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Traumatic brain injury (TBI) results in disrupted brain function following impact from an external force and is a
risk factor for sporadic Alzheimer’s disease (AD). Although neurologic symptoms triggered by mild traumatic
brain injuries (mTBI), the most common form of TBI, typically resolve rapidly, even an isolated mTBI event can
increase the risk to develop AD. Aberrant accumulation of amyloid B peptide (Af), a cleaved fragment of
amyloid precursor protein (APP), is a key pathologic outcome designating the progression of AD following mTBI
and has also been linked to impaired axonal transport. However, relationships among mTBI, amyloidogenesis, and
axonal transport remain unclear, in part because of the dearth of human models to study the neuronal response fol-
lowing mTBI. Here, we implemented a custom-microfabricated device to deform neurons derived from human-
induced pluripotent stem cells, derived from a cognitively unimpaired male individual, to mimic the mild
stretch experienced by neurons during mTBI. Although no cell lethality or cytoskeletal disruptions were observed,
mild stretch was sufficient to stimulate rapid amyloidogenic processing of APP. This processing led to abrupt cessa-
tion of APP axonal transport and progressive formation of aberrant axonal accumulations that contained APP, its
processing machinery, and amyloidogenic fragments. Consistent with this sequence of events, stretch-induced
defects were abrogated by reducing amyloidogenesis either pharmacologically or genetically. In sum, we have uncov-
ered a novel and manipulable stretch-induced amyloidogenic pathway directly responsible for APP axonal transport
dysregulation. Our findings may help to understand and ultimately mitigate the risk of developing AD following
mTBIL
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Significance Statement

for intervening in these pathways.

"

Mild traumatic brain injury is a risk factor for sporadic Alzheimer’s disease (AD). Increased amyloid 3 peptide generation after
injury may drive this risk. Here, by using a custom-built device to impose mild stretch to human neurons, we found that stretch
triggers amyloid precursor protein (APP) cleavage, and thus amyloid 3 peptide generation, consequently disrupting APP axonal
transport. Compellingly, protecting APP from cleavage was sufficient to spare axonal transport dysregulation and the consequent
aberrant axonal accumulation of APP. Supporting such protective mechanism, the expression of the AD-protective APPAS7T genetic
variant conferred protection against stretch-induced APP axonal transport phenotypes. Our data reveal potential subcellular path-
ways contributing to the development of AD-associated phenotypes following mild traumatic brain injury, and putative strategies

~
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Introduction

In addition to aging, traumatic brain injury (TBI) is the strongest
environmental risk factor for developing sporadic Alzheimer’s
disease (AD) (Schofield et al., 1997; Guo et al., 2000; Plassman et
al., 2000; Fleminger et al., 2003; Gardner et al., 2014). Across the
broad spectrum of injury severities, mild TBI (mTBI) is the most
common subtype, affecting at least 42 million people worldwide
annually (Greenwald et al., 2012; Gardner and Yaffe, 2015).
Despite most clinical symptoms resolving rapidly following
mTBI (Carroll et al., 2004; Ruff et al., 2009), even an isolated
mTBI event significantly increases the risk to develop AD and
related dementias (Guo et al.,, 2000; Kiraly and Kiraly, 2007;
Bazarian et al., 2009; Gavett et al., 2010; Barnes et al., 2018; Fann
et al,, 2018; Schaffert et al., 2018). The linkage between mTBI
and AD suggests that mild injury induces subclinical pathophys-
iological changes in brain cells, which may increase neurodege-
nerative susceptibility. Pathways underlying such changes are
not fully understood.

Aberrant accumulation of amyloid B peptide (AB), which
results from the amyloidogenic processing of amyloid precursor
protein (APP) by B-site APP cleaving enzyme 1 (BACE1) and
y-secretase, is a key outcome that distinguishes AD from other
injury-associated neurodegenerative sequelae (Johnson et al.,
2010, 2012). In addition to rapidly emerging and prevalent amy-
loid pathology in patients subject to severe head injury, such pa-
thology has also been observed following a single mTBI event
and after repetitive mTBI (Emmerling et al., 2000; Ikonomovic et
al,, 2004; DeKosky et al., 2013; Gatson et al., 2013; D. H. Smith et
al., 2013; Marklund et al., 2014; Stein et al., 2015; Shahim et al.,
2016; Abu Hamdeh et al., 2018; Takahashi et al., 2019). Hence,
sublethally impacted neurons that survive following mild focal or
diffuse axonal injury might contribute to AD pathogenesis
(Browne et al., 2011; Johnson et al., 2013; Vascak et al., 2018).
We posit that identifying early molecular changes in human neu-
rons following sublethal (i.e., mild) mechanical trauma will pro-
vide insights into pathways related to amyloid pathogenesis after
mTBIL

Previous studies have used animal models to investigate AD-
related phenotypes under controlled conditions of severe and
mild injury (Pierce et al., 1996; Bramlett et al., 1997; Stone et al,,
2000; Tran et al., 2011a,b; Greer et al,, 2013; Tajiri et al., 2013;
Hénell et al., 2015; Lou et al., 2018). However, with a few excep-
tions, most of these studies have been performed using trans-
genic mice models for AD that are inherently predisposed to
develop amyloid pathology, even without injury (Loane et al,
2011; Tran et al., 2011a, 2012; Winston et al., 2013; Cartagena et
al., 2016; Levy Nogueira et al, 2018; Lou et al, 2018).
Collectively, despite supporting a link between brain injury and
amyloidogenesis, animal models cannot simulate the spectrum

of human response to injury, which is influenced by diverse and
human-specific variations in genetic and epigenetic factors. In
addition, early outcomes in neurons cannot be readily decoupled
from glial and systemic contributions. The ability to capture neu-
ronal outcomes longitudinally and with high temporal and spa-
tial resolution also remains challenging.

Several in vitro models have been also generated to investigate
neuronal response to injury by imposing stretch. These platforms
largely deliver supraphysiological strains (i.e., simulating severe
neuronal trauma) that often result in immediate cytoskeletal dis-
ruption and rapid cell death (D. H. Smith et al., 1999; Morrison
et al, 2003; LaPlaca et al, 2005; Cullen and LaPlaca, 2006;
Monnerie et al., 2010; Tang-Schomer et al., 2012; Dollé et al.,
2014; Wang et al.,, 2014; Salvador et al, 2015; Sherman et al,,
2016; Abdul-Muneer et al., 2017). Only a few studies have inves-
tigated mild deformations in vitro, providing some insight into
neuronal response to sublethal injuries (Chung et al., 2005; Yuen
et al., 2009; Staal et al., 2010; Yap et al., 2014, 2017; Li et al,
2019). However, none has explored AD-associated outcomes af-
ter injury, and have only rarely used human neurons (Sherman
et al., 2016; Doll¢é et al., 2018; Bianchi et al., 2019).

In this study, toward filling these knowledge gaps, we developed
a custom-built device to impose rapid, sublethal, unidirectional
deformations on human neurons, simulating those experienced by
neurons during TBI (Kimpara and Iwamoto, 2012; Sahoo et al,,
2016). We exploited the high-resolution imaging and biochemical
capabilities of our system to evaluate two key cellular pathways
hypothesized to contribute to AD pathophysiology: APP amyloido-
genic processing and APP axonal transport. Our work provides
new insight into early molecular changes that may link mTBI to
increased susceptibility for AD progression.

Materials and Methods

hiPSC lines. We used a human induced pluripotent stem cell (hiPSC)
line derived from a cognitively unimpaired male individual previously
established and characterized (CVB) (RRID:CVCL_IN86, GM25430)
(Gore et al., 2011). All hIPSCs were cultured as previously described
(Israel et al,, 2012; Woodruff et al., 2013; Young et al., 2015), on a 7y-irra-
diated mouse embryonic fibroblast feeder layer in HUES media: KO-
DMEM (Invitrogen), 10% plasmanate (Talecris Biotherapeutics), 10%
KOSR (Invitrogen), 1x nonessential amino acids (Invitrogen), 20 mm
glutamax (Invitrogen), 1x penicillin/streptomycin (Invitrogen), with
20 ng/ml fibroblast growth factor (FGF) (Millipore) and passaged with
Accutase (Innovative Cell Technologies). APP Icelandic (APPA973T)
hiPSC line was generated using CRISPR-based genome editing as previ-
ously described (Woodruff et al., 2016; Fong et al., 2018). Briefly, CVB
hiPSCs were pretreated with 10 um Rock Inhibitor (Y-27632 dihydro-
chloride, Abcam) before nucleofection. To obtain single cells, hiPSCs
were dissociated with Accutase and filtered through 100 um filters;
8 x 10° cells were nucleofected using the Amaxa Human Stem Cell
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Nucleofector Kit I (Lonza) with 5pg of modified pSpCas9(BB)-2A-GFP
(PX458, expression under EF-1a promoter) vector (Ran et al., 2013), con-
taining guide RNA (5'-GGAGATCTCTGAAGTGAAGA-3') targeting
APP exon 16, and 50 nmol (4 ng) of repair single-stranded oligonucleotide
(5'-TGTAATACAGGTTCTGGGTTGACAAATATCAAGACGGAGGAG
ATCTCTGAAGTCAAGATGGATACAGAATTCCGACATGACTCA
GGATATGAAGTTCATCATCAAAAATTGGTACGT-3'). After cul-
turing the hiPSCs in the presence of Rock Inhibitor for 24 h, 1 x 10%
GFP™ IPSCs were FACS sorted (FACS Aria ITu, BD Biosciences) and
plated on 10 cm plates preseeded with mouse embryonic fibroblasts in the
presence of Rock Inhibitor. After a week, visible single colonies were man-
ually picked, transferred to 96-well plates, and expanded. DNA from each
single-cell derived clone was harvested using QuickExtract DNA
Extraction Solution (Epicentre), APP exon 16 was PCR-amplified using
JumpStart REDTaq ReadyMix Reaction Mix (Sigma) and primers (for-
ward, AGG CCT AGA AAG AAG TTT TGG GT; reverse, CAG GCT
GGT CTC GAA TTT CT), purified using Exo-SAP-IT PCR Product
Cleanup Reagent (Thermo Fisher Scientific) and Sanger sequenced (using
forward primer). Sequencing results were aligned against the APP WT
sequence to determine the presence of disruption in the vicinity of guide
RNA/Cas9 predicted cutting site. Likely edited clones were expanded re-
sequenced, and amplified PCR fragments from non-WT colonies were
selected, cloned using the Zero Blunt TOPO TA PCR Cloning Kit
(Invitrogen), and sequenced to analyze the (edited) genomic DNA
sequence on both alleles. Selected clones were karyotyped by hybridization
to the Infinium CoreExome-24 BeadChip (Illumina). One clone was iden-
tified to carry the A673T mutation in heterozygosis; this line was
expanded and used for subsequent experiments.

Generation of hiPSC-derived NPCs and neurons. Here we used two
NPC lines previously derived and characterized: CV4a (derived from
CVB iPSC line) (Young et al., 2015) and APP-KO Clone IA1 (CRISPR-
based genome edited from CVB parental iPSC line) (Fong et al., 2018).
NPC line carrying the APP**”*" genetic variant was generated and dif-
ferentiated as reported (Gore et al.,, 2011; S. H. Yuan et al., 2011; Israel et
al,, 2012; Fong et al.,, 2018). Briefly, 2 x 10° FACS-purified iPSC TRA1-
81" cells were seeded onto two 10cm plates pre-seeded with 5 x 10
PAG6 cells the day before and were cultured in PA6 differentiation media:
Glasgow DMEM, 10% KO serum replacement, 1 mm sodium pyruvate,
0.1 mM nonessential amino acids, and 0.1 mm 3 -mercaptoethanol (all
Invitrogen), complemented with 10 um SB431542 (Stemgent) and
0.5 pg/ml Noggin (R&D Systems). After 6 d, SB431542 and Noggin were
removed from the media. At day 11, cells were dissociated with Accutase
and ~5 x 10° CD184"CD24"CD44~CD271~ NPCs were FACS-puri-
fied and plated onto 20 mg/ml poly-L-ornithine (Sigma) and 5mg/ml
laminin (Sigma) precoated plates and cultured in NPC media: DMEM:
F12 supplemented with Glutamax, 0.5 x N2, 0.5x B27, Pen/Strep (all
Invitrogen), and 20ng/ml FGF-2 (Millipore), and passaged with
Accutase (Innovative Cell Technologies). For neuronal differentiation,
NPCs were cultured until confluent in 10 cm plates, after which FGF-2
was withdrawn from the NPC media. Media was changed every other
day. After 3 weeks, neurons were purified by FACS using a CD184-APC,
CD44-PE~, CD24-PECy7 " (BD Biosciences) neuronal surface signature
(S. H. Yuan et al., 2011; Israel et al., 2012; Woodruff et al., 2013); 250,000
sorted neurons (unless indicated) were plated per microfabricated device
in NPC*"* media: NPC media supplemented with 20ng/ul BDNF
(PeproTech), 20ng/ul GDNF (PeproTech), and 0.5 mm dbcAMP
(Sigma) and kept in a humidified incubator with 5% CO, at 37°C for 7 d
without media change.

Microfluidic device fabrication and assessment. We modified a previ-
ous device demonstrated to stretch rodent dorsal root ganglia neurons
seeded on a thin film of polydimethylsiloxane (PDMS) at a low strain
rate by slowly increasing vacuum pressure to deform the PDMS surface
(Bober et al., 2015). To closely simulate the higher and rapid strain that
neurons might experience during mild traumatic injury, we modified
our device by a step-change in vacuum pressure. Our PDMS-based
device consists of two vacuum chambers (2 x 6 mm) connected by a
200-pm-wide channel that is firmly attached to a thin flexible PDMS
membrane on which cells adhere (see Fig. 1A4). Additional details of de-
vice fabrication methodology will be published elsewhere.
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Briefly, an SU8 mold was made by pouring 15 g of SU8-2100 resist
(Microchem) onto a 5-inch-diameter silicon wafer, which was dried for
2 h at 95°C to form a ~0.8-mm-thick coating. The SU8 mold was then
exposed through a mask, patterning multiple devices, each containing
two vacuum chambers connected to vacuum input channels, for 20 min
at 2 mW/cm? (365 nm LED array). The mold was then baked for 1 min
at 65°C and 15 min at 95°C, followed by development in propylene gly-
col monomethyl ether acetate (Sigma).

The device was made by bonding two layers of PDMS: (1) a I-mm-
thick bottom layer casted on the patterned SU8 mold with 15 g of sili-
cone (Dow Corning 184, 1:10 ratio) and cured for 10 min at 85°C; and
(2) a 5-mm-thick PDMS (1:10 ratio) layer casted on a separate clean wa-
fer, with an aluminum block (1.5 x 6 x 10 mm) used to exclude polymer
from regions in which cells were to be seeded. Each layer was air
plasma-treated for 15 s (PlasmaPrene II oven) and then aligned and
baked for 1 h at 85°C. The well for the cell culture chamber and vacuum
port was then cored out, and each device was attached onto a plasma-
treated membrane made by spin-coating PDMS (1:20 ratio) to 150 pm
thickness (~750 rpm for 30 s) and curing for 30 min at 85°C.

Completed devices were sonicated for 20 min sequentially in water
and isopropanol and then dried and sterilized using a UV lamp in a lam-
inar flow hood continuously for 30 min. To ensure consistency in sub-
strate deformation, sterilized devices were vacuum-tested before starting
the coating procedure. Devices were then amine functionalized with 4%
(3-aminopropyl) trimethoxysilane (Alfa Aesar) for 20 min, extensively
washed using PBS, and overnight coated with N-(3-dimethylamino-
propyl)-N'-ethylcarbodiimide hydrochloride 0.1%/ml (Sigma) and
25 mg/ml laminin before cell seeding.

To assess imaging resolution of the PDMS surface for a variety of
immersion fluids (ddH,O, Standard Leica immersion oil, and 41% or
80% glycerol in water; Table 1), the point spread function of 200 nm flu-
orescein-coated beads (which served as a point source) was character-
ized. Briefly, beads were seeded within the cell imaging chamber (i.e.,
PDMS thin film) or on glass coverslips (positive control) and visualized
using a 63x/1.4 NA objective on a Leica Microsystems SP5 confocal mi-
croscopy system, using filter sets appropriate for fluorescein/FITC.
Beads were imaged with substrates unstretched and held briefly at maxi-
mum deformation. The FWHM value was used to specify resolution.
Resolutions were measured and averaged from at least five beads per
imaging condition.

Substrate and neuronal stretch. Controlled unidirectional mechani-
cal stretch on cultured neurons was achieved by using a vacuum pump.
Briefly, devices were placed in a live cell imaging chamber integrated
with a Carl Zeiss LSM780 inverted confocal microscope. This chamber
allowed the maintenance of 5% CO, and 37°C environment, and con-
current brightfield and fluorescence image acquisition during stretch. To
facilitate preconditioning, including detachment of poorly adherent cells
that could confound subsequent image analysis, each injury bout con-
sisted of 40 consecutive deformations of the flexible substrate, each con-
stituted of a step-stretch held for 3 s followed by a step-release held for 3
s; the “step”-strain and release rate was 30%/s. Given the timeline for
restoring cell tension (see Fig. 1D), additional strain on cells was negligi-
ble for each successive stretch (i.e,, cells and axons were not additionally
elongated with each stretch, as they were tension-free.)

The degree of substrate strain was calculated as the percentage
increase in the distance between both chamber walls following device
activation compared with the original length. Images of device walls in
unstretched and stretched configurations were acquired using a 10x/NA
0.45 objective, and the distance between chamber walls measured. To
quantify strain experienced by neuronal projections during stretch, neu-
rons were first transfected with soluble pEGFP-C1 (Clontech, 6084-1;
1500 ng) using Lipofectamine 2000, according to the manufacturer’s
protocol, to identify neuronal boundaries. Then, images of individual
adherent neurons during prestretched, holding stretch, and post-stretch
release were acquired using a 10x objective; any weakly adherent neu-
rons that happened to detach during the process were not included in
this or other image analysis. Strain was calculated as the percentage
increase in neurite length between two static reference points after
stretch compared with the original length in the prestretch condition.
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Figure 1. A new microfluidic device to impose sublethal mechanical-induced stretch to hiPSC-derived neurons. A, Schematic depicting the vacuum-activated mechanism of unidirectional me-
chanical loading and representative images illustrating the cell culture chamber (without cells) in the prestretch condition and during stretch. Briefly, after the vacuum line is activated, suction
displaces the walls flanking the cell culture chamber (in pink), which pulls the PDMS membrane bilaterally and attached cells located between them. The width between chamber walls in
both conditions is described in the images and was used to calculate the substrate strain. Red double-headed arrow indicates the direction of the imposed stretch. B, Representative images of
human neurons transfected with soluble GFP, in the prestretch condition (top image) and during holding stretch (bottom image). Yellow dotted vertical lines are placed on morphologic marks
and used as reference to visualize neurite lengthening during stretch. Neurite strain was calculated as the percentage of increase in original length during stretch. C, Pearson’s correlation
between neurite initial length before stretch (.m) and the percentage of increase in neurite length during stretch (%) (n=17). D, Differential interference contrast representative images
depicting neuron morphology before and up to 4 min after stretch. Neurites oriented parallel to the direction of stretch were affected (white arrows), whereas neurites oriented perpendicular
were not (black arrows). E, Representative images of axons stretched and fixed immediately after stretch, labeled with antibodies against ce-tubulin, phosphorylated neurofilament H (NF-H-p),
and MAP2. Following stretch, waves were induced (yellow arrows) without breaks or enlargements in axons. Axons oriented vertically to the stretch direction were not affected (white arrows).
F, Representative images of neurites stained with silicon-rhodamine (SiR)-tubulin, in the prestretch condition, immediately (0 h), and at indicated times after stretch. Waves (yellow arrows)
were induced immediately after stretch (0 h). Vertical axons initially seen before stretch and 0 h after stretch shifted to other focus planes over time. G, Quantitative analysis of ptau/Total tau
ratio measured from neuronal lysate harvested at different time points after stretch. H, Pseudo-colored representative images depicting purified neurons stained with Fluo4 before and after
stretch. Axonal wave was induced after stretch (white arrow) without triggering massive Ca>" influx, illustrated by unchanged Fluo4 intensity after stretch (n = 30). I, Heat map of normalized
gene expression ratio (stretch/control) at different time points after stretch. Changes in FOS expression were significant according with differential expression call error model (n =3 or more).
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Table 1. PDMS optical properties under different immersion fluids”

Immersion fluid Resolution (pm) Average maximum intensity (a.u)

Glass water 0.3065 = 0.01 (5)  200.16 = 39.5 (617)
PDMS water 0.4321 £0.02 (5)  68.052 = 50.0 (374)
PDMS Glyc41 water 0.3149 = 0.01 (5)  121.61 = 58.6 (315)
PDMS Glyc41 water vacuum  0.3078 £ 0.01 (5)  132.68 = 61.6 (397)
Glass oil 0.2934 £ 0.01 (5)  220.14 = 28.4 (533)
PDMS oil 0.3874 = 0.03 (5) 114.39 = 58.9 (355)
PDMS oil +PC 03001 = 0.01(5)  157.20 = 59.5 (556)
PDMS oil +PC vacuum 0.2900 == 0.00 (5) 171.31 £ 57.1 (281)

03043 =001 (5 —
03595 = 003(5 —

Glass Glyc80 lens
PDMS Glyc80 lens

“Data are mean = SD (n).

Image] (National Institutes of Health) software was used for all
measurements.

Immunocytochemistry assays. Neurons were fixed with 4% PFA
(Pierce) and 4% glucose (Sigma) in PBS for 15 min at room temperature,
rinsed with PBS, and permeabilized with 0.2% Triton X-100 (Sigma) in
PBS for 30 min. Nonspecific binding was blocked with 10% NGS
(Vector Laboratories) and 4% BSA (Sigma) in PBS for 30 min and then
incubated overnight with primary antibodies against MAP2 (1:1000,
Abcam, ab5392, raised in chicken), a-tubulin (1:1000, Abcam, YOL1/
34, ab6161, raised in rat), neurofilament H phosphorylated (1:500,
Biolegend, 801602, raised in mouse), tau (1:1000, Sigma, T9450, raised
in mouse), APP (1:100, Abcam, Y188, ab32136, raised in rabbit), APP
(1:100, Sigma, clone 1D1, MABN2278, raised in rat), AB42 (1:1000,
Oncogene, Ab-1, p150-25ug, raised in rabbit), BACE-1 (1:1000,
Thermo Fisher Scientific, PA1-757, raised in rabbit), Presenilin-1 (PS1)
(1:250, Millipore, clone PS1-loop, MAB5232, raised in mouse), and
C99 fragment (C99; an APP fragment generated following BACE-1
cleavage) (1:1000, Millipore, clone 6C3, MABN254, raised in mouse);
all diluted in 1% NGS, 2% BSA, and 0.2% Triton X-100. Devices were
washed with cold PBS followed by incubation with AlexaFluor-488,
-550, -594, or 649-conjugated secondary antibody (1/200, Abcam) for 1
h at room temperature and protected from light. Cells were mounted
with mounting media containing DAPI (Vector Laboratories) into the
cell chamber. Images were acquired with an inverted 63x/NA1.4 objec-
tive using confocal microscope (Carl Zeiss LSM780, as above). At the
earliest time point, to preserve the transient waves in neurites after
stretch, cells were immediately fixed for 15 min within the live cell
imaging chamber, by adding 4% PFA/4% glucose as above. To calculate
puncta intensity, puncta area, and puncta number in axons, quantita-
tive analysis of immunofluorescence images was performed using the
Image] plugin Puncta Analyzer (Ippolito and Eroglu, 2010).

Live cell imaging. All live-cell imaging assays were performed at 37°C
and under 5% CO, using the live cell confocal imaging chamber noted
above and NPC™ ¥ media without Phenol Red (Invitrogen) as imaging
media. Real-time evaluation of stretch-induced morphologic alterations
in FACS-sorted neurons was performed with differential interference
contrast microscopy of the same neuron during stretch and after release
over time, using a 20x/NA 0.8 objective at a rate of 1 frame per second.
To evaluate whether trauma-induced waviness in neurites was depend-
ent on neurite’s orientation related to mechanical loading direction, we
used ImageJ to determine neurite angles in at least three randomly cho-
sen fields of view from control and stretched devices.

«—

J, Quantitative analysis of pJNK/INK ratio measured from neuronal lysate harvested at differ-
ent time points after stretch (n=3 or more). K, Quantification of extracellular LDH levels in
neuron’s media (relative to LDH levels before stretch) (n=15) and ATP content in neuronal
lysate (n=9) 24 h (h) after stretch. a.u, Arbitrary units. Further characterization of microflui-
dic device and standardization of MSD-based assay to quantitatively assess JNK and pJNK lev-
els in neuron’s cell lysates are displayed in Extended Data Figure 1-1. Data are mean =+
SEM; means were compared by unpaired Student’s ¢ test. Scale bars: D, H, 50 um; E,
11 pm; F, 12 pem.
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Cytosolic Ca*>" levels following mechanical trauma were monitored
using Fluo-4 AM (Invitrogen). Briefly, FACS-sorted cultured neurons
were incubated with 1 um Fluo-4 AM (reconstituted in DMSO) diluted
in freshly made NPC*"* media for 30 min at 5% CO, and 37°C,
washed twice with NPC™*" media, and again placed in the incubator
for 20 min before imaging. Cytosolic Ca*>" levels were analyzed using a
20x/NA 0.8 objective, and image sequences were acquired during
stretch at a rate of 1 frame per second with 3 s intervals; 488 nm Argon
laser was used for excitation, and emission was captured in the 490-
600 nm range. Images were processed using Image], Fluo-4 intensity
measured within an ROI over time (Barreto-Chang and Dolmetsch,
2009).

To visualize tubulin, purified neurons seeded in devices for 7 d were
labeled with 100 num of silicon-rhodamine-tubulin (Spirochrome) diluted
in NPC" " media during 12 h in 5% CO, at 37°C. Following incuba-
tion, cells were washed twice with NPCT ™" media. Images from the
same imaging field were acquired before, immediately after, and 3, 6, 12,
and 24 h after stretch with the 20x/NA 0.8 objective. Following image
acquisition, cells were returned to the CO, incubator until the next
imaging session. Cells were imaged using 647 nm laser for excitation,
and emission was captured in the 690-750 nm range. Intensities within a
given ROI were measured using Image]J.

To quantify APP transport parameters, 600,000 sorted neurons were
grown in microfluidic devices for 7d and transfected with 2.5ug of
pcDNA3-APP*®-YFP (Kaether et al., 2000), pcDNA3-APPM***V_YFp
(Rodrigues et al., 2012), or APP'**-GFP (APP®** isoform carrying the
APPA*3T mutation) (Das et al., 2016) plasmids using Lipofectamine
2000, as previously described (Stokin et al., 2005; Falzone et al., 2009;
Rodrigues et al., 2012; Almenar-Queralt et al., 2014). Sixteen hours after
transfection, cells were imaged using an inverted epifluorescent micro-
scope (TE-2000U, Nikon) coupled to incubator chamber at 37°C, 5%
CO, and a 63x/NA 1.4 oil immersion objective connected to a CCD
camera (Roper Scientific). Imaged neurons were selected based on their
morphology being consistent with published data (Ramén y Cajal,
1909), specifically, possessing a small cell body with a single, long, thin
primary axon that extended for at least 1 mm, and secondary, short,
thick dendrites. Neurites with axonal morphology and oriented within
30 degrees of the direction of stretch direction containing YFP/GFP
puncta were imaged before and after stretch for 15 s (150 frames with
100 ms exposure per frame) using MetaMorph 7.0 software (Universal
Imaging). To assess axonal transport at 3 and 24 h after stretch, trans-
fected neurons were stretched within the imaging chamber but only
imaged at 3 or 24 h after stretch (i.e., no prestretch imaging) to avoid flu-
orophore bleaching. Mock cells were manipulated and imaged identi-
cally, but not submitted to stretch.

Directionality of moving puncta was determined based on trajectory
relative to location of cell body and neuronal terminal. Axonal transport
parameters were evaluated by kymography using the Image] plugin
KymoAnalyzer (Neumann et al, 2017). The axonal transport of lyso-
somes was evaluated using a fluorescent fusion protein, lysosomal-asso-
ciated membrane protein 2-green fluorescent protein (LAMP2-GFP),
introduced by transfecting cells with 3000 ng of human LAMP-2-GFP.

To measure APP amyloidogenic processing immediately after stretch
in axons, we transfected nonpurified APP-KO neurons with pcDNA3-
APP-YFP, and fixed neurons immediately after stretch as described above.
Neurons were stained with APP (1:100, Sigma, clone 1D1, MABN2278,
raised in rat) and A842 (1:1000, Oncogene, Ab-1, p150, 25 g, raised in
rabbit) antibodies, and images were acquired with 63x/NA1.4 objective
using confocal microscopy (Carl Zeiss LSM780). A342 puncta intensity
and puncta number were obtained using Image] plugin Puncta Analyzer
(Ippolito and Eroglu, 2010).

Meso scale discovery (MSD) measurements. Intracellular levels of
phosphorylated c-Jun N-terminal kinase (p-JNK) and phosphorylated
tau (p-tau) were measured in cell lysates obtained using MSD lysis
buffer supplemented with 1x protease (Millipore) and phosphatase
(Invitrogen) inhibitors cocktail according to the manufacturer’s instruc-
tions and as previously described (Israel et al., 2012; Woodruff et al.,
2013). Extracellular levels of AB40 and A 42 were measured in cell cul-
ture media samples (matched with cell lysate samples when possible).
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Collected media was immediately supplemented with 1x protease and
phosphatase inhibitors, centrifuged at 14,000 rpm for 10 min at 4°C to
remove cell debris, and stored at —80°C until use as described previously
(Israel et al., 2012; Woodruff et al., 2013). MSD Phospho(Thr231)/Total
Tau, Phospho (Thr183/Tyr185)/Total JNK Whole Cell Lysate and V-
PLEX A Peptide Panel 1 (6E10) MSD Kkits were used according to the
manufacturer’s instructions and analyzed in MSD QuickPlex SQ 120 plate
reader. Positive controls (Neurodegeneration Controls set [MSD]) were
used in each run for A3 and p-tau assays.

All measurements were in the detection range based on standard
curves generated using MSD-provided calibrators (A and p-tau
assays). For the p-JNK assay, the detection range was assessed measuring
undiluted cell lysate (control neurons) plotted against dilution rates to
determine assay linear detection range. Furthermore, to determine
p-JNK assay specificity, sorted neurons were exposed to anisomycin
(2.5 um) or JNK inhibitor IT (9 um) for 30 min as positive (Fosbrink et
al,, 2010) and negatives controls, respectively (Besirli and Johnson, 2003;
Wu et al,, 2014). Exposure to geranylgeranyl pyrophosphate (GGPP)
during 24 h was used to modulate extracellular A3 levels in APPY /<
neurons (Zhou et al., 2003; Kukar et al., 2005).

Immunoblotting analysis. Jess Simple Western system (ProteinSimple)
was used to quantify full-length APP, BACE-1, PS1, and S -actin protein
levels according to the manufacturer’s standard method for 12-230
kDa Jess separation module (SM-WO004). Briefly, neuronal lysates
were separated in capillaries as they migrated through a separation
matrix at 475 V and then exposed to blocking reagent (Antibody dilu-
ent, ProteinSimple) during 5min followed by exposure to primary
and secondary antibody both for 30 min. APP (1:25, Abcam, Y188,
ab32136, raised in rabbit), BACE-1 (1:50, Thermo Fisher Scientific,
PA1-757, raised in rabbit), PS1 (1:25, Millipore, clone PS1-loop (PS1-
CTF), MAB5232, raised in mouse), B-actin (1:150, Millipore, clone
C4, MABI1501, raised in mouse), and HRP-conjugated secondary
(ProteinSimple) antibodies were all diluted in antibody diluent
(ProteinSimple). The chemiluminescent detection was performed
using peroxide/luminol-S (ProteinSimple). Using Compass Simple
Western software (version 4.1.0, ProteinSimple), a digital image of
chemiluminescence in each capillary was captured, and peak heights
and peak area were automatically calculated per sample. Quantification
was performed using peak area values obtained for each sample, normal-
ized to B -actin values for the same sample.

NanoString gene expression analysis. Gene expression profiling was
performed using nCounter Human Neuropathology Panel (NanoString
Technologies). Total RNA from a single device with 600,000 neurons
was extracted using miRNeasy Micro Kit (QTAGEN). RNA from at least
three devices obtained from at least three individual neuronal differen-
tiations was pooled and concentrated using GeneJET RNA Cleanup and
Concentration Micro Kit (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Samples were quantified using Qubit 4 fluo-
rometer (Invitrogen), and RNA Integrity Number was determined using
Agilent 2100 Bioanalyzer. All measured RNA Integrity Numbers were
between 5 and 9. mRNA expression analysis was performed using
Nanostring nCounter platform according to the manufacturer’s instruc-
tions. The raw Nanostring nCounter counts were normalized to house-
keeping genes included on the chip and background level using nSolver
analysis system (NanoString Technologies). Genes with >100 counts
and fold-change expression >1.35 were displayed and considered for
statistical analysis using the differential expression call error model to
determine ratio (stretch/control) confidence.

Cell viability assessment. Cell viability after stretch was evaluated
assessing intracellular ATP and extracellular lactate dehydrogenase
(LDH) levels 24 h after stretch. ATP was measured using CellTiter-Glo
Luminescent Cell Viability Assay (Promega) in cell lysates, obtained as
described above, according to the manufacturer’s instructions and as
previously described (van der Kant et al., 2019). Luminescent signal gen-
erated was recorded using Odyssey CLx microplate reader (LI-COR).
LDH content was measured in cell culture media samples (matched with
cell lysates samples) using the LDH-Cytotoxicity Assay Kit II
(BioVision) according to the manufacturer’s instructions. Sample ab-
sorbance was assessed using Infinite M200 pro (Tecan) at 450 nm (using
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440-490 nm filter) and 650 nm, as reference wavelength. LDH levels after
stretch were normalized by matched measurements before stretch.
Positive controls (purified ATP and LDH) were used in each run.

B- and vy-secretase inhibition. To validate APP secretase activity
attenuation, purified neurons were grown in 96-well plates (200,000
purified neurons per well) and exposed to inhibitors. Briefly, half of the
cell culture media was removed (100 pl) and replaced with 100 pl of fresh
NPC* ™" media with 8-secretase inhibitor IV (8Si-IV), Compound E
(CE) (both from EMD Chemicals), or vehicle (DMSO) (Sigma) during
16 h in CO, incubator at 37°C. To evaluate whether CE-induced y-sec-
retase inhibition was reversible in our system, following initial exposure
to CE cell culture, media was collected (200 pl) and cells were washed
and incubated with PBS for 5 min at 5% CO, and 37°C before being re-
exposed to CE or vehicle for 3, 6, 12, 24, and 36 h. Importantly, CE expo-
sure and release or re-exposure did not induce changes in intracellular
AP levels or AB™**/AB** ratio (Extended Data Fig. 2-1F).

To inhibit B- and 7y-secretase activity during and after stretch in
stretch devices, cells were exposed to BSi-IV, CE, or vehicle control for
3 h before stretch and remained exposed to inhibitors or vehicle for fur-
ther 24 h after injury. To evaluate stretch effects following y-secretase
reversible inhibition, cells were exposed to CE for 16 h and then washed
and incubated with PBS for 5 min. Following incubation, fresh media
was added, and stretch was imposed as previously described. Media was
collected 24 h after injury. To inhibit - and y-secretase in APP axonal
transport experiments, nonpurified neurons were exposed to Bsi-IV,
CE, or vehicle (DMSO) for 1 h and imaged in the presence of indicated
inhibitor or corresponding vehicle control. In experiments probing for
the formation of APP accumulation in neurons exposed to CE, nonpuri-
fied neuronal cultures were stretched in the presence of CE or vehicle,
immediately washed, and submerged in fresh media before incubation
after stretch.

Experimental design and statistical analysis. Statistics were assessed
through GraphPad Prism (GraphPad Software, version 7.00). A mini-
mum of n=3 biological samples (different microfluidic devices) were
obtained from at least three individual NPC differentiations per group.
A p value <0.05 indicated statistically significant differences. Sample
sizes and the statistical test applied for a given experiment are specified
in the corresponding figure legend.

Results

A new device to impose sublethal stretch on hiPSC-derived
neurons

To simulate a <15% axonal strain that neurons might experience
under a sublethal traumatic injury (Kimpara and Iwamoto, 2012;
Sahoo et al., 2016), we developed a PDMS-based microfluidic de-
vice capable of imposing unidirectional stretch on human neu-
rons (Fig. 1A). Briefly, a vacuum system, via pressurization of the
cell culture chamber walls, rapidly and reproducibly stretched
the substrate by 24 = 0.85% (mean = SEM, n=9), and attached
neurons by 12 * 126% (mean = SEM, n=21) (Fig. 14,B).
Strains achieved in neuronal projections were independent of
their length, and no neurite breakage was observed even at maxi-
mal strains of ~22% (Fig. 1C).

Live imaging showed that immediately after release from
stretching, neurites oriented parallel to the direction of the
stretch, regardless of neurite identity (i.e., axonal or dendritic;
Extended Data Fig. 1-1A) (Caceres et al., 1986), displayed a wavy
phenotype, not observed before stretch (Fig. 1D, white arrow). In
support, a wavy phenotype was reproducibly induced in 97 =
2.18% (mean * SEM, n=21) in neurites oriented within 0-30
degrees of (i.e., parallel to) the direction of stretch and not in
those oriented perpendicularly (Fig. 1D, black arrow; Extended
Data Fig. 1-1B). This wavy phenotype is consistent with observa-
tions from previous in vitro models of stretch-based axonal
injury and pathology of brains subject to severe injury (D. H.
Smith et al., 1999; D. H. Smith and Meaney, 2000; Maas et al.,
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2008; Hayashi et al, 2009; Tang-Schomer et al., 2010, 2012;
Johnson et al., 2013; Dollé et al., 2014, 2018). Waves suggest that
neurites experienced tension, elongated because of tension, and
retained their added length immediately after releasing tension.
Upon release of stretch, neurites reverted to their original non-
wavy morphology within minutes, indicating restoration of neu-
rite tension (Fig. 1D).

Neurite waviness following supra-physiological strains of me-
chanical trauma have been previously associated with microtu-
bule buckling, breakage, and ultimately the formation of focal
swellings in these sites (Tang-Schomer et al, 2010, 2012).
Exploiting the high-resolution imaging capabilities of our device
(Table 1), we visualized microtubule network behavior in neu-
rons by staining cells fixed immediately after stretch (Fig. 1E) or
via live imaging over time using cell-permeable silicon-rhoda-
mine-tubulin (Fig. 1F) (Lukinavicius et al., 2014). Together, they
revealed neither formation of focal neurite swellings nor appa-
rent breaks in microtubule network continuity in stretched neu-
rites at any point within 24 h of injury, despite displaying clear
neurite deformation after stretch (Fig. 1D-F). Similarly, consist-
ent with restored neurite morphology, major discontinuities
of phosphorylated neurofilament network immediately after
stretch along wavy axons were not observed (Fig. 1E). Similarly,
increased tau phosphorylation at Threonine 231(Thr231), which
correlates with unstable microtubule-based cytoskeleton, was not
observed up to 24 h after stretch (Fig. 1G; Extended Data Fig. 1-
1C) (Vickers et al., 1994; C. Smith et al., 2003; Cho and Johnson,
2004; Anderson et al., 2008; Johnson et al., 2012; Li et al., 2015;
Shibahashi et al., 2016; Yang et al., 2017; A. Yuan et al., 2017;
Zanier et al., 2018).

Also consistent with sublethal stretch, increased calcium
influx associated with plasma membrane rupture or mechanopo-
ration (Yuen et al., 2009; Staal et al., 2010; Dollé et al., 2014; Patel
et al.,, 2014; Abdul-Muneer et al., 2017) was not detected in the
cell body or neurites of stretched neurons (Fig. 1H; Extended
Data Fig. 1-1D). Similarly, expression of genes encoding proteins
involved in injury/stress intracellular signaling or increased
phosphorylation of JNK (p-JNK), which is part of a cellular
stress-induced response pathway (Middlemas et al., 2003; Cavalli
et al., 2005; Falzone et al., 2009; Yoshimura et al., 2011; Tran et
al., 2012; Farley and Watkins, 2018; Liu et al, 2018), was
unchanged by mild stretch (Fig. 1LJ; Extended Data Fig. 1-1E-
H). Expression of the immediate-early response gene FOS
(Duman et al., 2005; Bahrami and Drablaes, 2016), however, was
significantly upregulated 3 h after stretch (Fig. 11), suggesting a
neuronal mechanotransduction response to mild stretch. Finally,
unaffected levels of LDH release into media and intracellularly
metabolized ATP (indicators of cell death and viability, respec-
tively) (Severson et al, 2007; Kumar et al, 2018) 24 h after
stretch support the nonlethality of the imposed stretch (Fig. 1K).
Cumulatively, our analysis of mechanical and biological indica-
tors of damage/injury establishes that our approach induces a
sublethal neuronal stretch without major disruptions of cytoskel-
eton components.

Sublethal stretch is sufficient to stimulate Af generation in
human neurons

To examine whether sublethal mechanical-induced stretch of
neurons is sufficient to stimulate amyloidogenesis, we assessed
changes in extracellular levels of A accumulated in media after
stretch. While A extracellular levels were unchanged immedi-
ately after stretch or at earlier time points (Extended Data Fig. 2-
1A), 24 h after stretch, AB extracellular levels were elevated
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Figure 2. Sublethal stretch increases extracellular A3 generation in human neurons. 4,
Quantitative analysis of extracellular A340 and AB342 and resultant A3 42/A 340 ratio,
measured in neuronal media collected 24 h after stretch. Neuronal cultures were washed
with PBS, and fresh media was added before stretch was imposed (*p = 0.0418 for A 340;
*p=10.0278 for A342) (n=7). Quantification of extracellular A3 levels 24 h after stretch
in neurons stretched in the presence of (B) Bsi-IV (4 um) (***p=0.0005 for AB40;
*¥p=0.0040 for AB42) (n=9) or (€) CE (200 nm) (*p = 0.0493 for A3 40; *p = 0.0041 for
AB42). Data are percent of change in extracellular A3 levels after stretch relative to extrac-
ellular AB levels before stretch (n=6) (vehicle = DMSO 0.001%). D, Diagram showing ex-
perimental design used to measure stretch effects on A3 generation after CE reversible
inhibition and quantitative analysis of extracellular A340 and A342 levels 24 h after
stretch in neurons previously exposed to CE (200 nu) during 16 h (**p = 0.0035 for A3 40;
*¥p=0.0042 for A342) (n=13). Measurements of intracellular A3 levels after stretch are
displayed in Extended Data Figure 2-1. Data are mean = SEM; means were compared by
unpaired Student’s ¢ test.

compared with nonstretched neuronal cultures (Fig. 2A). As A3
is generated by consecutive cleavage of APP by BACE-1 (the
rate-limiting step) and y-secretase (Citron et al., 1995) and in
light of previous studies reporting increased expression of APP,
BACE], and PS1 following TBI (Iwata et al., 2002; Blasko et al.,
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Figure 3.  Stretch triggers APP transport impairment in neurons. A, Representative images of axons (within 30 degrees of stretch direction) fixed 24 h after stretch and labeled with antibod-
ies against APP, c-tubulin, and neurofilament H phosphorylated (NF-H-p). Arrows indicate accumulated APP puncta along stretched axons in A. Quantitative analysis of APP-puncta intensity
and puncta area are displayed in Extended Data Figure 3-1. B, Representative images depicting APP-YFP puncta in a transfected axon before and after stretch; the respective kymograph is dis-
played below the photomicrograph. Kymographs represent APP-YFP transport from 15 s, 10 Hz movies (Movie 1); right or left descending puncta represent anterograde and retrograde moving
vesicles, respectively. Vertical lines indicate stationary puncta. €, Quantitative analysis of the APP-YFP movement parameters in axons immediately (n=7), 3 h (n=7 or more), and 24 h after
stretch (n=9 or more). Data are presented relative to control, moving vesicles (anterograde 0 h: *p=0.0122; and 24 h: *p =0.0186), net velocities (anterograde 0 h: **p =0.0013; 3 h:
*p=0.0244; and 24 h: *p=0.0413; retrograde 0 h: *p =0.0100; 3 h: *p =0.0235; and 24 h: **p=0.0017), run length (anterograde 0 h: **p=0.0001; 3 h: *p=0.0494; and 24 h:
**p=0.0013; retrograde 0 h: **p =0.0055; 3 h: **p =0.0018; and 24 h: ***p =0.0001), and puncta density (*p = 0.0459 for 3 h and *p = 0.0455 for 24 h). D, Representative images and ky-
mograph of an axon oriented perpendicular to the direction of stretch immediately after stretch (corresponds to Movie 2). E, Representative images and respective kymographs depicting
stretched axons 3 and 24 h after stretch (corresponds to Movies 4 and 5). F, Representative images of axons transfected with APP-YFP, stretched and fixed 24 h after stretch, labeled with anti-
bodies against APP, (99, A3 42, BACE1, and PS1. Arrows indicate accumulated puncta along stretched axons in E and F. G, Quantitative analysis of APP-, (99-, A3 42-, BACE1-, and PS1-puncta
intensity within APP accumulation compared with respective puncta intensity in control axons (APP: **p =0.0007; (99: ***p =0.0001; A342: ***p=0.0001; BACE1: *p =0.0462; PS1:
***¥p=0.0001) (n=7 or more). Data are mean = SEM; means were compared by unpaired Student’s ¢ test. Scale bars: 4, F, 5 um; B, D, E, 10 pm.
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Movie 1.  Stretch impairs APP axonal transport. Movie showing APP-YFP puncta move-
ment in a transfected axon before and after stretch (same axons as shown in Fig. 3B). Time
is shown in milliseconds. Scale bar, 10 wm. [View online]

=

Movie 2. APP axonal transport is not affected in axons oriented perpendicular to the
direction of stretch. Movie showing APP-YFP puncta movement in a transfected axon, ori-
ented perpendicular to the stretch direction, after stretch (same axons as shown in Fig. 3D).
Time is shown in milliseconds. Scale bar, 10 pm. [View online]

2004; Nadler et al., 2008; Loane et al., 2009; Walker et al., 2012;
Yu et al,, 2012; Mannix et al., 2013; Thangavelu et al., 2020), we
evaluated protein levels of APP, BACEL, and PS1 24 h after
stretch. In agreement with our mRNA results (Fig. 11), no signifi-
cant changes were detected at the protein level in any of these
proteins (Extended Data Fig. 2-1B).

Together, our results suggest that sublethal stretch
actively stimulates new generation of AB. Accordingly,
BSi-IV or the 7y-secretase inhibitor CE, which efficiently
suppressed accumulation of extracellular AB in naive
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Movie 3.  Lysosome axonal transport is not significantly altered after stretch. Movie show-
ing LAMP-2-GFP puncta moving through axonal waves (white arrows) immediately after
stretch. Time is shown in milliseconds. Scale bar, 10 um. [View online]

Movie 4.  APP axonal transport 3 h after stretch. Movie showing APP-YFP puncta move-
ment in control and stretched axons 3 h after stretch (same axons as shown in Fig. 3£). Time
is shown in milliseconds. Scale bar, 10 zem. [View online]

Movie 5.
ment in control and stretched axons 24 h after stretch (same axons as shown in Fig. 3£).
Time is shown in milliseconds. Scale bar, 10 xm. [View online]

APP axonal transport 24 h after stretch. Movie showing APP-YFP puncta move-

neurons (Extended Data Fig. 2-1C,D), also attenuated the
stretch-induced accumulation of extracellular AB (Fig. 2B,
C). To further confirm the de novo production of A after
stretch, we took advantage of the reversibility of the y-sec-
retase inhibitor CE (Seiffert et al., 2000; Zhao et al., 2007).
Before stretch, we applied CE to neurons for 16 h to elimi-
nate pre-accumulation of extracellular AB in the system
(Extended Data Fig. 2-1C,E,F); once stretched and on removal of
CE and consequent resumption of 7y-secretase activity, we found
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PMYYFP puncta moving before

and immediately after stretch, and respective kymographs (n = 6). C, Representative images of neurites transfected with APP-YFP, fixed immediately after stretch, labeled with antibodies
against APP and A 342, and quantitative analysis of A3 42-puncta number and puncta intensity compared with control (puncta number: *p = 0.041; puncta intensity: *p = 0.0436). Data are
mean == SEM (4,B) and median and quartiles (C). Data were compared by unpaired Student’s ¢ test. Scale bars: A, B, 10 um. Scale €, 5 pim.

that levels of newly generated extracellular AB were higher in
stretched neurons compared with non-stretched controls 24 h af-
ter stretch (Fig. 2D). These data confirmed that sublethal stretch
is sufficient to enhance A generation in human neurons by
stimulating APP amyloidogenic processing.

Sublethal stretch interrupts APP axonal transport, leading to
aberrant APP accumulations

APP axonal accumulations have been defined as a highly sensi-
tive biomarker for axonal injury (Stone et al., 2000; Hoshino et
al., 2003; Johnson et al., 2016). In support, we detected APP
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Movie 6.  APP axonal transport in stretched neurons exposed to vehicle. Movie showing
APP-YFP puncta movement before and after stretch in neurons exposed to vehicle (DMSO)
during 1 h (same axons as shown in Fig. 44). Time is shown in milliseconds. Scale bar, 10
. [View online]

Movie 7.  APP axonal transport in stretched neurons exposed to CE. Movie showing APP-
YFP puncta movement before and after stretch in neurons exposed to CE during 1 h (same
axons as shown in Fig. 44). Time is shown in milliseconds. Scale bar, 10 wm. [View online]

accumulations in sublethally stretched axons 24 h after stretch
(Fig. 3A, arrows; Extended Data Fig. 3-1A). Injury-induced APP
accumulations have been proposed to result from axonal trans-
port impairment because of cytoskeletal disruptions and to con-
tribute to enhanced A3 generation after TBI (D. H. Smith et al.,
1999; Uryu et al., 2007; X. H. Chen et al., 2009). The presence of
APP accumulations in our system, despite the absence of major
cytoskeletal disruptions or morphologic abnormalities (Figs. 1D-
G and 3A), suggested that sublethal stretch may be sufficient to
alter APP axonal transport. Indeed, using live imaging to assess
the axonal transport of APP-YFP, we observed an immediate
and severe reduction in the percentage of APP-YFP puncta mov-
ing in the anterograde direction (i.e., from the cell body toward
the axonal terminal) and bidirectional reductions in run length
and velocity after stretch compared with the prestretch condi-
tions (Fig. 3B,C; Movie 1). The density of APP-YFP puncta in
axons was unchanged immediately after stretch, ruling out
the possibility that transport impairment was a consequence of
fewer detected APP-YFP puncta at this time point (Fig. 3C).
Supporting a causal relationship between axonal stretch and
transport impairment, APP-YFP transport was not affected in
neighboring axons oriented perpendicularly to the direction of
stretch (ie., no signs of stretched neurites; Figs. 1D and 3D;
Extended Data Fig. 1-1B; Movie 2). Interestingly, the axonal
transport of lysosomes, another vesicular cargo rapidly trans-
ported along the axon (Tsukita and Ishikawa, 1980; Ferguson,
2018), measured using GFP-labeled LAMP2 (a lysosomal pro-
tein), was not affected under these stretch conditions (Extended
Data Fig. 3-1B; Movie 3), suggesting that stretch-induced axonal
transport defects are cargo-specific.

In order to account for stretch-induced axonal APP accumu-
lations that we observed at 24 h after stretch (Fig. 3A), we predict
that APP axonal transport must recover, to at least some extent.
In support of this prediction, the proportion of anterogradely
moving APP-YFP puncta was restored to control levels 3 h after
stretch, whereas net velocities and run lengths remained reduced
(Fig. 3C). Accordingly, the density of APP-YFP puncta in the
imaging field was also increased (Fig. 3C,E; Movies 4 and 5). At
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24 h after stretch, bidirectional APP-YFP net velocities and run
lengths remained suppressed, and the proportion of antero-
gradely moving APP-YFP puncta was again reduced (Fig. 3C,E).

Finally, consistent with human postmortem studies and with
the hypothesis that APP accumulations can be loci of APP amy-
loidogenic processing (D. H. Smith et al., 1999; Uryu et al., 2007;
X. H. Chen et al., 2009), we observed that APP C99, AB42,
BACE-1, and PSI accumulated within APP accumulations (Fig.
3F,G), as observed after TBI (Uryu et al., 2007; X. H. Chen et al,,
2009). Together, our experiments demonstrated that a sublethal
mechanical-induced deformation in human neurons is sufficient
to impair APP axonal transport acutely and persistently, ulti-
mately leading to aberrant axonal accumulations containing APP
and indicators of its amyloidogenic processing.

Stretch-triggered APP axonal transport defects depend on
APP amyloidogenic processing

Previous studies have suggested that enhanced APP amyloido-
genic processing by its secretases can impact its own axonal
transport (Kamal et al.,, 2001; Rodrigues et al., 2012; Almenar-
Queralt et al,, 2014). Thus, to test whether stretch-induced APP
axonal transport defects are dependent on APP amyloidogenic
processing, we assessed APP axonal transport dynamics before
and immediately after stretch in neurons exposed to - or
y-secretase inhibitors (B Si-IV and CE, respectively). While the
percentage of APP-YFP puncta moving in the anterograde direc-
tion was similarly reduced following stretch in neurons exposed
to DMSO (vehicle control for 8Si-IV and CE) (Fig. 4A; Movie
6) and in untreated neurons (Fig. 3B), this effect was attenuated
in neurons exposed to BSi-IV or CE (Fig. 44; Movies 7 and 8).
Importantly, exposure to inhibitors alone did not affect propor-
tions of directionally moving APP-YFP puncta or their density
(Extended Data Fig. 4-1). Together, these data indicate that
stretch-induced impairment of APP axonal transport requires
amyloidogenic processing of APP.

To further evaluate this possibility, we assessed axonal trans-
port of a previously reported APP mutant (APP***®Y) that abro-
gates BACEl-dependent cleavage of APP (Citron et al., 1995;
Rodrigues et al., 2012). To avoid confounding effects caused by
the presence of endogenous WT APP, we transiently transfected
APPM¥SV_yEpP (APPMY) into APP-KO neurons derived from
genome-edited hiPSC lacking APP (Fong et al., 2018). As was
also the case for secretase inhibition, axonal anterograde trans-
port of APPMY-YFP puncta was not immediately disrupted by
stretch (Fig. 4B; Movie 9). In support of amyloidogenic cleavage
of APP occurring immediately after stretch, we observed that
A 42 puncta number and intensity were increased in stretched
compared with control axons (Fig. 4C), suggesting that stretch
indeed actively stimulates the new generation of AB42 peptide
in axons.

Together, our results demonstrate that APP axonal transport
impairment is a direct and immediate consequence of stretch-
induced amyloidogenic cleavage and that prestretch suppression
of APP processing, either pharmacologically or genetically, pre-
vents APP axonal transport defects caused by stretch.

Inhibition of APP amyloidogenic processing before stretch
abrogates the formation of APP axonal accumulations

We demonstrated that stretch-induced defects in APP axonal
transport can be abrogated by inhibiting APP amyloidogenic
processing before stretch (Fig. 4A). Thus, it follows that by abro-
gating APP processing before stretch could also influence the
formation of aberrant axonal APP accumulations after stretch.
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Movie 8.  APP axonal transport in stretched neurons exposed to [3si-IV. Movie showing
APP-YFP puncta movement before and after stretch in neurons exposed to 3si-IV during 1
h (same axons as shown in Fig. 44). Time is shown in milliseconds. Scale bar, 10 wm. [View
online]

Movie 9. APP" axonal transport after stretch in isogenic APP-KO neurons. Movie showing
APPMV-yFP puncta movement in APP-KO-transfected axons before and after stretch (same
axons as shown in Fig. 4B). Time is shown in milliseconds. Scale bar, 10 gem. [View online]

Movie 10.  APP axonal transport 24 h after stretch in neurons exposed to CE. Movie show-
ing APP-YFP axonal transport 24 h after stretch, in axons exposed to CE during 1 h before
being stretched (same axons as shown in Fig. 54). Time is shown in milliseconds. Scale bar,
10 pm. [View online]

To test this hypothesis, we stretched neurons expressing APP-
YFP in the presence of the y-secretase inhibitor CE. Twenty-
four hours after stretch, we found that APP-YFP density
(puncta/pm) was lower in stretched neurons pre-exposed to CE
than stretched neurons pre-exposed to DMSO (vehicle control),
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Figure 5.  Reduced APP processing before stretch abrogates stretch-induced formation of
APP axonal accumulations. A, Representative images and quantitative analysis of APP-YFP
axonal transport 24 h after stretch, in axons exposed to CE (5 m) or vehicle (DMSO 0.01%)
during 1 h before being stretched (*p = 0.0251 for anterograde and *p = 0.0491 for density,
both compared with DMSO) (n=9 or more). B, Quantitative analysis of APP*'-YFP puncta
movement and density 24 h after stretch (n=5). Arrows indicate accumulated puncta along
stretched axons in A. Data are mean = SEM; means were compared by unpaired Student’s t
test. Scale bars: 4, 10 m.
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suggesting that exposure to CE abrogated the formation of APP
accumulations (Fig. 5A). Corroborating these data, we also
observed an increase in the percentage of APP-YFP puncta mov-
ing in the anterograde direction 24 h after stretch in axons pre-
exposed to CE compared with stretched axons pre-exposed to
vehicle control (Fig. 5A4; Movie 10). Moreover, APPMV_YFP (ie.,
unprocessed APP) did not show axonal transport defects or
accumulation formation (i.e., increased puncta density) at 24 h
after stretch (Fig. 5B; Movie 11).Cumulatively, our data demon-
strate that APP processing is required for the formation of
stretch-induced APP axonal accumulations and support the view
that stretch-induced APP axonal transport defects precede for-
mation of APP axonal accumulation.

AD-protective APP" genetic variant prevents stretch-
induced Af generation

The APP**”?T genetic variant, also known as Icelandic (APP'®),
is the first associated with a reduced risk to develop AD when
carried in heterozygosity (Jonsson et al.,, 2012). Molecularly, it
has been proposed that this protective variant reduces amyloido-
genic BACEI-dependent processing of APP (Citron et al., 1995;
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Movie 11 APP™" axonal transport 24 h after stretch in isogenic APP-KO neurons. Movie
showing APP"-YFP puncta movement in APP-KO-transfected axons 24 h after stretch. Time
is shown in milliseconds. Scale bar, 10 wm. [View online]

Movie 12.  APP" axonal transport is not affected in stretched axons. Movie showing
APP'®GFP puncta movement in a transfected axon, before and immediately after stretch
(kymograph shown in Fig. 6D). Time is shown in milliseconds. Scale bar, 10 xm. [View
online]

Jonsson et al., 2012; Rodrigues et al., 2012; Benilova et al., 2014;
Maloney et al., 2014). Thus, we tested the possibility that APP'*
variant may also attenuate stretch-induced A generation. To
that end, we generated an APP'’WT hiPSC using CRISPR/Cas9
genome editing technology (Fig. 6A). We confirmed that expres-
sion of a single copy of APP' in neurons is sufficient to lower
the basal levels of extracellular AB accumulated over time com-
pared with control neurons (APPV'"T) (Fig. 6B). Under our
stretch paradigm, APP'*"“Tneurons failed to accumulate A3 24
h after stretch compared with ApPpWTWT (Fig. 6C). In contrast,
both APPYT™WT and APP™™T were able to similarly stimulate
AB production after exposure to GGPP, a previously reported
stimulant of amyloidogenesis (Zhou et al., 2003; Kukar et al., 2005)
(Extended Data Fig. 6-1), indicating that failure to stimulate A3 af-
ter stretch in APP*“T was not related to a lack of inherent
capacity to produce A8 by these genetically engineered neurons.
Next, we tested whether stretch-induced APP axonal trans-
port defects could also be attenuated by APP'®. To test this hy-
pothesis, we transiently expressed APP'“~-GFP (Das et al., 2016)
in APP-KO neurons and measured APP transport dynamics
before and immediately after stretch. In support of our hypothe-
sis, APP'“-GFP was not significantly affected after stretch (Fig.
6D; Movie 12). In sum, consistent with protective impacts of
pharmacological and genetic inhibition of APP processing on
axonal transport and amyloid production (Figs. 2-5), these
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findings suggest that stretch-induced amyloidogenesis and APP
axonal transport defects are blunted by a naturally occurring AD
protective APP variant.

Discussion

In this study, to probe mechanisms potentially linking mTBI and
increased risk for AD, we developed a new experimental
approach to simulate mild stretch injury to human neurons. We
demonstrated that sublethal stretch induced immediate amyloi-
dogenic cleavage of APP. This cleavage directly results in
impaired APP axonal transport and subsequently triggers the
formation of axonal APP accumulations, the emergence of which
correlated with elevated levels of extracellular AB after stretch.
Pharmacological or genetic manipulation of APP amyloidogenic
processing pathways before stretch effectively prevented these
adverse stretch-associated outcomes. Consistent with these find-
ings, the Icelandic AD protective variant of APP (APPAS73T),
which is less prone to amyloidogenic cleavage, also prevented
stretch-induced amyloidogenesis and consequent APP axonal
transport defects. These findings place APP amyloidogenic cleav-
age as an immediate upstream regulator of APP transport
impairment and aberrant accumulations following mild neuro-
nal injury (Fig. 7).

A new experimental platform to examine early human
neuronal response to sublethal mechanical-induced stretch
Investigation of the earliest pathophysiological events occurring
following neuronal injury is imperative to understand mecha-
nisms underlying mTBI-induced neurodegeneration. Our device,
in comparison to others, uniquely enabled us to visualize early
phases of the morphologic and intracellular response to stretch
in live, adherent cells at high spatial and temporal resolution,
using brightfield and fluorescence microscopy (Geddes et al,
2003; Patel et al., 2012, 2014; Di Pietro et al,, 2013; Nakadate et
al., 2014, 2017; Aomura et al., 2016; Gangoda et al., 2018; Rosas-
Hernandez et al., 2018). This capability was driven by the optical
compatibility of the thin PDMS-based substrate with high-mag-
nification and high-resolution immersion objectives, in combi-
nation with rapid, vacuum-driven deformation of the thin-film
substrate. We integrated our system with validated hiPSC mod-
els, allowing evaluation of outcomes in the axons of networked
human neurons, free of non-neuronal or systemic influences.
Our observation of axonal waviness, indicative of rapid stretch
and release, has been observed in numerous postmortem and in
vitro studies after TBI, suggesting stretch as a common feature in
TBI pathology (Peerless and Rewcastle, 1967; Blumbergs et al.,
1989; Gentleman et al., 1995; Niess et al., 2002; Tang-Schomer et
al., 2010; Dollé et al., 2014). At higher strains, axons stretched in
vitro typically returned to their original morphology within ~40
min after stretch, if at all (D. H. Smith et al, 1999; Tang-
Schomer et al., 2010; Doll¢é et al., 2013). In our system, at lower
strains, waviness was rapidly reversed within 5 min after stretch.
This reversibility is consistent with less severe stretch and a func-
tional cytoskeleton. Indeed, unlike previous high-strain models,
we did not see any apparent breaks in the continuity of microtu-
bules or neurofilaments networks nor did we observe the forma-
tion of axonal swellings after injury (Tang-Schomer et al., 2010,
2012; Dollé et al., 2014). Moreover, we did not detect the activa-
tion of early axonal stress-induced response pathways in
stretched neurons (Middlemas et al., 2003; Cavalli et al., 2005;
Falzone et al., 2009; Yoshimura et al., 2011; Tran et al,, 2012; Liu
et al., 2018). These observations reinforce the validity of our
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Figure 6.

APP Icelandic variant abrogates stretch-induced increase in A3 generation. A, Sequencing of genome-edited single-cell derived hiPSC lines confirms the generation of isogenic

hiPSC line carrying the APP Icelandic mutation in heterozygosis. B, Quantitative analysis of extracellular Aj340, A3 42, and resultant A3 42/A 340 ratio, accumulated over 7 d of culture in
APPY*® neurons compared with APPY""" neurons. A3 levels are shown as relative to total tau levels in matched cell lysates (**p = 0.0048 for A340; **p = 0.0033 for AB42) (1=9). €,
Schematic diagram illustrating the experimental design used for the quantification of extracellular A3 levels in APP"™"® and APP*""T neurons 24 h after stretch (APP"""T, *p =0.0418 for
AB40; and *p=0.0278 for AB42) (=7 or more). Exposure to GGPP increases A3 generation in APP""® neurons (Extended Data Fig. 6-1). D, Quantitative analysis of the APP'“-GFP
movement parameters in axons immediately after stretch (n=5). Data are presented relative to pre-stretch condition. Data are mean = SEM; means were compared by unpaired Student’s t

test. Scale D, 10 pm.

system to study AD-related outcomes in neurons, free of other
cellular or systemic influences, following a rapid, mild stretch,
simulating those strains experienced by neurons during mTBI
(Kimpara and Iwamoto, 2012; Sahoo et al., 2016).

Influence of sublethal stretch on APP amyloidogenic
processing and axonal transport pathways

APP processing and AB generation are essential for normal
physiological function (von Koch et al.,, 1997; Steinbach et al,,
1998; Kamenetz et al., 2003; Plant et al., 2003; van der Kant and
Goldstein, 2015). However, aberrant amyloidogenic processing is
a response to generalized neuronal stress, and a key factor under-
lying plaque formation in AD (Masters et al., 1985; G. J. Chen et
al,, 2003; Almenar-Queralt et al., 2014). Altered amyloidogenesis
is thus also posited to be a key outcome that distinguishes TBI-
associated AD from other neurodegenerative sequelae. Although
some have challenged this idea (Brody et al., 2008; Schwetye et
al., 2010), rapid increases in amyloidogenesis have been fre-
quently reported following TBI, regardless of severity (D. H.
Smith et al., 1998; Emmerling et al., 2000; X. H. Chen et al., 2004;

Abrahamson et al., 2006, 2009; Loane et al., 2009; Gatson et al.,
2013; Marklund et al., 2014; Estrada-Rojo et al., 2018). Whether
amyloidogenesis can result directly from mild neuronal stretch
has not been explored. We observed the generation of AB342
peptide in axons immediately after stretch, as well as increased
levels of accumulated extracellular AB within 24 h of stretch.
That APP processing was enhanced, as opposed to increased
secretion of existing A3 after stretch or increased expression of
APP, was supported by the following: (1) the lack of detectable
increases in levels of APP and its cleaving enzymes after stretch;
(2) an increase in stretch-induced AS after “zeroing-out” pre-
accumulated AB by reversibly inhibiting vy-secretase before
stretch; and (3) suppressed A generation when neurons were
exposed to APP secretase inhibitors before stretch. Together, to
our knowledge, these findings provide the first direct evidence
demonstrating that rapid sublethal neuronal stretch stimulates
A generation. The idea that cell deformation activates amyloi-
dogenic cleavage of APP is supported by recent evidence that
pulsatile stretch of brain vascular endothelial cells increases amy-
loidogenic cleavage (Gangoda et al., 2018).
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Figure 7.  Schematic diagram illustrating the role of APP amyloidogenic cleavage as an immediate upstream regulator of APP transport impairment and aberrant accumulations following

neuronal stretch.

It has been hypothesized that APP axonal transport defects
can trigger amyloidogenic cleavage of APP following TBI, based
on observations that APP accumulations colocalize with AS,
-, and 7y-secretases, and stalled kinesin (Uryu et al., 2007; X. H.
Chen et al.,, 2009). This idea places impaired axonal transport of
APP as a key mechanistic link between neuronal deformation
and A generation (and by extension, TBI and AD). However,
this hypothesis has not been directly tested, in large part because
of limitations of existing model systems. So, we are left with fun-
damental knowledge gaps: (1) whether and to what extent rapid
stretch can impair APP transport; (2) what the consequences are
of a potential stretch-induced APP transport impairment; and
(3) what the underlying causes are of any observed stretch-
induced APP transport impairment. Our data provide insight
into several of these gaps.

First, our data provide direct quantitative evidence that
stretch immediately and robustly inhibits APP transport. This
finding is novel. Importantly, axonal transport defects occurred
only in adherent axons positioned in the direction of stretch, but
not perpendicular to the direction of stretch (i.e., in unstretched
neurons), confirming a mechanical influence on acute transport
impairment. Unlike previous studies, in which microtubules
were damaged at high strains (Tang-Schomer et al., 2010, 2012;
Dollé et al., 2014), the fact that stretch-induced axonal transport
defects did not disrupt the transport of all rapidly transported ve-
sicular cargoes supports immunofluorescence-based observa-
tions that the cytoskeletal/microtubule lattice was not severely
disrupted under mild axonal stretch.

Second, our analyses support the view that APP accumula-
tions are triggered by impaired axonal transport. Indeed, we
observed increased axonal density of APP(-YFP) within 3 h after
stretch, and both kymography and immunocytochemistry assays
indicated persistent accumulations 24 h after stretch. These may
represent precursors or milder versions of APP-filled swellings

observed pathologically following more severe TBI or more
severely stretched neurons in vitro, which suggest sustained dis-
ruption of transport (D. H. Smith et al., 1999; Uryu et al., 2007;
X. H. Chen et al.,, 2009). The development of accumulations is
additionally supported by potential contributions of APP vesicles
that continued to move after stretch, but with marked reductions
in run length and velocity (Johnson et al., 2010). Stretch-induced
transport defects may also enhance A generation because of
increased APP processing at sites of accumulation (D. H. Smith
et al., 1999; Uryu et al., 2007; X. H. Chen et al,, 2009); this conse-
quence is consistent with detection of A 342, APPC99, BACE-1,
and PS-1 in APP-positive accumulations.

Third, data from this study provided novel and unexpected
insight into mechanisms underlying transport impairment. In
contrast to predictions from more severe injuries, cytoskeletal
disruption does not appear to explain immediate transport dis-
ruption following milder injury. On the other hand, given con-
siderable prior evidence that APP processing can influence
axonal transport (Kamal et al., 2001; Rodrigues et al, 2012;
Almenar-Queralt et al., 2014), we deployed a number of comple-
mentary pharmacological and genetic approaches to test the hy-
pothesis that reducing APP processing before stretch could
prevent stretch-induced axonal transport defects and subsequent
amyloidogenesis. Outcomes from each of several tested perturba-
tions aligned with this prediction: (1) stretch-induced immediate
amyloidogenic processing of APP; (2) stretch-induced transport
defects, including the formation of axonal APP accumulations,
were prevented by exposing neurons acutely to 8- and ‘y-secre-
tase inhibitors before imposing stretch; and (3) similar suppres-
sion of transport impairment and APP accumulation formation
were observed with expression of APPMY and APP'* genetic var-
iants (each abrogating [ -secretase cleavage through different
mechanisms). Together, our data demonstrate that amyloido-
genic processing of APP is directly responsible for stretch-
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induced APP axonal transport defects. Further, by reducing APP
processing before stretch, APP axonal transport may be shielded
from stretch-induced impairment; this could in turn mitigate
further AB generation in stretched neurons. These conclusions
have substantial translational implications for suppressing
stretch-associated transport defects and amyloid production, as
it follows that intervention at any stage in this cascade could
influence longer-term impacts. For example, pharmacological in-
hibition of APP processing pathways may represent a prophylac-
tic or acute treatment strategy for mild neuronal injury. Indeed,
blocking either B- or ry-secretase can ameliorate motor and cog-
nitive deficits and reduce cell loss after experimental TBI in mice
(Loane et al., 2009). In addition, the protective capability of the
naturally occurring APP-Icelandic variant as well as engineered
reduction of APP processing through the APPM" mutation raise
the possibility that an individual’s genomic profile could predict
their early symptomatic response to mild injury as well as their
eventual propensity to develop AD after TBL

In conclusion, our findings validate a new system to study
mechanisms underlying neurologic dysfunction following mild
injury of human neurons. We demonstrated that sublethal
neuronal stretch, simulating deformation levels experienced by
neurons during mTBI, is sufficient to induce AD-related pheno-
types. In particular, APP axonal transport and APP amyloido-
genic processing pathways are adversely impacted by stretch.
Further, given the dependence of transport impairment on APP
amyloidogenic processing as well as the widely hypothesized de-
pendence of APP accumulation and amyloidogenic processing
on axonal transport, our data support the idea that these path-
ways interact in a feedforward manner, perturbing amyloido-
genic homeostasis and physiological transport. Such a model
may contribute to understanding of the emergence of early
symptoms and the susceptibility for development of AD follow-
ing mTBI.
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