Skip to main content
. 2021 Nov 27;21(23):7888. doi: 10.3390/s21237888
Algorithm 1: 3D Yolo-KF-Tracking
Notation: object states xk, measurement zk, Kalman filter KF, image set F
Input: image F
while true do
  Object-Detection (F)
  if object detected then
    trigger and initiate KF
    break
  else
    continue
  end if
end while
while true do
  KF.predict()
  Object-Detection (F)
  if object detected then
    if confidence score > 0.75 then
      x^k = zk
      KF.update (zk)
    else
      KF.update (zk)
      x^k = KF.update (zk)
    end if
  else
    x^k = KF.update (KF.predict())
  end if
  Output: x^k (posteriori estimate)
  continue
end while