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Abstract: We performed a comparative analysis of the prediction accuracy of machine learning
methods and ordinary Kriging (OK) hybrid methods for forest volume models based on multi-source
remote sensing data combined with ground survey data. Taking Larix olgensis, Pinus koraiensis, and
Pinus sylvestris plantations in Mengjiagang forest farms as the research object, based on the Chinese
Academy of Forestry LiDAR, charge-coupled device, and hyperspectral (CAF-LiTCHy) integrated
system, we extracted the visible vegetation index, texture features, terrain factors, and point cloud
feature variables, respectively. Random forest (RF), support vector regression (SVR), and an artificial
neural network (ANN) were used to estimate forest volume. In the small-scale space, the estimation
of sample plot volume is influenced by the surrounding environment as well as the neighboring
observed data. Based on the residuals of these three machine learning models, OK interpolation
was applied to construct new hybrid forest volume estimation models called random forest Kriging
(RFK), support vector machines for regression Kriging (SVRK), and artificial neural network Kriging
(ANNK). The six estimation models of forest volume were tested using the leave-one-out (Loo)
cross-validation method. The prediction accuracies of these six models are better, with R2

Loo values
above 0.6, and the prediction accuracy values of the hybrid models are all improved to different
extents. Among the six models, the RFK hybrid model had the best prediction effect, with an R2

Loo
reaching 0.915. Therefore, the machine learning method based on multi-source remote sensing factors
is useful for forest volume estimation; in particular, the hybrid model constructed by combining
machine learning and the OK method greatly improved the accuracy of forest volume estimation,
which, thus, provides a fast and effective method for the remote sensing inversion estimation of
forest volume and facilitates the management of forest resources.

Keywords: forest volume; multi-source remote sensing factor; ordinary Kriging (OK); random forest
(RF); support vector regression (SVR); artificial neural network (ANN)

1. Introduction

As an important part of the global ecosystem, the forest landscape plays an important
role in maintaining the global carbon emission balance and curbing global warming, in
which context forest volume is one of the important indicators [1,2]. In order to actively
respond to climate change, take the path of green and low-carbon development, and achieve
sustainable development, China has proposed to achieve the goal of carbon neutrality and
zero emissions by 2060, and increasing forest volume is an important means to achieve this
goal [3–6]. There are many methods for investigating the volume of the forest inventory
in forestry surveys. A traditional forest inventory is usually obtained using the first-
and second-class survey data of national forest resources. This method is long and time-
consuming and, thus, is not conducive to a quick assessment of the forest volume of a
region. We must, thus, improve the existing research methods and introduce new technical
means [7]. With the maturity of remote sensing, synthetic aperture radar, and LiDAR
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technologies, it is possible to estimate forest volume at a large scale and with temporal
efficiency [8–13].

In the field of remote sensing, vegetation indices provide a simple and effective mea-
sure of surface conditions, which can reflect vegetation vitality and information [14,15]. At
present, the most commonly used vegetation indices are constructed from a combination
of visible and near-infrared bands, and the vegetation indices constructed solely based
on the visible band are rarely applied in forestry. However, visible vegetation indices
based on unmanned aerial vehicle (UAV) images have been widely used in crop recogni-
tion [16], biomass estimation [17,18], and information extraction [19,20]. In general, most
remote sensing image data obtained by UAVs only has visible light bands (RGB) and
no near-infrared, because the acquisition cost is low [21]. Studies have shown that there
is a correlation between a visible vegetation index (includes visible light bands) and a
vegetation index (includes common bands such as visible and near-infrared bands), and
the visible vegetation index can also sometimes replace the near-infrared vegetation index
in inversion research [22,23]. In addition to the vegetation index, texture features also
have an impact on forest volume inversion. At present, vegetation texture features are
mainly used in vegetation coverage and land use change research, and forestry remote
sensing images are mainly used to estimate forest biomass and leaf area index [24]. Chubey
et al. performed a plot-oriented analysis of texture features to extract forest age and tree
height parameters from high-resolution remote sensing images [25]. In recent years, texture
features have been used to estimate forest volume, which can effectively solve the problem
of “same thing, different spectrum” in remote sensing images and improve the accuracy of
image information extraction by making full use of texture information [26,27].

As an active remote sensing technology, LiDAR has a strong penetration ability, inde-
pendence from shadows, and a strong anti-interference ability. It can overcome problems
such as the easy saturation of traditional optical remote sensing [28,29]. An airborne laser
LiDAR scanning system is composed of a laser altimeter, a GNNS positioning device, an
inertial guidance instrument, and a high-resolution digital camera for the synchronous
measurement of a target [30–32]. In the 1980s, experts and scholars from many countries
began to study the application of LiDAR technology in forestry surveys [33]. After years
of research and practice, much has been achieved in the estimation of forest volume via
LiDAR technology, providing valuable experience for the application of LiDAR technology
in this area [29]. Næsset and Økland used LiDAR to extract point cloud height variables
and density variables to fit prediction models and grouped them according to different
stand ages and stand conditions to estimate stand volume in southeastern Norwegian
forests by building log-transformed multiple linear regression models [34]. Bottalico et al.
used coniferous plantation forests in the Italian Mediterranean and established several
stand feature inversion models by extracting LiDAR feature variables and combining them
with actual measurement data from sample plots [30]. Li et al. used different algorithms
to estimate stand height based on UAV laser scanning data [35]. Silva et al. estimated
the stem biomass of eucalyptus plantations in São Paulo, Brazil, by constructing a linear
model using airborne LiDAR data [36]. Most of the above research methods use traditional
statistical approaches such as linear and nonlinear regression models and mixed-effect
models. However, these methods often need to satisfy certain statistical assumptions in
their application [37]. Because forest growth is a complex nonlinear process, affected by
many factors such as heredity, climate, stand, and their interactions, empirical models
are still faced with the challenges of model selection, variable selection, and parameter
convergence [38].

With the development of artificial intelligence technology, machine learning algo-
rithms provide a new method for forest growth and harvest prediction. They have the
advantages of making no assumptions about the distribution of input data; being able to
deal well with the complex relationship between dependent variables and independent
variables; the capacity for the deep mining of valuable information from data, revealing
their implicit structure; and the construction of better prediction models. Machine learning
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has been widely used in forest growth and harvest prediction algorithms, but the appli-
cation of other kinds of machine learning algorithms is not extensive or in depth [39–42].
However, whether it employs a parametric or nonparametric model, the above research
does not take into account the spatial autocorrelation of forest volume, so a hybrid approach
that considers both relevant environmental factors and the effect of spatial autocorrelation
is required that has a higher prediction accuracy compared with a single model [43,44].
Wasko et al. conducted a comparative study on different combination methods using
ordinary Kriging (OK) interpolation with the global residual of the local model, which
helps address the spatial autocorrelation of the model residual [45]. Much of the remote
sensing data are derived from one single platform, and for various reasons (e.g., technology,
cost, etc.), it is difficult to achieve the simultaneous acquisition of optical remote sensing
data and LiDAR data using one platform [28]. As the cost decreases, these sensors are
becoming more and more popular, thus providing opportunities to develop multi-sensor
systems and a basis for combined LiDAR and optical remote sensing techniques. The
research of experts and scholars in some countries has explored the integration of LiDAR
and hyperspectral scanners on different platforms. Pang et al. compared the utility of
airborne LiDAR and spaceborne hyperspectral data for estimating forest leaf area index;
these data were obtained from different platforms and in different time periods, which
affects the fusion potential and is, thus, bound to lead to prediction error [28]. Therefore,
the development of a multi-sensor integrated airborne remote sensing system for accu-
rate data fusion has become a goal [46,47]. The existing airborne remote sensing systems
can integrate multi-dimensional data such as high-resolution CCD images, hyperspectral
data, and airborne LiDAR point cloud data, which have great potential applicability in
forestry investigations.

Many studies have been completed on estimating forest volume using optical remote
sensing images and airborne LiDAR point cloud data, but few have combined the variable
factors extracted from these two data sources to estimate the forest volume in a region.
In this study, we obtained multi-source remote sensing data for the Mengjiagang forest
farm using the CAF-LiTCHy airborne observation integration system, and extracted the
visible light vegetation index, texture feature, terrain factor, and laser radar point cloud
feature variables. Combining this with the measured data of ground plot volume, we
constructed an RF model, an SVR model, and an ANN model, as well as RFK, SVRK, and
ANNK hybrid models, based on the residual OK interpolation of the machine learning
model. We then used these to estimate the forest volume in the study area, providing an
efficient method for forest resource management research.

2. Materials and Methods
2.1. Overview of the Study Area

This study’s area was the forest area of the Mengjiagang forestry in Jiamusi City,
Heilongjiang Province. The forest farm was founded in February 1956. Its geographical
coordinates are 130◦32′42′′–130◦52′36′′ E and 46◦20′16′′–46◦30′50′′ N (as in Figure 1). It
exists in a temperate continental monsoon climate, where winter is long, cold, and dry,
and summer is short, warm, and humid. The annual ≥10 ◦C accumulation temperature is
about 2547 ◦C. The average annual precipitation is about 550 mm, and it receives 1955 h
of sunshine throughout the year. The frost-free period is about 120 days. Because the
weather is cold, the growth period of plants is generally from May to September. The forest
farm consists mostly of low hills with gentle slopes (between 10◦ and 20◦), with altitudes
between 170 m and 575 m. The soil is dominated by typical dark brown loam. The forest
farm mainly manages coniferous plantations of Larix olgensis, Pinus sylvestris, and Pinus
koraiensis. Its shrubs and vines include Acanthopanax senticosus, Corylus mandshurica, etc. Its
herbs are primarily Pteridophyta, Convallaria majalis, Carex spp., Menispermum dauricum, etc.
The Mengjiagang forest farm is rich in forest resources, with a total forest area of 16,274 ha,
a total forest volume of 640,000 m3, and a forest coverage rate of 80.4%.
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Figure 1. Study area profile and multi-source dataset. The figure shows the specific location of the Mengjiagang forest
farm (b) in China (a). The distribution of ground standard sample plots in forest compartments, the DOM used for extracting
vegetation indices, and the DEM for extracting terrain factors are included in (b). (c) shows the LiDAR point cloud data of a
ground standard plot.

2.2. Data Acquisition
2.2.1. Ground Standard Land Survey

A field survey was conducted in July 2020 on 52 standard sample plots in the study
area of Mengjiagang forest farm, with sample plot areas ranging from 0.06 to 0.2 ha,
including 41 Larix olgensis plantations, 5 Pinus koraiensis plantations, and 6 Pinus sylvestris
plantations, and a total of 4400 sample trees were investigated. The height, diameter at
breast height, crown width, and relative coordinates of each tree were measured in the
standard sample plots. The coordinates of the center point and the four corner points of the
ground standard sample plots were obtained using real-time kinematic (RTK) differential
positioning for more than 30 min at each point, the error for which is generally guaranteed
to be within 1 m.

2.2.2. Remote Sensing Data Acquisition

The remote sensing data of this study were acquired via flight scanning Mengjiagang
forest area with CAF-LiTCHy, an airborne optical full-spectrum remote sensing system
integrated by the China Academy of Forestry Sciences, which comprises four types of
ground observation sensors, including LiDAR, a thermal infrared camera, a charge-coupled
device (CCD) camera, and a hyperspectral sensor, as well as a high-precision positioning
and orientation system (POS) [28]. This system can simultaneously acquire vertical and
horizontal structure data, as well as spectral and temperature information, and has the
capacity for the remote sensing monitoring of large areas of forest and grass, with a good
technical guarantee for the study of forest accumulation.

1. Airborne CCD

Airborne CCD images of the study area were acquired by scanning the Mengjiagang
forest farm with the CAF-LiTCHy system, which uses a medium-sized airborne digital
camera system (DigiCAM-60) as the CCD sensor. The DigiCAM-60 has 60 megapixels
(8956 × 6708), a 1.6 s image repetition rate, and a 16-bit recording depth. The focus lens is
50 mm. The camera has a spatial resolution of 12 cm and a flight altitude of 1000 m [28].
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2. Airborne LiDAR

The integrated system LiDAR scanner is a VQ-580II from Riegl, Austria. The VQ-580II
laser scanner’s scanning rate is 30–300 lines/s, its maximum pulse repetition frequency is
2000 kHz, its angular measurement resolution is 0.001◦, its scanning field of view is ±37.5◦,
and its laser divergence angle is 0.25 mrad. It has a distance measurement accuracy 0.02 m,
a minimum measurement distance of 20 m, and a maximum flight altitude of 5600 m. The
laser scanner operates at a 1000 m relative altitude with a spot size of 0.25 m and a scanning
width of up to 1534 m. The scanner uses online waveform processing technology and has
multiple echo recording ability. The LiDAR data used in this study are all LAS 1.2 point
cloud data acquired from the processing of the CAF-LiTCHy integrated system flight study.
The density of the point cloud is greater than 2.8 pts/m2, and the difference between point
cloud bands is less than 0.1 m [28].

2.3. Data Preprocessing
2.3.1. Measured Data Processing

The binary volume formula (V = aDbHc, V represents volume, D represents diameter
at breast height, H represents tree height, and a, b, and c are estimated parameters) was
used to estimate the stand volume based on the tree height and diameter at breast height
of each tree in each standard plot. Due to different tree species, the selected binary volume
formulas are also different (Table 1).

Table 1. The binary volume table parameters of main coniferous forest species in Northeast China [48].

Tree Species a b c

Larix olgensis 0.00005017 1.7583 1.14967
Pinus koraiensis 0.00006353 1.9436 0.89689
Pinus sylvestris 0.00006938 1.7631 1.03701

Note: a, b, and c are the parameter estimates.

The standard plot volume can be obtained by the accumulation of each individual
timber volume calculated by the parameters in Table 1. Combined with the area of each
standard plot, the volume per hectare can be derived:

M =
N

∑
i=1

Vi/S (1)

where M is the volume per hectare, the unit of which is m3/ha; i is number of stems; Vi is
the volume per tree; S is the area of standard sample plots.

2.3.2. Airborne CCD Image Processing

In Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg, Russia), the structure
from motion algorithm and the multi-view stereo algorithm are used to match the airborne
CCD data with the same name, the dense matching point cloud is generated by the
application of the least squares method to area network free parity and aerial triangulation,
and the digital orthophoto map is generated by stitching together the orthophoto monoliths
after constructing the grid and texture in Agisoft Photoscan Professional [28]. Based on
the generated digital orthophoto map (DOM), the visible vegetation indices and texture
features of each band in the study area were extracted separately via ENVI5.3 (Exelis VIS
Company, Tysons Corner, VI, USA).

1. Extraction of visible vegetation index

With the help of the ENVI5.3 (Exelis VIS Company, Tysons Corner, VI, USA) software,
waveband calculations were performed in the Band Math tool based on the DOM spec-
tral information for the Mengjiagang forest area, and vegetation indices were calculated
according to its formula. Considering the cost and the technology, only three bands of
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RGB (R: 647 nm; G: 553 nm; B: 461 nm) were acquired from the images, and the visible
vegetation indices were extracted based on these three bands. The independent variables
related to the band reflectance of Band 1, Band 2, and Band 3 were extracted, including the
Normalized Green–Red Difference Index (NGRDI), the Extreme Green Index (EXG), the
Color Index of Vegetation (CIVE), and another 17 independent variables (see Table 2).

Table 2. Extracted visible light vegetation index [22,23,49–51].

Vegetation Index Abbreviation Calculation Formula

Normalized Green–Red Difference Index NGRDI (G − R)/(G + R)
Extreme Green Index EXG 2g − r − b

Color Index of Vegetation CIVE 0.44r − 0.88g + 0.39b + 18.79
Vegetation Index VEG g/rab1−a, a = 0.67

Excess Green Minus Excess Red Index EXGR EXG − 1.4r − g
Woebbecke Index WI (g − b)/(r − g)

Visible Band Different Vegetation Index VDVI (2G − R − B)/(2G + R + B)
Red–Green Ratio Index RGRI r/g

Normalized Green–Blue Difference Index NGBDI (G − B)/(G + B)
Green–Blue Ratio Index GBRI b/g

Green–Red and Blue Vegetation index GBRVI (G2 − B × R)/(G2 + B × R)
Modified Green and Red Vegetation Index MGRVI (G2 − R2)/(G2 + R2)

Differential Enhanced Vegetation Index DEVI G/3G + R/3G + B/3G
Green Leaf Index GLI (2g − r − b)/(2g + r + b)

Combination Index COM 0.25EXG + 0.3EXGR +
0.33CIVE + 0.12VEG

Combination Index 2 COM2 0.36EXG + 0.47CIVE +
0.17VEG

Excess Red Index EXR 1.4 × r − g
R: red light channel. G: green light channel. B: blue light channel. r: standardized results for the red light channel,
r = R/(R + G + B). g: standardized results for the green light channel, g = G/(R + G + B). b: standardized results
for blue light channels, b = B/(R + G + B).

2. Extraction of texture feature

Eight texture filters based on the second-order matrix are extracted from the DOM of
the Mengjiagang forest region. These filters include mean, variance, homogeneity, contrast,
heterogeneity, entropy, second moment, and correlation [26]. The second-order probability
statistics use the gray level co-occurrence matrix to define and extract the relevant texture
features’ values. Based on the single band of the remote sensing image, the final image data
type is a 32-bit float of 8 channels, and the texture feature image is exported by a single
channel. According to the gray level co-occurrence matrix calculated by this method, the
gray level quantization level is 64, with a 3 × 3 processing window, and a transformation
value of x, y = 1. The above eight texture features are calculated for the three bands of the
image, and 24 texture feature variables are finally output.

3. Extraction of terrain factor

The digital elevation model (DEM) represents the bare-Earth surface, removing all
natural and built features. The DEM is generated from the acquired airborne LiDAR data
of the Mengjiagang forest area using triangulated irregular network (TIN) interpolation. In
ArcGIS 10.7 (ESRI, Redlands, CA, USA), according to the standard plot coordinates, the
altitude (h) and slope (slope) of each ground survey sample plot are extracted and mapped
(Figure 2).
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2.3.3. Airborne LiDAR Data Processing

Airborne LiDAR data processing includes LiDAR waveform decomposition and
geocoding, aerial declination, airband matching, point cloud pre-processing, point cloud
rasterization processing, and a few other steps. The LiDAR data with geospatial informa-
tion are generated using RiPROCESS (RIEGL, Horn, Austrian) laser processing software
combined with POS information (based on the combination of Global Navigation Satellite
System and Inertial Navigation System and receives the precise position and attitude
information of each sensor when acquiring data) to encode the geographic location of the
echo points of the LiDAR data. Four corner points and the center points of the sample plot
are obtained via the RTK differential positioning method.

In LiDAR 360 (Beijing Digital Green soil Technology Co., Ltd., Beijing, China), after
pre-processing the acquired airborne LiDAR point cloud data, the sample area is cropped
according to the sample area’s quadrangle points, and for each sample point cloud, we
remove outliers, and ground point classification (filtering) and normalization (to remove
the influence of terrain undulation on the elevation value of the point cloud data) are
performed, etc. Ground point classification uses an improved progressive triangular
irregular network (TIN) densification (IPDT) filtering algorithm, which firstly generates a
sparse triangular network from the seed points and then condenses them layer by layer
through iterative processing until all ground points are classified [52]. The normalized
point cloud data are rasterized to produce a DEM and digital surface model (DSM).

The Watershed algorithm is applied to the CHM generated from normalized point
cloud samples, but the segmentation algorithm sometimes does not work very well. The
results of single wood segmentation are examined in ALS editor, and due to the different
densities of the sample plots, the effects of single wood segmentation are also different, with
resulting undersegmentation, oversegmentation, or missing segmentation [53,54]. This
necessitates the manual interactive editing of seed points, such as addition and deletion, to
ensure that each tree in the sample plot has a seed point at the top. Finally, the accuracy of
single wood segmentation is improved thanks to the edited seed points [55,56]. After the
completion of individual wood segmentation in the sample plot, single tree parameters
such as arithmetic mean height (H), mean crown width (W), and number of plants (N) are
obtained for each standard plot. In addition, based on the normalized airborne LiDAR
point cloud data, forest parameters such as the height and intensity of each ground sample
plot are extracted. In this study, a total of 61 characteristic variables of two types have been
extracted. The extraction results and characteristic variables of the LiDAR point cloud are
shown in Table 3.
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Table 3. Extracted point cloud characteristic variables [30].

Point Cloud Characteristic Variable Description

Point cloud
height variable

H1, H5, H10, H20, H25, H30, H40,
H50, H60, H70, H75, H80, H90,

H95, H99

Point cloud height percentile

Hmax, Hmin, Hmean, Hmed, Hstd,
Hvar, Hmad

Maximum, minimum, average,
median, standard deviation, variance,
and mean absolute deviation of point

cloud height

Hskew, Hkurt, Hcrr, Hcv

Skewness, kurtosis, canopy
fluctuation rate, and coefficient of

variation of point cloud height

Hd0, Hd1, Hd2, Hd3, Hd4, Hd5, Hd6,
Hd7, Hd8, Hd9

Point cloud height density variable

Point cloud
intensity variable

I1, I5, I10, I20, I25, I30, I40, I50, I60, I70,
I75, I80, I90, I95, I99

Point cloud intensity percentile

Imax, Imin, Imean, Imed, Istd, Ivar, Imad

Maximum, minimum, average,
median, standard deviation, variance,

mean absolute deviation of point
cloud intensity

Iskew, Ikurt, Icv
Skewness, kurtosis, and coefficient of

variation of point cloud intensity

The height variables are the parameters related to elevation and density and are
calculated using the point cloud elevation values. The point cloud height percentile is the
height percentile of a given statistical unit derived by ordering all the normalized LiDAR
point clouds within it by height and then calculating the height at which X% of the points
within each statistical unit are located. The maximum, minimum, standard deviation,
median, and mean values are the maximum, minimum, standard deviation, median, and
mean of the Z-values for all points within a given statistical unit, respectively. Skewness
is the symmetry of the distribution of Z-values of all points within a certain statistical
unit. The kurtosis is the flatness of the Z-value distribution of all points within a certain
statistical unit. The coefficient of variation is the coefficient of variation of the Z-values of
all points within a certain statistical unit. The density variables are divided into ten equal
height slices from low to high, and the proportion of each layer of echoes to the whole echo
is the corresponding density variable (Figure 3).

The intensity variable is similar to the height variable. The difference is that the inten-
sity variable uses the intensity value of the point rather than the height value. Therefore,
the intensity variables can be counted only when the point cloud data contain intensity
information. The spatial point cloud is divided into different grids according to certain
distances in the x and y directions; the intensity variables of each part are calculated using
the point cloud intensity, and the interpretation of each intensity variable is referred to as
the height variable.
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2.4. Research Method

The workflow for estimating forest volume based on multi-source data is shown in
Figure 4.

2.4.1. Variable Screening

In this study, variables extracted based on LiDAR point cloud data include average
tree height (H), average canopy width (W), and point cloud characteristic variables (see
Table 3). The variables extracted from CCD images include the visible vegetation index
(see Table 2) and the 24 texture features in three bands of RGB (8 texture features are
extracted in each band). The variables extracted based on the digital elevation model
include slope and elevation terrain factors. We finally add the areas of the standard plots,
totaling 107 independent variables, with stand volume as the dependent variable.

According to previous studies, it is not the case that the more independent variables
used, the better [57]. Because there are more independent variables in this study, Pearson
correlation analysis was applied before the model analysis. The correlation between
these independent variables and the dependent variable volume was addressed, and a
correlation coefficient significance test was carried out. The independent variables with
large correlation coefficients and significant correlation were selected as candidate variables
to participate in the model.

2.4.2. Estimation Model of Forest Volume Based on Machine Learning

Using python scripting, after repeated experiments, suitable parameters were found
using random search and grid search methods [58], and the inverse study area forest
volume random forest (RF), support vector regression (SVR), and artificial neural networks
(ANN) estimation models were established by combining the leave-one-out (Loo) cross-
validation method with the coefficient of determination, the root mean square error, and
the mean absolute error as model evaluation indexes.
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1. RF model

Random forest uses a random method to generate decision trees, which can be used
for both classification and regression problems, while the random forest classifier can also
handle missing values, and as long as there are enough trees, the classifier will not overfit
the model (Figure 5) [24,39].
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Figure 5. Schematic diagram of random forest regression. Through bootstrapping, a number of weak learners are trained by
different decision regression trees, parameters, and features, and the final results are output by the weighted average method.

After repeated experiments, the maximum number of decisions of “n _ estimators”
is set to 500, which is too small to be fitted, but any larger will increase the calculation
quantity. Bootstrapping, whether there is a returned sample, is defaulted to Ture. The
“max_features”, which is the maximum number of features to be considered when dividing,
is set to 58 here. The “min _ sample _ split” is the minimum number of samples required
for internal node repartition, and this value limits the conditions for subtrees to continue
dividing. The value can be adjusted according to the sample size and is here set to 5. The
“min _ sample _ leaf” leaf node has a minimum of 2 samples, depending on how many
samples are adjusted. The “max_depth” decision maximum depth is set to 8, generally
speaking, when there are fewer data or fewer features, regardless of this value. Here, as
there are more feature variables, it is recommended to limit this maximum depth; the
specific value depends on the distribution of data, but is usually between 10 and 100.

2. SVR model

Support vector machine (SVM) is a supervised learning method for classification,
regression, and outlier detection. When the SVM is applied to regression fitting analysis,
the basic idea is no longer to find an optimal classification surface to separate the two
types of samples, but to find an optimal classification surface to minimize the error of all
training samples. In order to use SVM for regression fitting, Vapnik et al. introduced the
insensitive loss function on the basis of SVM classification and, thus, obtained support
vector regression (SVR) [59,60]. The SVR function when used for volume (M) estimation
can be defined as:

M =
N

∑
i=1

(âi − ai)k(xi, x) + b (2)

where x is the vector of input predictor variables; k(xi, x) is the kernel function; b is a
constant; âi and ai are weights (Lagrange multipliers). The constraint is Equation (3):

N
∑

i=1
(âi − ai) = 0

0 ≤ ai, âi ≤ C
(3)

where C is the regularization parameter used to balance the training error and model
complexity. The sequential minimum optimization algorithm is used to gradually solve
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the quadratic programming optimization problem, and the M equation is updated to map
the new value until the Lagrange multiplier converges.

The radial basis kernel function is a kind of kernel function with strong locality, and it
can, thus, map a sample into a higher dimensional space. This is one of the most widely
used kernel functions. Both large and small samples perform well with this function, and it
demands fewer parameters than polynomial kernel functions. Therefore, in most cases, the
radial basis kernel function is preferred when one does not know which kernel function is
used. It shows superior performance and robust results and is used in this study [61]:

K(xi, x) = exp

[
(xi − x)2

σ2

]
(4)

The above equation involves the calculation of the Euclidean distance of two vectors;
the radial basis kernel function is a monotonic function of the Euclidean distance of two
vectors. σ is the bandwidth, which controls the radial range of effect; in other words, σ
controls the local range of effect of the radial basis kernel function. When the Euclidean
distance of xi and x is within a certain range, assuming a fixed xi, K(xi, x) changes signifi-
cantly with x. In short, the training of the regression support vector model must find the
best value of two meta-parameters: the regularization parameter (C) and kernel width (σ).
Before debugging, the parameters must be used to normalize the data, choosing the radial
basis kernel function (RBF) as the kernel function; the kernel function coefficient gamma is
set to 0.001, while cross-validation is generally used to select the regularization parameter
(C), here set to C = 150.

3. ANN model

Artificial neural networks, also called neural networks, are a mathematical model
formed using the working principles of biological neural networks (Figure 6). The neural
network is one of many machine learning algorithms. It can be used for supervised tasks,
such as classification and visual recognition, as well as unsupervised tasks. At the same
time, it can deal with complex nonlinear problems, as its basic structure is neurons. A
complete neural network consists of three parts: the input layer, hidden layer, and output
layer [62,63].
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Figure 6. Structure model of artificial neural network. Oi represents input neurals,Oj represents hidden neurals. Ok
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by selected weights. Then, the weighted output is combined and input into the output neuron Ok to form the output value.

Each node in the neural network accepts the input value and transmits this to the next
layer. The input node directly transmits the input attribute value to the next layer (hidden
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or output layer). In a neural network, there is a functional relationship between the inputs
and outputs of the nodes in the hidden and output layers, and this function is called the
excitation function. The role of the excitation function in a neural network is, in layman’s
terms, the transformation of multiple linear inputs into a nonlinear relationship. The
rectified liner unit (relu, Equation (5)) function has the advantages of simple computation,
simple derivatives, and fast convergence compared with other activation functions. The
disadvantage is that the network is fragile, and it is easy for many neurons to have a value
of 0 and, thus, never be trained again during training. However, this can be avoided by
setting a suitable learning rate.

Relu = max(x, 0) (5)

Here, the artificial neural network with a 3-layer topology is chosen, i.e., 2 hidden
layers and 1 output layer; the number of nodes in the first hidden layer is 50, while the
number in the second hidden layer is also 50, and the number in the output layer is 1. The
activation function from the first hidden layer to the second hidden layer is relu, and the
activation function from the hidden layer to the output layer is also relu. The optimization
algorithm selects the Adam function, and the learning rate is set to 0.01, the maximum
number of learning epochs is set to 1000, and the tolerance is set to 20. Finally, the results
of forest volume estimation in the study area are output.

2.4.3. Estimation Model of Forest Volume Based on Ordinary Kriging Hybrid Method

Machine learning volume estimation models do not take into account the spatial
autocorrelation of forest volume at small scales, and some studies have shown that there is
some spatial autocorrelation in the errors of the above models. As such, a hybrid method
considering both relevant environmental factors and spatial autocorrelation is generated,
and this has higher prediction accuracy than a single model, such as the random forest
Kriging (RFK) [64], regression support vector machine Kriging (SVRK) [57], and artificial
neural network Kriging (ANNK) [65] models. At present, such hybrid methods are mostly
used for soil attribute interpolation [66,67] and meteorological element interpolation [68,69],
and their application in forest volume prediction model construction is rarely mentioned.

The RFK, SVRK, and ANNK models in this study used geostatistical analysis to
perform ordinary Kriging interpolation on the residual parts of RF, SVR, and ANN predic-
tion models. The results of the hybrid model are combined with the forest volume value
M̂(ai, bi) obtained by the regression of prediction factors and the results (E(ai, bi)) of the
ordinary Kriging interpolation of regression residuals. The expressions are as follows:

M(ai, bi) = M̂(ai, bi) + Ê(ai, bi) (6)

where (ai, bi) is the coordinate position of the predicted point; M̂(ai, bi) is the prediction of
stand volume based on RF, SVR, and ANN; Ê(ai, bi) is the residuals of volume estimated
from the RF, SVR, and ANN prediction; ordinary Kriging interpolation is an unbiased
linear interpolation method. The expressions are as follows:

Ê(ai, bi) =
n

∑
i=1

λ̂i β̂aibi (7)

where λ̂i is the weight of the contributions of neighboring observations to the observation
at point i, which can be determined by the semi-variance function. The semi-variance
function, also known as the semi-variance moment, is a unique function of geostatistical
analysis. Half of the variance of the difference between the values Z(x) and Z(x + h) of
the regionalized variable Z(x) at the points x and x + h is called the variance function of
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the regionalized variable Z(x), denoted as Y(h), and 2Y(h) is called the variance function.
The expressions are as follows:

Y(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (8)

where Y(h) is a semi-variance function; h is lag size; N (h) is the number of observations in
the range h; Z(xi) is the observed value at ai; Z(xi + h) is the observed value at xi + h.

The semi-variance function is a unique function in geostatistical analysis [57]. The
semi-variogram is a set of discrete points and is often fitted into a mathematical model
to represent the spatial autocorrelation of the measured samples. Spherical and Gaussian
function models are used in our study. There are two very important points (red points)
in the variation curve of this function (Figure 7): the point when the interval distance is
0 and the inflection point at which the semi-variance function tends to be smooth. From
these two points, four corresponding parameters are generated: Nugget, Range, Sill, and
Partial Sill.
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Figure 7. Semi-variance function theoretical diagram. Nugget represents the variation caused by
measurement or scale. Sill represents the sum of random variation and fixed variation. Partial Sill is
the difference between Sill and Nugget. When the value of the semi-variance function is taken from
the initial Nugget to the Sill, the interval distance of the sampling points is called the Range. The Sill
effect (Nugget/Sill) is an important indicator of the degree of spatial autocorrelation; the smaller its
value, the stronger the degree of spatial autocorrelation.

2.5. Model Evaluation

Using python scripting, the prediction accuracy of the model is evaluated, with the
R2

Loo, RMSELoo, and MAELoo obtained by the leave-one-out (Loo, Figure 8) method. The
closer R2

Loo is to 1, the smaller the RMSELoo and MAELoo are, indicating that the model
predicts more effectively. The leave-one-out method is used for evaluating learners in
machine learning and is a special type of cross-validation [70]. The expressions of each
evaluation index are as follows:
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R2
Loo =

1
k

k

∑
j=1

R2
j =

1
k

k

∑
j=1

(
1−

nj

∑
j=1

(
Oij − Pij

)2/
nj

∑
i=1

(
Oij −Oj

)2
)

(9)

RMSELoo =
1
k

k

∑
j=1

RMSEj =
1
k

k

∑
j=1

√√√√ 1
nj

nj

∑
i=1

(
Oij − Pij

)2 (10)

MAELoo =
1
k

k

∑
j=1

MAEj =
1
k

k

∑
j=1

(
1
nj

nj

∑
i=1

∣∣Oij − Pij
∣∣) (11)

where k is the fold of cross-validation, and here, k = N; Oij and Pij represent the observation
and the predicted value of the model for the jth time, respectively. Oj represents the
average of the jth observation; nj represents the number of samples for the jth time;
R2

j , RMSEj, and MAEj represent the coefficient of determination, root mean square error,
and mean absolute deviation of the jth, respectively.
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3. Results
3.1. Determining the Variables

All the extracted variables were screened based on Pearson correlation analysis, and
the screening results are shown in the correlation coefficient plot in Figure 9. In order
to take into account all point cloud feature variables, visible vegetation indices, texture
features, and topographic factors, variables with absolute values of correlation coefficients
greater than or equal to 0.4 and p-values greater than 0.05 were selected, totaling 58 (all
variables except volume M are explained in the lower left corner of Figure 10). Using
these 58 variables as independent variables and the measured stand volumes as dependent
variables, the RF, SVR, and ANN models were constructed in python. The RFK, SVRK, and
ANNK hybrid models with ordinary Kriging interpolation were also constructed based on
the residuals of the predicted values of these three models.

3.2. Comparison of Model Estimation Accuracy

According to the above research methods, RF, SVR, and ANN estimation models were
established for different machine learning methods by inputting suitable parameters.

The above FR, SVR, and ANN models are used to estimate the volume of measured
points (ground sample plots) in the study area, and the residual values based on these
three models are obtained for OK interpolation. The parameters of the residual OK model
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are shown in Table 4. It can be seen from Table 4 that the three models’ residuals have
a certain degree of spatial autocorrelation. Among these, as suggested by the Sill effect,
the spatial autocorrelation of the SVR model residual is the strongest, and that of the RF
model residual is the weakest. From the Range parameters, we infer that the spatial field
fluctuation of the SVR model residual is the largest, and that of the RF model residual is
the smallest. From the Nugget, we see that the randomness of the RF model residual is the
smallest, and that of the ANN model residual is the largest. The estimated values of the
RFK, SVRK, and ANNK hybrid models based on multi-source data forest accumulation
can be obtained by adding the estimation values of RF, SVR, and ANN to the residual
ordinary Kriging interpolation model.
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number 20 in the green box.

For the RF, SVR, and ANN models and the RFK, SVRK, and ANNK hybrid models,
the leave-one-out cross-validation method was used to validate the estimation accuracy
and perform comparative analysis. The accuracy verification indexes of the models are
shown in Table 5. It can be seen from Table 5 that the RMSELoo and MAELoo values of
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the RF model are the lowest, and the R2
Loo value is the highest, indicating that the error

of the RF model is the smallest. The RMSELoo and MAELoo values of the ANN model
are the highest, and the R2

Loo value is the lowest, indicating that the error of the artificial
neural network model is the largest. Therefore, the best-performing model of these three
machine learning methods is achieved by the RF model, followed by the SVR model, and
the worst-performing model is achieved by ANN.
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Table 4. Parameters of ordinary Kriging models of residuals and their accuracy.

Residual
(m3/ha) Model Range

(km) Nugget Partial Sill Sill Effect
(Nugget/Sill)

MAE
(m3/ha)

RMSE
(m3/ha) R2

RRF Spherical 3.05 803.01 1772.39 0.31 43.9 46.3 0.25
RSVR Gaussian 4.001 1136.22 4560.93 0.20 59.8 53.4 0.40
RANN Gaussian 3.572 1975.30 4668.24 0.30 65.3 68.8 0.49

Table 5. Estimation accuracy evaluation of machine learning models and ordinary Kriging model hybrid.

Model MAELoo(
m3/ha

) RMSELoo(
m3/ha

) R2
LOO

R2
LOO Accuracy

Improvement
Level of Accuracy
Improvement (%)

RF 40.8 52.3 0.90 / /
SVR 57.2 75.1 0.80 / /

ANN 69.1 93.5 0.68 / /
RFK 37.4 46.3 0.92 0.02 11.47%

SVRK 45.3 59.8 0.86 0.06 20.37%
ANNK 53.1 68.8 0.82 0.14 26.42%

By contrast, the estimation accuracy of the hybrid models is improved to different
degrees, i.e., combining the ordinary Kriging model with the residuals of the machine
learning model can greatly reduce the error in the estimation of forest volume. The R2

LOO
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of the estimation accuracy of these six models is above 0.6; the ANNK model undergoes
the largest improvement in estimation accuracy, and the RFK model shows the smallest
improvement in estimation accuracy. However, the RF and RFK models’ R2

LOO value is
above 0.9, while their RMSELoo and MAELoo values are the smallest; the model’s estimation
accuracy is much higher than the other models, and the estimation effect is the best.
Therefore, the hybrid model RFK is the optimal model for forest volume estimation based
on the multi-source data used in this study.

The level of accuracy improvement is the percentage improvement in the root mean
square error of the hybrid method compared with the machine learning model. For exam-
ple, the level of accuracy improvement = [RMSELoo(RF) − RMSELoo(RFK)]/RMSELoo(RF).

4. Discussion
4.1. Multi-Source Data

Forest volume refers to the total amount of tree volume in a certain forest area, which
is one of the basic indicators reflecting the overall scale and level of forest resources in a
country or region. It is closely related to wood safety, climate change, animal habitat, etc.,
and can provide a scientific basis for forest management plans. The accurate estimation
of forest volume is of great significance for improving the management level of forest
resources and ecological environmental protection [34].

The multi-source data used in this study are CCD remote sensing images, LiDAR data,
and the actual measurement data from ground standard sample plots. In the field survey,
we investigated the data of three standard sample plots of different tree species used for
forest volume estimation. Differently from other studies, the CCD remote sensing images
and LiDAR data obtained from the study area were accessed with the same equipment,
CAF-LiTCHy, and share the same positioning system, which avoids the errors caused
by the inaccurate matching of the two data sources and improves the accuracy of forest
volume estimation. The CCD remote sensing images and LiDAR data were obtained
using the CAF-LiTCHy integrated system at different times, but some studies have shown
that the interannual variation in the vegetation index is small. For this paper, the tree
species assessed were primarily Larix olgensis, Pinus koraiensis, and Pinus sylvestris. These
coniferous species grow slowly, and the interannual variation in their surface characteristics
is not large. Therefore, the research results will be less affected by time [71].

We here extracted the visible vegetation index, and although this is less sensitive
to vegetation than the index extracted using the near infrared band, other scholars have
also studied visible vegetation indexes, such as the visible-band different vegetation index
(VDVI) instead of the NDVI [22,72]. These remote sensing factors have great significance
in machine learning and local regression estimation. Therefore, the CCD remote sensing
variables used in this study can be used as auxiliary variables for the estimation of forest
volume. At the same time, texture feature parameters will be affected by the different
sizes of the extraction window, and terrain factor will also have a negative impact on the
estimation of forest volume due to the terrain shadow in the remote sensing image. In
addition, the spectral characteristics of remote sensing images may be limited by saturation.
In a certain area, two different ground objects may present the same spectral curve charac-
teristics; it may also be the same ground object, in different growth states, showing different
spectral line characteristics. The point cloud height variable of LiDAR data can effectively
reflect such information as the average height of the forest, and the point cloud intensity
variable also reflects the density and horizontal structure of the forest to a certain extent.
Combining these two important variables, it is possible for airborne LiDAR to estimate
forest volume. In order to avoid the deficiencies of using optical remote sensing data for
estimating forest volume, our study introduced the point cloud characteristic variables of
LiDAR point cloud data and formed a variety of data sources to jointly construct a forest
volume estimation model.

The data used in this study do not consider the effects of undergrowth herbs, shrubs,
litter, and soil the environment on forest volume, which is an area in which remote sensing
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technology also struggles. If these variables can be incorporated into the study of forest
volume, the accuracy will be greatly improved.

4.2. RF, SVR, and ANN

Before building a forest volume estimation model, all the variables obtained were
screened for Pearson correlation coefficients; however, the screening results still retained
many variables, so the conventional parametric model definitely did not work well. In
order to overcome the shortcomings of using traditional statistical methods in forest growth
and harvest research, RF, SVR, and ANN were used to estimate the forest volume in the
study area, with good results [40]. It can be seen from Figure 10 that among the three
machine learning methods, the test index of the RF estimation model is the best, with the
best effect on the estimation of forest volume. The reason for the RF model’s superiority is
that, compared with other machine algorithms, the random forest algorithm does not need
to repeatedly adjust its parameters, and it can handle high-latitude data (data with many
characteristic variables). Even if some characteristic variables are missing, it can maintain
accuracy in its final results. It is less affected by collinearity and outliers and has strong
generalizability, so it is not easy to overfit. The SVR and ANN algorithms are vulnerable to
collinearity when there are many independent variables—especially the ANN algorithm.
There are too many uncertainties in this mode of estimation, such as learning efficiency,
the number of hidden layer nodes, the selection of training functions, etc. Because of the
hidden black box operation of this method, the relationship between input and output
cannot be accurately expressed and analyzed [40,61,72]. Since many independent variables
are used in the inversion of forest volume in this study, some variables cannot avoid
collinearity. Combining the advantages and disadvantages of the above three algorithms,
the RF machine learning algorithm is more suitable for the inversion of forest volume, and
its estimation effect is the best.

In addition, the RF algorithm can rank the importance scores of feature variables
and analyze the contributions of variables to model prediction. The higher the score, the
greater the contribution to model estimation. As can be seen from Figure 11, among the
height variables with a high correlation with volume, H, Hd5, Hd1, Hvar, Hstd, H70, and
H99 had high importance scores and contributed significantly to model estimation. Tree
height and the volume of accumulation are closely related, and a variety of models have
been developed for tree height storage in many studies [73–75]. Among the other feature
variables, the topographic factors of slope and altitude (h) contribute the most to modeling,
followed by the presence of point cloud variables with over 90% intensity, EXGR, the COM
visible fingerprint index, and the texture features of contrast in Band 1 and homogeneity in
Band 2. There is greater human activity in woodlands with a gentle slope and low altitude,
which is also conducive to forest harvesting; where forests are vulnerable to destruction,
the forest volume is low. With the increase in altitude, the slope becomes steep, and human
activities are reduced, which is not conducive to forest harvesting, meaning the forest site
quality is high, and the forest volume is high. Using the visible vegetation index, texture
features and terrain factors as auxiliary variables in forest volume model estimation can
reduce the error to a certain extent; these are important remote sensing factors that cannot
be ignored.

4.3. RFK, SVRK, and ANNK

The RFK, SVRK, and ANNK hybrid models are extensions of the RF, SVR, and ANN
models, which take into account the inherent spatial correlation structure of the residuals of
the RF, SVR, and ANN models and perform ordinary Kriging interpolation on the residual
part of the fit of the RF, SVR, and ANN models. They then sum the residual part with the
trend term of the fit of the RF, SVR, and ANN models and perform a test, which improves
the estimation accuracy [57,64,65]. Figures 10 and 12 show that the estimation models
incorporating the geostatistical analysis semi-variance function method have an improved
estimation accuracy compared with the original models. The estimation accuracy of the
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ANNK hybrid model is the most improved compared with the original model; its R2
LOO

increased by 0.137 and its RMSELoo accuracy increased by 26.24%. This is followed by
the SVRK and RFK hybrid models. Overall, the forest volume estimation effect of the RF
model and RFK hybrid model based on multi-source data is the best. The RFK hybrid
model’s estimation effect is better than that of the RF model, as the estimated value and
measured value of the 1:1 scatter plot fitting effect are the best.
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5. Conclusions

With the development of remote sensing technology in the forestry industry, it has
become easier to obtain data on a large number of variables, while traditional statistical
research methods can no longer keep up with this trend. To achieve the goal of estimating
forest volume scientifically and efficiently, this study uses a machine learning method with
a strong generalization ability and high efficiency to construct RF, SVR, and ANN models to
estimate forest volume based on multi-source data, and the RF model has the best prediction
effect. At the same time, considering the spatial correlation of sample sites, a hybrid model
of RFK, SVRK, and ANNK was constructed to improve the accuracy of forest volume
estimation, and the RFK model has the best prediction effect. We hope that the research
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method proposed in this study can not only collect timely and accurate data (especially
LiDAR data) for forest resource management, but also provide accurate and efficient data
analysis methods, so as to provide scientific and technical support for the sustainable
development of forest management. We have come to the following conclusions:

(1) The machine learning method has a good effect on the estimation of multivariable
forest volume, but the shortcomings of machine learning are that it ignores the spatial
autocorrelation of neighboring observed data.

(2) By using machine learning to estimate stock volume, the accuracy has been improved
to varying degrees when considering the spatial correlation effect. RF is optimal com-
pared with other machine learning methods due to its specific advantages, making it
also the optimal basic estimation model for the mixed model. The RFK estimation
model is the best among the six models (Figure 10).

(3) As can be seen from Figure 12, among the variables involved in model construction,
the variables extracted from LiDAR data are much greater in number than those
extracted from other data sources, and their importance scores are also relatively high.
This shows that LiDAR data can express forest volume more accurately and provide
an accurate and efficient method for future forest resources investigation.

(4) Forest resources are amongst the most important resources on Earth, and they play
an irreplaceable role in carbon sequestration, slowing down global warming and
maintaining biodiversity. We have studied them in order to better protect and use
them and are striving to achieve the sustainable development of the environment.
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