 -ve: 1230 2
[230] VGG16 model and ensemble learning Cvd.Acc: 93.57, Cvd.Sen: 94.21, Cvd.Spe: 93.93, Cvd.Pre: 89.4,F1-score: 91.74 N: 243,C-19: 790,P: 384 3
[61] Z-score normalization and KF+CNN + fuzzy c-means + LDN Cvd.Pre: 96, Cvd.Sen: 97, F-score: 97 and volume overlap error (VOE) of 5.6 ± 1:2%.
[231] Golden Key Tool + VGG model Cvd.Acc: 100 DS1- N: 55, C-19: 349 2
Cvd.Acc: 93.478, Cvd.Pre: 97.33, F1-score: 87.5 DS2- N: 55, C-19: 349, NC: 20 3
Cvd.Acc: 90.12, Cvd.Pre: 90.6 DS3- C-19: 349, NC: 396 2
[232] PatchShuffle Stochastic Pooling Neural Network (PSSPNN) F1-score(avg.): 95.79 Total:521 4(N,C-19, P, TB)
[233] Clinical information and chest CT features + XGBoost Cvd.Sen: 90.91, Cvd.Spec: 97.96, AUC: 0.924 Total: 198 2 (M,S)
[234] 3D CU-Net DSC: 0.960, 0.963, 0.771, Cvd.Sen: 0.969, 0.966, 0.837, Cvd.Spe: 0.998, 0.998, 0.998 C-19: 70 for detecting C-19 infection
[235] Tensor + COVID-19-Net (VGG16) + Transfer-Net (ResNet50) Cvd.Acc: 94, Cvd.Sen: 96, Cvd.Spe: 92 N: 700, C-19: 700 2
[236] Ensemble model (using Resnet18, Densenet201, Mobilenetv2 and Shufflenet) Cvd.Acc: 96.51, Cvd.Sen: 96.96, Cvd.Spe: 96.00,F1-Score: 0.97,AUC: 0.99 C-19: 349,NC: 397 2
[237] LungINFseg, model for segmentation Cvd.Acc (avg.): 98.92, Cvd.Sen(avg.): 83.10, Cvd.Spe(avg.): 99.52, DSC(avg.):80.34
intersection over union (IoU) (avg.): 0.6877
20 labeled COVID-19 CT scans (1800 + annotated
Slices)
[238] Feature Pyramid Network(FPN) DenseNet201 for detection Cvd.Sen: 98.3 (m), Cvd.Sen: 71.2(mod), Cvd.Sen: 77.8(s), Cvd.Sen: 100(cr) 1110 subjects Severity classification
[239] Volume of interest based DenseNet-201 Cvd.Acc: 88.88, Cvd.Sen:89.77, Cvd.Spe: 94.73, F1-Score: 88.88 C-19: -moderate risk:40
severe risk:40 extreme risk:40
3
[240] Various deep network architectures are analyzed using publicly available two COVID-19 CT datasets 2
[241] UNet F1-Score, improvement of 5.394 ± 3.015%. +ve:492. -ve: 447
[242] Stationary wavelets + CNN model (Best: ResNet18) Cvd.Acc: 99.4, Cvd.Sen: 100, Cvd.Spe: 98.6,AUC: 0.9965 C-19:349, NC:397 2
[243] Gabor filter + convolution and pooling layers + RF F1 score: 0.99 C-19: 349,NC: 397 2
[244] Stacked autoencoder detector model Cvd.Acc(avg.):94.7, Cvd.Sen(avg.):94.1, Cvd.Pre(avg.):96.54, F1-score (avg.):94.8 C-19: 275,NC: 195 2
[245] DenseNet201 model + k-NN Cvd.Acc, Cvd.Sen, Cvd.Pre, & F1-score:100 C-19:2740,Suspected Cases: 2740 (Private) 2
[246] CNN model + MI and Relief-F and DA +SVM Cvd.Acc: 98.39, Cvd.Sen: 97.78, Cvd.Pre: 98.21, F1-score: 0.98, AUC: 0.9952 SARS-CoV-2: 1252
Non SARS-CoV-2: 1230
2
Cvd.Acc: 90.0, Cvd.Sen: 84.06, Cvd.Pre: 93.55,F1-score: 0.8855, AUC: 0.9414 C-19:349, NC: 463
[247] VGG19 model Cvd.Acc: 94.52 C-19: 349,NC: 463 2
[248] VGG16 model Cvd.Acc: 98.0, Cvd.Sen: 99.0, Cvd.Spe: 94.9 N: 275, C-19: 195 2
[249] Radiological features + Chi-square test + Ensemble classifier Cvd.Acc: 91.94, Cvd.Sen: 93.54, Cvd.Spe: 90.32,AUC: 0.965 C-19: 306,non-COVID-19 pneumonia: 306 (Pvt.) 2
[250] Various CNN and texture based approaches Cvd.Acc (avg.): 95.99, Cvd.Sen(avg.): 94.04, Cvd.Spe(avg.): 99.01,F1-score(avg.): 0.9284, AUC (avg.): 0.9903 COVID-19: 386, NC: 1010 2
[251] Worried deep neural network + pre-trained models (InceptionV3, ResNet50, and VGG19) Cvd.Acc: 99.04, Cvd.Prec: 98.68, Cvd.Rec: 99.11,F-score: 98.90 Total: 2623 (Pvt.) 2(I,NI)
[252] Density peak clustering approach Structural similarity index (SSIM): 89 Total images: 12 (Pvt.) C-19 Seg.
[253] EfficientNet-b0 model Cvd.Acc: 99.83, Cvd.Sen: 92.86, Cvd.Spe: 98.32, Cvd.PPV:91.92 Total images: 107,675 (Pvt.) 2(C-19,NC)
Cvd.Acc: 97.32, Cvd.Sen: 99.71, Cvd.Spe: 95.98, Cvd.PPV: 93.26 2 (C-19,P)
[254] EfficientNetB3 Cvd.Sen: 97.2, Cvd.Spe: 96.8,F1-score: 0.970, AUC: 0.997 N:105,C-19:143,P:147 (Pvt.) 3
Cvd.Sen: 92.4, Cvd.Spe: 98.3,F1-score: 0.953,AUC: 0.989 N: 121,C-19: 119, P: 117(Pvt.) 3
Cvd.Sen: 93.9, Cvd.Spe: 83.1,AUC: 0.954 C-19: 856,Non-P: 254 (Pvt.) 2
[255] COVID Segnet For COVID-19 segmentation: Dice Score: 0.726, Cvd.Sen.: 0.751, Cvd.Pre.: 0.726 Train: 731 Test: 130 patients (Pvt.) Lung and infected regions seg.
For lung segmentation: Dice Score: 0.987, Cvd.Sen.: 0.986, Cvd.Pre.: 0.990
[256] Anam-Net Dice Score: 0.956, Cvd.Acc.: 98.5, Cvd.Sen.: 92.7, Cvd.Spe.: 99.8 N:929, AB:880 Anomalies seg.