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Although the World Health Organization (WHO) announcement released in early March 2020 stated there is no
proven evidence that the COVID-19 virus can survive in drinking water or sewage, there has been some recent evi-
dence that coronaviruses can survive in low-temperature environments and in groundwater for more than a week.
Some studies have also found SARS-CoV-2 geneticmaterials in rawmunicipal wastewater,which highlights a potential
avenue for viral spread. A lack of information about the presence and spread of COVID-19 in the environmentmay lead
to decisions based on local concerns and prevent the integration of the prevalence of SARS-CoV-2 into the global water
cycle. Several studies have optimistically assumed that coronavirus has not yet affected water ecosystems, but this as-
sumptionmay increase the possibility of subsequent global water issues. More studies are needed to provide a compre-
hensive picture of COVID-19 occurrence and outbreak in aquatic environments and more specifically in water
resources. As scientific efforts to report reliable news, conduct rapid and precise research on COVID-19, and advocate
for scientists worldwide to overcome this crisis increase, more information is required to assess the extent of the effects
of the COVID-19 pandemic on the environment. The goals of this study are to estimate the extent of the environmental
effects of the pandemic, as well as identify related knowledge gaps and avenues for future research.
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1. Introduction

The indirect effects of the COVID-19 pandemic on the environment,
such as an increase in waste production, could negatively affect water re-
sources (Zambrano-Monserrate et al., 2020; Petrosino et al., 2021).
Although there is no direct evidence that the SARS-CoV-2 virus—the
virus that causes COVID-19—can survive in drinking water or wastewater,
the presence of SARS-CoV-2 RNA inmunicipal sewage has been reported in
different locations around the world (Medema et al., 2020; Wu et al., 2020;
Wurtzer et al., 2020; Gonzalez et al., 2020; Kumar et al., 2020a, 2020c,
2021b). Wastewater surveillance has been identified as a promising tool
for tracking virus circulation because it correlates the reported prevalence
of COVID-19 cases with the SARS-CoV-2 RNA detected in sewage
(Bhattacharya et al., 2021).

Containing a global pandemic is difficult and ensuring that people have
access to safe water is a vital step in decreasing viral spread among popula-
tions and in the aquatic environment (Habibi et al., 2020). As documented
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Considering the lack of available information, even if drinking water
can be considered safe, the potential transmission of SARS-CoV-2 or its ge-
netic information in wastewater remains mostly unknown and is worth fur-
ther study. There are significant knowledge gaps that need to be addressed,
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coronavirus are known to persist in water bodies for several weeks (Kumar
et al., 2020c).

The goals of thiswork are to provide a critical analysis of the potential of
SARS-CoV-2 to spread in the aquatic environment, evaluate the risks and
challenges of potential viral spread, and identify knowledge gaps and ave-
nues for future research.

2. The potential spread of SARS-CoV-2 in the aquatic environment

The technical report released by WHO in collaboration with UNICEF
(WHO and UNICEF, 2020) revealed that the morphology and chemical
structure of SARS-CoV-2 are similar to those reported for synonymous
human coronaviruses. Because of these similarities, McLellan et al. (2020)
found that the current processes at wastewater treatment plants (WWTPs)
can prevent the spread of SARS-CoV-2 in treated water effluents and com-
ply with regulations during the treatment process. Based on previous
experience with the Middle East respiratory syndrome (MERS) and other
SARS-CoV-type viruses, the risk of coronavirus reaching drinking water is
considered low (WHOandUNICEF, 2020), which has been confirmed as in-
formation on COVID-19 has progressively increased.

Global efforts are needed to delineate the risk of SARS-CoV-2 spreading
throughwater bodies (Bhattacharya et al., 2021) and amore detailed inves-
tigation is needed to assess the activity and fate of the genetic components
of SARS-CoV-2 during wastewater treatment processes to determine its po-
tential removal.

The efficacy of wastewater treatment processes in removing SARS-CoV-
2 is a significant knowledge gap related to the readiness of WWTPs in deal-
ing with novel waterborne illnesses. For example, very little information is
available on the role environmental conditions play in the purification of
water bodies potentially contaminated with SARS-CoV-2 (Chen et al.,
2021). It is relatively well-known that the persistence of enveloped viruses
(e.g., influenza or herpes simplex viruses) in water may reach up to
200 days at 4 °C. The time required for the initial viral titer to decrease
by 90% in wastewater ranges from 20 to 40 days for enveloped viruses,
whereas the same value for human coronavirus can vary between 200
and 400 days at 4 °C. However, the effects of climate change stressors
such as increases in temperature and ionic strength, as well as changes in
pH on these values are unknown (Kumar et al., 2020c).

The indirect effects of this pandemic on our lives and its adverse envi-
ronmental results are also poorly understood. The drastic decrease in traffic
and other global anthropogenic/economic activities during the mandatory
pandemic lockdown substantially improved air and water quality (Somani
et al., 2020). Nevertheless, a remarkable peak in the generation of munici-
pal solid waste and an increased production of biomedical waste and used
protective gears has been observed in the past months (Bandala et al.,
2021; Petrosino et al., 2021). Because the long-term effects of the COVID-
(a) (b)
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Fig. 1. Intact (a), incapacitated (b), and degraded (c) SARS-Co

2

19 pandemic are yet to be determined, assessing its current effects on our
daily lives is an interesting avenue of future research that isworth exploring
to develop technology to alleviate long-term effects and provide decision
makers with valuable information to address similar or related events in
the future. Furthermore, the long-term effects of the COVID-19 pandemic
on global water bodies is another critical knowledge gap that needs to be
addressed. It is clear that we need a better understanding of the survival
of SARS-CoV-2 inwater andwastewater, as well as its source and dispersion
potential in aquatic environments (Kumar et al., 2021c). Very little infor-
mation is available on these topics, which is another significant knowledge
gap that needs attention considering the potential consequences for water
security and reliability.

3. SARS-CoV-2 in water environments

The lipid membrane envelope surrounding coronaviruses makes them
more fragile than non-enveloped viruses (Walls et al., 2020), and therefore
more susceptible to disinfection processes. The schematic in Fig. 1 shows
the intact (a), incapacitated (b), and degraded (c) stages of SARS-CoV-2.

In several locations around the world without a wastewater treatment
plant or sewer network, untreated sewage is known to drain into surface
water bodies or infiltrate into groundwater (Abbaszadegan et al., 2003;
Fout et al., 2003; Bhattacharya et al., 2021; Kuroda et al., 2021; Elsaid
et al., 2021; Longobardi et al., 2020). Groundwater, which is a vital water
resource, has been historically reported to have lower pathogen loads
than surface water because of the natural purification that occurs during
natural adsorption and inactivation processes. The physical characteristics
of porous media (i.e., soil geological and hydrogeological properties) play
a key role in the dynamics of the pollutants released into the environment
(Hart and Casper, 2004; Bivins et al., 2020; Paleologos et al., 2020).
Some authors (Craun et al., 2010) have suggested that almost all water-
borne disease dispersion is related to polluted groundwater and that patho-
gens can be transmitted from wastewater to groundwater through septic
tanks, leaky sewers, and weak well nets. Many of these outbreaks may
come from wells or small water systems that do not include disinfection.

Because water treatment is time and resource demanding, preventing
groundwater contamination is a more logical approach than disinfection.
Regardless of state and national borders, groundwater can transmit diseases
through the water cycle. The presence of chemical pollutants can also mod-
ify the characteristics or fate of pathogens in groundwater. For example,
past studies on coronaviruses (human coronavirus 229E) found that deter-
gents remove the viral envelope and eventually inactivate the virus (Wang
et al., 2005; Gundy et al., 2009;Welch et al., 2020). Therefore, the presence
of detergents inwastewater has been proposed to help to reduce virus path-
ogenicity to approximately 0.1% of the initial pathogenicity within 24 to
72 h. However, detergents also pose a threat to ecosystems because
(c)
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V-2 virus in wastewater (modified from Hill et al., 2020).
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surfactants are degraded through microbial activity. Depending on their
concentration in the ecosystem, surfactants can bioaccumulate in organ-
isms (although their effects are not adequately studied) and affect soil,
which leads to groundwater contamination (Hassan et al., 2017). Further-
more, detergents are adsorbed on particulate material in the water column
and in sediment, which plays a significant role in their fate.

Limited studies show that coronaviruses might survive in groundwater
for more than a week (John and Rose, 2005; Gundy et al., 2009). Gundy
et al. (2009) demonstrated that coronaviruses are extremely sensitive to
temperature and can be deactivated in high-temperature water. Coronavi-
rus Inactivation is ten times faster when water temperature increases
from 4 °C to 23 °C, suggesting that RNA fragments of SARS-CoV-2 (the orig-
inal active or inactive coronavirus) would be inactivated more quickly in
higher temperature environments. However, many other parameters are
also known to contribute to the inactivation of pathogens and/or damage
to the DNA/RNA structure in surface water, such as ultraviolet (UV) radia-
tion or the presence of reactive oxygen species (ROS). UV radiation, ROS,
and thermal inactivation threaten cells by inducing DNA and protein dam-
age (Tran et al., 2021). None of these parameters are usually present in
groundwater, which has been identified as a receptacle of untreated waste-
water where the COVID-19 virus has been reported to survive for long pe-
riods of time and has been found to accurately reflect changes in the
number of COVID-19 cases in nearby communities (Mahlknecht et al.,
2021).

A recent study identified the high vulnerability of the Arctic to virus
contamination (Benediktsdóttir et al., 2020) because the viral degradation
process is slow in low-temperature environments, which suggests the virus
can persist in Arctic waters for years. Therefore, the survival of SARS-CoV-
2 at groundwater temperature in the Arctic (between 3 °C and 6 °C) is
highly likely, which highlights the need for more studies about this claim.
This topic is another interesting avenue for further research. Although
some authors have reported the natural decay of SARS-CoV-2 pathogenicity
after eight days of release into rawwastewater and river water based on the
reduction of SARS-CoV-2 viral RNA (Rimoldi et al., 2021), water resource
monitoring should be continued until more robust results are available
from studies on the survival of SARS-CoV-2 in recipient water bodies
(Annalaura et al., 2020).

Several studies have been conducted to assess the presence of SARS-
CoV-2 in municipal raw wastewater (Bhattacharya et al., 2021) in the
Netherlands (Medema et al., 2020), the United States, (Wu et al., 2020),
Australia (Ahmed et al., 2020a), France (Wurtzer et al., 2020), India
(Kumar et al., 2020a, 2020b, 2020c), Turkey (Kocamemi et al., 2020), the
United Arab Emirates (Hasan et al., 2021), and Bangladesh (Ahmed et al.,
2020b, 2021; Jakariya et al., 2021). The results from these studies reveal
a more comprehensive image of the outbreak by identifying SARS-CoV-2
genetic materials in raw wastewater contaminated by coronaviruses and,
in some cases, effluents from inefficient sewage treatment plants released
into water bodies (Chen et al., 2021). A recent study by Kumar et al.
(2021a) reported a significant reduction of SARS-CoV-2 RNA materials in
the upflow anaerobic sludge blanket (UASB) system and the aeration
polishing/detention ponds. Kumar et al. (2021c) compared the effective-
ness of root zone treatment (RZT) and conventional activated sludge
(CAS) for virus removal during a two-month evaluation of the process
with weekly intervals in forty-four wastewater surveillance data samples.
These authors suggested that WWTP effluents are not always free of
SARS-CoV-2 RNA and the reported inconsistencies in the experimental re-
sults are another significant knowledge gap that requires additional re-
search to evaluate variousWWTPprocesses to ensure SARS-CoV-2 removal.

Despite all the above-mentioned results and facts, private well owners
and those who use untreated public groundwater supplies have not been
concerned about groundwater vulnerability to SARS-CoV-2. This lack of
awareness is especially concerning considering higher pumping rates in pri-
vate wells to ensure water security could expand the SARS-CoV-2 plume
with unknown, undesirable consequences. Minor amounts of SARS-CoV-2
RNA fragments (the original active or inactive coronavirus) detected by
PCR analysis have been reported in non-potable water of the Seine and
3

the Canal de l'Ourcq (Leste-Lasserre, 2020). This undrinkable water is
mainly used for street washing, watering parks, and feeding waterfalls
and lakes in parks and forested areas. In these areas where highly polluted
water is used, the dispersion of disintegrated genetic materials from waste-
water is a greater risk. Water contaminated by viruses and virions in af-
fected areas could be a factor that might cause significant health impacts
and make these areas more susceptible to other viral diseases. Therefore,
the spread of SARS-CoV-2 over an extended period of time has unveiled un-
derlying vulnerabilities in many areas worldwide.

Unfortunately, water authorities make decisions from a local viewpoint
while ignoring global water cycle integration. For example, people have ex-
tensively applied chlorine disinfectants to prevent coronavirus progression.
Although there are benefits to the use of disinfectants and hand sanitizers
against COVID-19, these germicidal agents penetrate porousmedia and pol-
lute water resources directly and indirectly (Ghafoor et al., 2021; Bandala
et al., 2021; Kumar et al., 2021b), which poses even more severe risks to
aquatic ecosystems (Sedlak and von Gunten, 2011; Ghafoor et al., 2021;
Bhattacharya et al., 2021). The continued release of these pollutants into
the environment could potentially have catastrophic effects on aquatic eco-
systems worldwide (Zhang et al., 2020). However, these crises are not a
pretext for dropping scientific standards (London and Kimmelman, 2020).
Providing safe, clean water for human consumption is critical to fighting
off this pandemic, especially in countries that already face water scarcity is-
sues that have been exacerbated by the transboundary nature of the pan-
demic (van der Voorn et al., 2021).

4. Potential threats and outlook

Although several studies have optimistically assumed that COVID-19
has not yet affected freshwater sources, the possibility of subsequent global
environmental issues may exist (Barouki et al., 2021). Very limited studies
have explored coronavirus contamination in water bodies and the current
COVID-19 crisis makes a case for studying the virus's effect on the environ-
ment and the appropriate response to it (La Rosa et al., 2020). A study of the
sewage system across the United States (Pennisi, 2015) revealed that each
city has its ownmicrobial character, showing local health levels and disease
types. Similarly, COVID-19 can be considered an indicator of environmen-
tal vulnerability. The COVID-19 crisis has been an excellent opportunity to
show our responsibility to our planet by preventing water overuse during
handwashing and avoiding added pressure on the public sewage system
and water supply (Sayeed et al., 2021). Once this crisis ends, the lessons
learned should be remembered and applied to similar challenges in the fu-
ture.

It is interesting that a tiny RNA particle revealed the need to find more
sustainable wastewater treatments, but this lesson is far from being the
ideal outcome of this pandemic. It is scientists' duty to report reliable
news, conduct rapid and precise research on COVID-19, and advocate for
scientists worldwide to overcome this crisis. It will be important not to for-
get that the price paid during the COVID-19 pandemic will help us handle
future health crises. The scientific community must use its voice for in-
creased transparency and cooperation on current and imminent issues. In-
creased transparency and the free of information will help avoid the
tremendous costs of environmental contamination now and in the future.
The day COVID-19 is under control, the environmental sciences in general
and groundwater monitoring in particular should adapt to meet changing
needs. Reaching this coordinated approach will save millions of lives and
help the world prepare for another pandemic.
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