Skip to main content
. 2021 Nov 27;21(23):7926. doi: 10.3390/s21237926

Table 3.

Best metric scores of each ML model and the selected hyperparameters of each model.

Classifiers Accuracy (%) Recall (%) F1-Score (%) Precision (%) Confusion Matrix Hyperparameters
RF 88.82 89.94 89.01 88.10 0 1 Criterion = entropy, min samples leaf = 1, min samples split = 5, n estimators = 30
0 2432 342
1 283 2531
KNN 75.93 79.82 76.96 74.30 0 1 algorithm = auto, leaf size = 1, n neighbors = 3, weights = distance
0 1997 777
1 568 2246
NN (MLP) 85.68 85.54 85.75 85.96 0 1 activation = tanh, alpha = 0.0001, hidden layer sizes = (10, 20, 50), learning rate = constant, solver = adam
0 2381 393
1 407 2407
LR 70.22 74.09 71.48 69.04 0 1 penalty = l2, C = 10.0
0 1839 935
1 729 2085
SVM 72.39 85.86 75.80 67.85 0 1 C = 15, kernel = rbf
0 1629 1145
1 398 2416
XGBoost 88.53 90.26 88.80 87.38 0 1 gamma = 0.7, max depth = 9, min child weight = 1
0 2407 367
1 274 2540
LightGBM 87.78 89.02 88.00 87.01 0 1 n estimators = 520, num leaves = 50
0 2400 374
1 309 2505
BB 88.85 90.69 89.12 87.61 0 1 n estimators = 1100
0 2413 361
1 262 2552