| Algorithm 1: 3D Yolo-KF-Tracking |
|
Notation: object states , measurement , Kalman filter KF, image set Input: image while true do Object-Detection (F) if object detected then trigger and initiate KF break else continue end if end while while true do KF.predict() Object-Detection (F) if object detected then if confidence score > 0.75 then = KF.update () else KF.update () = KF.update () end if else = KF.update (KF.predict()) end if Output: (posteriori estimate) continue end while |