
Perspective

Enabling a learning healthcare system with automated

computer protocols that produce replicable and

personalized clinician actions

Alan H. Morris ,1,2 Brian Stagg,3 Michael Lanspa,8 James Orme, Jr, 1,2,8

Terry P. Clemmer,1,2,8,9 Lindell K. Weaver,1,2,8 Frank Thomas,7,9 Colin K. Grissom,1,2,8

Ellie Hirshberg,8 Thomas D. East,10 Carrie Jane Wallace,3,9 Michael P. Young,11

Dean F. Sittig ,12 Antonio Pesenti,13 Michela Bombino,14 Eduardo Beck,15

Katherine A. Sward,2,5 Charlene Weir ,2,5 Shobha S. Phansalkar,16

Gordon R. Bernard,21 B. Taylor Thompson,17 Roy Brower,24 Jonathon D. Truwit,25

Jay Steingrub,26 R. Duncan Hite,27 Douglas F. Willson,28 Jerry J. Zimmerman,29

Vinay M. Nadkarni,30,31 Adrienne Randolph,18 Martha A. Q. Curley,31,32

Christopher J. L. Newth,33 Jacques Lacroix,34 Michael S. D. Agus,18 Kang H. Lee,35

Bennett P deBoisblanc,36 R. Scott Evans,2,9 Dean K. Sorenson,2,9

Anthony Wong,37 Michael V. Boland,19,David W. Grainger,6 Willard H. Dere,6

Alan S. Crandall,3* Julio C. Facelli,2,4 Stanley M. Huff,2 Peter J. Haug,2

Ulrike Pielmeier,38 Stephen E. Rees,38 Dan S. Karbing,38 Steen Andreassen,38

Eddy Fan,39 Roberta M. Goldring,41 Kenneth I. Berger,41 Beno W. Oppenheimer,41

E. Wesley Ely,21,22,23 Ognjen Gajic,42 Brian Pickering,43 David A. Schoenfeld,20

Irena Tocino,44 Russell S. Gonnering,45 Peter J. Pronovost,46 Lucy A. Savitz,47

Didier Dreyfuss,48 Arthur S. Slutsky,40 James D. Crapo,49 Derek Angus,50

Michael R. Pinsky,50 Brent James,51 and Donald Berwick52

1Pulmonary, Critical Care, and Sleep Division, Department of Internal Medicine, 2Department of Biomedical Informatics, 3Depart-

ment of Ophthalmology and Visual Sciences and John Moran Eye Center, 4Center for Clinical and Translational Science, School

of Medicine, 5School of Nursing, 6Department of Biomedical Engineering and Department of Pharmaceutics and Pharmaceutical

Chemistry, University of Utah, 7Department of Value Engineering, University of Utah Hospitals and Clinics, Salt Lake City, Utah,

USA, 8Pulmonary, Critical Care, and Sleep Division, Department of Internal Medicine, Intermountain Healthcare, Salt Lake City,

Utah, USA, 9Emeritus, 10SYNCRONYS, and University of New Mexico Health Sciences Library & Informatics, Albuquerque, New

Mexico, USA, 11Critical Care Division, Renown Medical Center, School of Medicine, University of Nevada, Reno, Nevada, USA,
12School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, USA, 13Dipartimento di Anestesia,

Rianimazione ed Emergenza-Urgenza, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Pathophysiol-

ogy and Transplantation, University of Milan, Milan, Italy, 14Department of Emergency and Intensive Care Medicine, ASST-Monza

San Gerardo Hospital, Milan, Italy, 15Ospedale di Desio—ASST Monza, UOC Anestesia e Rianimazione, Milan, Italy, 16Division of

General Medicine and Primary Care, Brigham and Women’s Hospital, 17Pulmonary, Critical Care, and Sleep Division, Department

of Internal Medicine, 18Department of Pediatrics, 19Massachusetts Eye and Ear, 20Department of Biostatistics, T.H. Chan School

of Public Health, Harvard Medical School, Boston, Massachusetts, USA, 21Pulmonary, Critical Care, and Allergy Division, Depart-

ment of Internal Medicine, 22Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical

Center, 23Tennessee Valley Veterans Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, Tennessee, USA,
24Pulmonary, Critical Care, and Sleep Division, Department of Internal Medicine, Johns Hopkins University School of Medicine,

Baltimore, Maryland, USA, 25Pulmonary, Critical Care, and Sleep Division, Department of Internal Medicine, Medical College of

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com 1330

Journal of the American Medical Informatics Association, 28(6), 2021, 1330–1344

doi: 10.1093/jamia/ocaa294

Advance Access Publication Date: 16 February 2021

Perspective

http://orcid.org/0000-0001-7005-7924
http://orcid.org/0000-0001-5811-8915
http://orcid.org/0000-0002-8297-2860
https://academic.oup.com/
https://academic.oup.com/


Wisconsin, Milwaukee, Wisconsin, USA, 26Pulmonary, Critical Care, and Sleep Division, Department of Internal Medicine, Univer-

sity of Massachusetts Medical School-Baystate, Springfield, Massachusetts, USA, 27Pulmonary, Critical Care, and Sleep Division,

Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA, 28Division of Pediatric Criti-

cal Care, Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA, 29Division of Pediatric Critical

Care Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA, 30Department

of Anesthesia and Critical Care Medicine, 31Department of Pediatrics, Perelman School of Medicine, 32School of Nursing, Univer-

sity of Pennsylvania, Philadelphia, Pennsylvania, USA, 33Department of Pediatrics, University of Southern California, Los Angeles,

California, USA, 34Division of Pediatric Critical Care Medicine, Department of Pediatrics, CHU Sainte-Justine and Universit�e de

Montr�eal, Montr�eal, Canada, 35Asian American Liver Centre, Gleneagles Hospital, Singapore, Singapore, 36Section of Pulmonary/

Critical Care & Allergy/Immunology, Louisiana State University School of Medicine, New Orleans, Louisiana, USA, 37Ann & Robert

H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA, 38Department of Health Science and Technology, Aalborg Univer-

sity, Aalborg, Denmark, 39Institute of Health Policy, Management and Evaluation, 40Keenan Research Center, Li Ka Shing Knowl-

edge Institute / ST. Michaels’ Hospital and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto,

ON, Canada, 41Pulmonary, Critical Care, and Sleep Division, NYU School of Medicine, New York, New York, USA, 42Pulmonary,

Critical Care, and Sleep Division, Department of Internal Medicine, 43Department of Anesthesiology and Perioperative Medicine,

Mayo Clinic School of Medicine, Rochester, Minnesota, USA, 44Department of Radiology, Yale University School of Medicine,

New Haven, Connecticut, USA, 45Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee,

Wisconsin, USA, 46Critical Care, Department of Anesthesia, Chief Clinical Transformation Officer, University Hospitals, Highland

Hills, Case Western Reserve University, Cleveland, OH, USA, 47Kaiser Permanente Northwest Center for Health Research, Port-
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ABSTRACT

Clinical decision-making is based on knowledge, expertise, and authority, with clinicians approving almost every

intervention—the starting point for delivery of “All the right care, but only the right care,” an unachieved health-

care quality improvement goal. Unaided clinicians suffer from human cognitive limitations and biases when deci-

sions are based only on their training, expertise, and experience. Electronic health records (EHRs) could improve

healthcare with robust decision-support tools that reduce unwarranted variation of clinician decisions and

actions. Current EHRs, focused on results review, documentation, and accounting, are awkward, time-

consuming, and contribute to clinician stress and burnout. Decision-support tools could reduce clinician burden

and enable replicable clinician decisions and actions that personalize patient care. Most current clinical decision-

support tools or aids lack detail and neither reduce burden nor enable replicable actions. Clinicians must provide

subjective interpretation and missing logic, thus introducing personal biases and mindless, unwarranted, varia-

tion from evidence-based practice. Replicability occurs when different clinicians, with the same patient informa-

tion and context, come to the same decision and action. We propose a feasible subset of therapeutic decision-

support tools based on credible clinical outcome evidence: computer protocols leading to replicable clinician

actions (eActions). eActions enable different clinicians to make consistent decisions and actions when faced with

the same patient input data. eActions embrace good everyday decision-making informed by evidence, experi-

ence, EHR data, and individual patient status. eActions can reduce unwarranted variation, increase quality of clin-

ical care and research, reduce EHR noise, and could enable a learning healthcare system.

INTRODUCTION

Our healthcare culture blocks development of a

learning healthcare system
The current decision-making model is based on clinician knowledge,

expertise, and authority/autonomy, with clinicians approving almost

every intervention. Healthcare culture is inexorably linked to this

expert-based model (“Era 1”1). Culture has been described as the

“software of the brain.”2 New information indicates that culture

can also modify the structure of the brain, changing people’s biology

independent of genetics, thus adding a new dimension to cultural

considerations.3 However, this culture is only the starting point for

delivery of credible evidence-based healthcare interventions. The
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expert-based model is necessary but not sufficient for delivery of

“All the right care, but only the right care” (p. 14)—a healthcare

quality improvement goal yet to be closely approached. In this paper

we focus on treatment (similar to a management system5) not diag-

nosis, since replicable clinician actions are currently more easily

achieved for treatment.

Decades of compelling evidence indicate unaided clinicians suffer

from cognitive limitations and biases when decisions are based only

on training, expertise, and experience.3,5–12 Almost all resources for

improving healthcare outcomes support ordinary guidelines and pro-

tocols and processes (eg, quality improvement,4,13 education,14–16 and

training17) (Table 1, row 1). These produce improvements but fail to

approach achieving “All the right care, but only the right care.” The

behavioral economics strategy of making it “easy to do it right,” con-

sistently and rationally linking action to best evidence, is in natural

tension with healthcare culture and the clinician’s concept of decision

autonomy.1,18–20 Healthcare culture is thus a barrier to implementa-

tion of many potentially useful computer applications.12,21 We argue

that surmounting the cultural barrier and generating a true learning

healthcare system will require a “bottom-up”22,23 clinical problem-

focused redesign that virtually eliminates random and systematic noise

due to variable clinician decisions. Such a system can produce almost

noise-free clinical EHRs and replicable clinical outcome results.24–27

Clinician variability in treatment decisions/actions
Clinician treatment decisions/actions vary widely.1,28–30 Adults and

children only receive recommended care about 50% of the time,31–33

reflecting a significant treatment gap.12,34–39 Desired, mindful, clini-

cian variation can contribute new insights in some situations, such as

the COVID-19 pandemic.11 However, individual clinician decision-

making is commonly associated with mindless11,12 or unwarranted

variation (deviations from best practice, not based on evidence or

patient preference),40,41 and associated with waste, morbidity, and

mortality.4,28,42–47 Even specialists claiming to follow best evidence

do not consistently do what they say.5,8,48–52 Widespread overestima-

tion of professional self-confidence seems to contribute to this vari-

ability in clinician decision-making,9,10,53 for example

“. . .professionals often make decisions that deviated significantly

from. . . peers, from their. . .prior decisions, and from rules. . . they. . .

claim to follow” (p. 4010). This variation increases with urgency or

acuity and can result both from variable clinician responses to task

and information overload and incentive misalignment.54–56 These

responses reflect undefined and unrecorded individual clinician

beliefs, biases,3,5–12,29,30 and decision rules that, while preserving lim-

ited cognitive resources,56–59 impede deep attention required to ad-

dress complex problems.60 The responses lack underlying clinician

decision rationales and confound assessment of clinical outcomes of

trials, observations, and large data sets (big data).55,61,62

Unwarranted variation, for example, in transfusion or blood glu-

cose targets,29,30 impedes replicability and introduces systematic

noise (bias) into clinician decision-making and thus into the EHR

database. This noise, unlike random noise, cannot be overcome by

increasing the number of observations. All noise impedes accurate

machine learning61,62 and thus impedes achievement of a sorely

needed learning healthcare system. Limited availability of appropri-

ately granular and interoperable EHR data is also an impediment. In

addition, choice of machine learning strategy introduces variabil-

ity.63 Some computer applications can reduce a major source of

both random and systematic (bias) EHR noise by almost eliminating

variation in clinician decision-making called “unwarranted40,41” or

“mindless11,12”. This is a long-recognized problem.28,64 We assert

that reducing noise will increase the EHR signal-to-noise ratio65,66

enabling a learning healthcare system21,67–75 and improving impor-

tant clinical outcomes.52

Replicability
Replication of results is a cornerstone of science and experimenta-

tion.76–81 This is not always possible in clinical settings82 but is gen-

erally recognized as an important goal even in settings difficult to

control, like surgery.83,84 In many clinical settings where evidence

and heuristics are available, thoughtful and replicable detailed

clinician decision-making methods produce more consistent

evidence-based care across clinicians, time, and institutions.5,24–27

This construct began in earnest with paper-based protocols in

clinical psychology85,86 and automatic electroencephalographic con-

trol of general anesthesia87 about 70 years ago, without broad adop-

tion. Over forty years ago, closed-loop66,88 computer protocols

automatically controlled left atrial pressure post-operatively89 with

vasoactive drugs90 and blood products.91 Replicability occurs when

the same patient information and context lead different clinicians to

the same decision and action.24,25,27,55,92–100 Such replicability of

clinician actions (interventions) helps assure scientific validity of ex-

perimental and observational studies.76,101–103 This replicability

links interventions with evidence, increasing appropriate and effec-

tive care, enhancing research by reducing noise from unwarranted

variation, supporting artificial intelligence utility, and perhaps in-

Table 1. Comparison of different clinician decision-support strategies

Variation

Strategy

Intervention

(Transfer Function)

Automated

Action?

Clinician

Compliancea

Clinical

Outcome

Credibility

Warranted

Mindful

Unwarranted

Mindless

Outcome

Replicability

Top-down,

system focus

CQI, 6-r,

Zero patient harm,

care process,

guideline, protocol

‹ No Low (15%–40%)

(31, 32)

Low Yes: defaultb Common �50% Low (15%–40%)

Bottom-up,

clinical

problem focus

eActions! Adaptive,

personalized patient

care decision/ action

› No High (�95%) High Yes: defaultb Small (0.3%) High (�95%)

fi Yes Highest (�100%) Highest Yes: not default No Highest (�100%)

Abbreviation: CQI, continuous quality improvement.
awith best evidence-based care.
bYes: possible; Default: deciding clinician must approve each decision/action.
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creasing teaching consistency.104 Widely distributed replicability

might also reduce racial and ethnic care disparities, as long as rules

appropriately attend to racial differences.

Detailed computer protocols
In seeking benefits that outweigh risks, clinicians practice clinical

“arts” through desired, mindful, clinician variation.11,12 Absent

guiding evidence or patient preferences, “artful” clinical decisions/

actions must be determined exclusively by clinicians, usually during

patient–clinician interactions, with contextual integration of clini-

cian expertise and available information. However, complex health-

care challenges include diversity, quality, access, information

overload, provider burnout, ethical dilemmas, and cost. Clinicians

often make decisions and take actions without incorporating all

available, and often overwhelming, evidence.11,12,20,54,55,93,105,106

Well-designed computerized decision-support tools, based on com-

prehensive evidence and expert clinician logic/judgment, can help

clinicians incorporate this evidence.107,108 Expert clinician logic/

judgment is captured through an iterative development process that

includes elements of conflict resolution and enough comprehensive

patient input detail to generate both patient and time-specific care

instructions.92,96 This overcomes the shortcomings of most decision-

support attempts.6 Decision-support rules are thus developed asyn-

chronously, during tool generation before the patient–clinician en-

counter.96 During the encounter, these tools function synchronously

as a surrogate expert consultation and can unburden the overbur-

dened clinician.20 These tools generate replicable, detailed, patient

and context-specific, evidence-based decisions/actions distributed

across clinician roles and disciplines. Schwartz discussed, 50 years

ago, the yet unrealized potential for computers to change medical

practice. He claimed “. . .computer as an intellectual tool can re-

shape the present system of health care” (italics added, p. 1257109).

Unfortunately, current EHRs do not fulfill this vision. Indeed, by

requiring many detailed, task-oriented interactions, they can be

counterproductive and contribute to clinician burnout,20 and im-

pede experienced clinicians from deep clinical thinking and from ap-

plying clinical “arts.”20,110,111 Appropriate and automated tools can

maximally relieve clinicians of this current EHR burden. We call

these tools eActions to emphasize replicable clinician actions in con-

trast with decision aids that merely deliver replicable messages—an

important distinction commonly overlooked.112 eActions also en-

able rapid, detailed, and rigorous translation of clinical research

results to usual clinical care24 thus overcoming many barriers to dif-

fusion of innovations that rely on learning and performance by indi-

viduals within complex institutions.34,113–116 Translation of

eActions from research studies to usual care is an extreme and effec-

tive version of the “make it happen” reengineering imperative for

the spread of innovations in service organizations.117 In addition,

eActions operating automatically in a closed-loop manner66,88 could

diminish, or even eliminate, some important research strategy differ-

ences between detailed explanatory randomized controlled clinical

trials (RCTs) and large simple, pragmatic, and comparative effec-

tiveness trials. eActions could enable replicable methods to produce

more robust explanatory trial results and enable more robust large

multi-institutional trials with the same replicable method (replacing

some pragmatic trials).55 After completion of a trial, eActions can

be immediately introduced into usual care and could become the ba-

sis of quasi-experimental or more rigorous comparative effectiveness

trials118–120 of modified eActions, thereby generating a learning

healthcare system. A learning healthcare system could ameliorate

the research uncertainties, and subsequent inappropriate care,

associated with the use of biomarkers and other intermediate out-

comes as surrogate endpoints for ultimate clinical outcomes.121 eAc-

tions would be particularly helpful during difficult or novel

situations that can overwhelm healthcare resources. Finally, auto-

mated eActions could extend automated computerized physician or-

der entry,122 respond to complexity60 and decision-support

challenges,123 and maximally unburden clinicians during major

threats like the COVID-19 pandemic.124,125

Human decision-making systems
Human decision-making involves 2 information processing systems:

an automatic effortless cognitive system using large stores of knowl-

edge and experience, and a deliberative conscious effortful system

used for extreme decisions and requiring great attention.56–59 The

automatic effortless system often functions below awareness and

resists change. The conscious effortful system is limited, more easily

changed with information, and functions with full awareness. It is

strictly conserved by avoiding deep rational thought whenever possi-

ble, a human behavior recognized for millennia.126–130 Efforts to al-

ter clinical context and improve decision-making generally address

both systems and include: clinical guidelines and protocols; process

improvement (eg, Continuous Quality Improvement,13 Toyota Lean

Methodology,131 Zero patient harm,132 6-sigma133,134); ergonomic

approaches like those pioneered by anesthesiologists to preclude in-

correct device connections;135 choice constraints (safe defaults re-

quiring opting-out rather than opting-in); and team science studying

organization, staffing, safety culture, and checklists.11 “Nudging

decision-makers toward default choices” is a common prac-

tice.19,136,137 Many of these efforts (Table 1) are predominantly

“top-down” indirect efforts that use marketing, training, and incen-

tives to influence clinician decisions, but produce little change to in-

ternal motivation20 because bedside decision-making remains

largely done automatically with the effortless cognitive system. Con-

versely, rapid and large change can follow efforts that directly pro-

vide clinicians with evidence-based decisions/actions, but these

require more strictly limited conscious cognitive clinician resources

and require a change in the expert-based healthcare culture.1,22,23

Removing some clinician task-focused decisions with decision-

support tools would unburden clinicians and free cognitive resources

to address higher-level complex situations and major therapeutic

strategy decisions (the clinical “art”20). More simply, “bottom-up”

eActions23 that directly alter bedside clinician decision-making can

lead to �95% clinician compliance, even when not automated. eAc-

tions produce clinician actions tightly linked to credible evidence

(Table 1, row 2).24,25,27,55,92,96–100

COMPUTER-PROTOCOLS LEADING TO
REPLICABLE CLINICIAN ACTIONS

For eActions to be widely adopted they must be detailed, specific,

and acceptable to clinicians. Acceptability depends primarily on

demonstration of credible clinical outcomes and usability in prac-

tice. Unlike eActions, most clinical computer applications are diffi-

cult for clinicians to employ in practice.138,139 Our previous

publications labeled eActions with different names25,27,55,92–94,

96–99,140–142 (see Supplementary Materials for synonyms). eAc-

tions influence decisions/actions directly and indirectly by alter-

ing context (changing expectations, social motivation,

administrative goals, etc).24,25,27,55,92–94,96–100 eActions commu-

nicate specific decisions/actions based on the patient’s current
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state determined by multiple sources of data (eg, laboratory, im-

aging, the literature, patient trajectory, etc). Though they remain

rare, we used eActions in multiple ways: as HELP system143–145

embedded EHR rules or external EHR interfaced rules and as in-

dependent eActions computer applications.24,25,27,55,92–100 eAc-

tions are usually activated by EHR data, avoiding double data

entry. However, 1 independent eActions blood glucose manage-

ment study required double,25 and another required addi-

tional,100 data entry. Remarkably, the bedside clinicians in 1

center25 wanted to continue the double data entry for clinical

care that they believed was improved, even though it increased

their workload.

Usual guidelines, protocols, and most other decision-support

tools or aids are not eActions. They encourage clinician decision in-

dependence with inadequately detailed messages (Table 1, row

1).1,20,107,108 While these messages can be replicated, clinicians exe-

cute such messages differently except in simple circumstan-

ces.11,146,147 Although commonly called medical algorithms,107,148–159 a

broad and loosely used term,160 they are usually ambiguous flow-

diagrams, tables, or rules and contain neither a precise list of steps, with

temporal determinants, nor a clear stopping point (characteristics of

mathematics and computer science algorithms).107,108,161 For example,

the declarative guideline message “achieve a normal hemoglobin A1c”

is replicable but is insufficiently detailed to lead to replicable clinician

actions. Similarly, an expert protocol goal for mechanical ventilation of

acute respiratory distress syndrome (ARDS) patients (Supplementary

Figure 1) is “. . . use the least PEEP and tidal volume necessary to

achieve acceptable gas exchange while avoiding tidal collapse and

reopening of unstable lung units.”162 This replicable statement can lead

to many different specific interventions by different clinicians, or even

by the same clinician at different times, because it lacks the detail re-

quired for the replicable clinician actions achieved by eActions

(Figure 1). Replicable clinician actions are the target here. Replicability

is more important than the specific clinical care eActions strategy cho-

sen from the many available acceptable clinical care strategies.164

The patient, clinician, and healthcare delivery system are all

complex systems, each with modeling challenges.60,165 The rules

and logic of eActions address and model only the clinician decision-

maker.55,96 This does not require that we know the “truth,” or even

all the input variables that might ultimately be revealed important.

It requires only that we extract from clinicians, using robust estab-

lished techniques, the way they make their decisions based on the in-

formation at hand.55,92,96 Clinicians, like all humans, are

cognitively limited with average short-term (working) memory lim-

ited to 4 6 1 psychological constructs before decisions become de-

graded.56–59,166 While many seem unaware of this ubiquitous

limitation, it is expressed in multiple human activities including slide

preparation,167 risk assessment,168 and stock trades.169 Most stud-

ied subjects overestimate their competence and inflate their self-

assessments.49,50 Even personal beliefs are not consistently reflected

in decisions.5,8,48–51 Paradoxically, these human cognitive limita-

tions reduce the number of input variables developers need to con-

sider for any single eActions decision and thus enable individual

decisions (protocol branch points) to evolve from structured and fo-

cused clinician thinking.92,96 Any single eAction decision usually

requires only 1–3 data inputs.55,96 Because eActions may contain

thousands of single decision rules, the total eActions information for

all of its rules includes detail and integration typically difficult for

humans to access and utilize11,12,20,55,93,96,98,104–106,166 (see mapping

terms, drug classes, administration routes, equivalent doses, step

changes, etc, and detailed rules, in Supplementary Table 1). For exam-

ple, the first eActions, for management of arterial oxygenation in a clini-

cal trial of extracorporeal support for ARDS, consisted of

approximately 40 flow-diagram pages.94 In addition to treatment deci-

sions, eActions rules could also indicate evaluations for rare causes of

common problems, like inherited metabolic causes of pediatric seizures.

eActions embrace the nuances of defensible clinician decision-

making informed by evidence, experience, laboratory and other

EHR data and by individual patient trajectory including treatment

response. Because eActions, automated or not, can electronically

capture clinician responses to instructions, the detailed clinician de-

cision/action directed care method is clearly documented.24,25,96–

98,100,170 Such knowledge of detailed methods is rare.56 eActions not

only produce replicable clinician actions, they also produce replica-

ble clinical outcomes (Figure 2a and 2b).24–26,94,171 For example,

eActions eliminated all variation in blood glucose management and

blood glucose value distributions between 4 ICUs in 3 US states and

Singapore (Figure 2b). Interestingly, systems that incorporate clini-

cian decisions, like all second-order or higher systems, can oscillate

and fail if not properly damped.65,66 We incorporated 3 common

clinician decision strategies to damp eActions and prevent failure

due to oscillation: waiting times, dead zones, and fuzzy logic mem-

bership.172

Understanding is a requirement for clinician acceptance of eAc-

tions.140 Past work focused on if–then rule-based eActions because

clinicians intuitively and easily understand if–then protocol rule

logic. This was particularly important when eActions development

began in 1986173,174 and clinicians questioned eActions’ ability to

appropriately manage mechanical ventilation.27,94,96,97,175 How-

ever, decision strategies other than if–then rules can also produce

successful eActions. These include physiology-based computer

models of bodily function for blood glucose homeostasis,100,170

acid–base balance,176–178 oxygenation,179 and mechanical ventila-

tion.142,180 In fact, these computer model eActions may be easier to

develop and more adaptable to changing clinical contexts than rule-

based eActions.100,141,142,170

WHY HAVE eACTIONS LED TO REPLICABLE
CLINICAL OUTCOMES?

We implemented eActions in multiple clinical contexts and at multi-

ple institutions (Table 1, Figure 2).24,25,27,55,92,96–100 The 95% clini-

cian compliance with eActions instructions seems explained by 2

linked factors: initial credible favorable clinical outcome evi-

dence24,25,27,55,96 and clinician beliefs.140

We obtained favorable clinical outcomes, in the intended clinical

care setting, during the initial iterative refinement of eActions96 for

mechanical ventilation,27,94 blood glucose control,25 and sepsis

management.98 These results armed eActions developers with favor-

able outcome evidence.24,25,55,96,98 This outcome evidence attracted

colleagues to join randomized eActions clinical trials and to review

and critique the readily available eActions if–then rule logic.26,27 In

contrast, well-conducted and important RCTs of other detailed

if–then rule-based computer-protocols did not appear to have pre-

sented favorable initial clinical outcome evidence to participating

clinicians.181,182 These computer protocols used EHR data including

vital signs, symptoms, and functional class to generate guideline-

based cardiac care suggestions like “Treat systolic dysfunction with

ACE inhibitor unless allergic—ORDER Lisinopril 10 mg PO

qAM.”181,182 In the absence of favorable initial prestudy clinical

outcome evidence, participating clinicians might have lacked helpful
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motivation and beliefs that enable compliance with computer proto-

col instructions.140 This may explain their disappointing RCT

results reported for both heart181 and lung disease.182 In spite of

documented differences in clinician patient management styles,29,30

clinician beliefs in self-efficacy (the ability to reach an intended goal)

and in eActions information accuracy, timeliness and trustworthi-

ness, were associated with high compliance with individual patient-

specific decisions/actions.20,140

ELEMENTS FOR SUCCESS

Based on past successes, we believe broad dissemination of eActions

will likely require 7 elements (Table 2). The first 4 are supported

by evidence.55,92,93,96,98,100,141 The remaining 3 need to be systemat-

ically evaluated. We believe that healthcare business leaders are

good assessors of returns on investment for value-based medicine

economies. The healthcare industry, itself, should invest in eActions

as they currently do for care processes (Table 1).

Figure 1. (a) Replicable rules from a small section of an early mechanical ventilation eActions. CORE ¼ Continuous Respiratory Evaluation protocol. (b) Computer

displays of an early (1988) mechanical ventilation eActions.94,163 (c) More complicated section of rules for Continuous Positive Pressure Ventilation (1992).
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Figure 1. Continued.
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WHERE MIGHT eACTIONS BECOME
SUCCESSFUL?

The guideline for management of extracellular fluid retention in

heart failure patients is mature and widely accepted,184 though in-

consistently applied.185 We developed an eAction for managing fluid

retention that could be formally studied (Supplementary Table 1). It

could populate EHRs with complete, valid, and almost noise-free

clinician decision-making data. This eAction could be automated

via telemedicine to manage patients at home, unburdening not

only clinicians but also patients and clinics through reduced visits.

eActions would enable rigorous comparative studies of alternative

care strategies proposed by thoughtful clinicians. This future heart

failure work could enhance, for example, the current groundbreak-

ing comparative study achievements of the Learning Healthcare Sys-

tem at Vanderbilt University Medical Center.186–189 A hint of

comparative studies potential was provided by the reuse of EHR

data populated by an if–then rule-based blood glucose and insulin

eAction.25 These EHR data were reused as input data for a com-

peting physiology-based blood glucose homeostasis eAction.170

The investigators concluded the results from the competing

physiology-based eAction were likely preferable to the original

Figure 2. (a) Unpublished data (tidal volume, first 15, and PaO2, first 19 subjects) of an acute respiratory distress syndrome (ARDS) clinical trial171 of mechanical

ventilation eActions,94 72 hours after randomization in 6 and 12 ml/kg predicted body weight tidal volume target groups. VT ¼ Tidal Volume, SEM ¼ Standard Er-

ror of the Mean and N ¼ measurement number. Replicable tidal volumes reflect rigorous control of the study intervention (VT targets not reached 100% of the

time because of individual patient needs, although the eActions rules are identical except for the VT targets). Replicable PaO2 reflects rigorous control of this po-

tential cointervention (a care element that can influence the study outcome and could obscure the impact of the study intervention). eActions PaO2 rules were

identical for both tidal volume target group subjects. (b) Baseline distribution of ICU blood glucose values in multiple ICUs using different management strategies

with an 80–110 mg/dl blood glucose target (left panel) and after exporting a bedside computer-protocol (eActions) to all US ICUs and to the National University

Hospital of Singapore (right panel) with 95%–98% clinician compliance with eActions instructions—modified form.25 This demonstrates replicability of clinician

action (blood glucose value outcome), not correctness of blood glucose target.
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results from the if–then rule-based eAction.141 In addition, we

were able to explore, with the same eActions rules, the impacts of

2 different blood glucose targets for ICU patients managed with in-

travenous insulin190 and compare performance in diabetic with

that in nondiabetic patients.191,192

CHALLENGES AND LIMITATIONS

All decision-support tools, including eActions, incorporate beliefs,

interpretations, and biases.3,5–12,29,30,55,56,193,194 Consequently,

rules must be defined wisely and consensually, be curated, incorpo-

rate clinical setting performance feedback, and deal with conflicts of

interest and bias that may be present in guidelines adopted by prom-

inent professional societies195,196 or developed by commercial inter-

ests.197 Credible clinically pertinent initial outcome data24,25,55,96,98

provide important checks against suboptimal protocols that include

improper bias and that may lead to incorrect instructions and pa-

tient harm.195–197 Elimination of all clinician decision-making varia-

tion seems both impossible and undesirable.11,20 Indeed, in

situations where important uncertainty exists, alternative eAction

designs that allow causal inference may be crucial to learning and re-

ducing uncertainty. Circumstances outside the scope of eActions

Table 2. Elements for development of computer protocols leading to replicable clinician actions (eActions)

Element Explanation

SUPPORTED BY PUBLISHED RESULTS

1.“Bottom-up” clinician leadership23 dedicated to

solving a specific clinician decision-making challenge55,93,96,98,100

“Bottom-up” eActions leadership is a simpler, problem-focused strategy

and complements the more complex “top-down” information technol-

ogy efforts common in healthcare. eActions development, iterative re-

finement, validation, and safety assurance is resource intensive and

enabled by clinicians with passion for solving a particular problem. It

is this clinician focus on specific discrete problems that makes eActions

challenges soluble.

2.Multidisciplinary team dedicated to development

and validation in the intended clinical use setting26,55,92,96,98,183

This team requires frontline clinicians interested in solving the specific

clinical problem, information scientists and technicians, multiple pro-

fessional disciplines, and administrators.

3.Easily understood intuitive screens and messages,

using 1 unique self-explanatory term and appearance

for each protocol construct or button

Many proprietary EHR systems fail to achieve this requirement of self-

explanation that is important for ease of use by clinicians. Past eAc-

tions have been initiated clinically with as little instruction as the fol-

lowing: “put the blood glucose value here and follow the displayed

instructions.” This reduces time-consuming, expensive, current clini-

cian education as clinical unit staff members change.

4.Iterative refinement and validation in a well-supervised clinical

setting functioning as a human outcomes research laboratory,

and producing credible clinical outcome data during refinement

and validation of eActions rules25,55,93,96,98

Clinical care environments that have adequate supervision and control to

function as a human outcomes research laboratory are rare. Past myo-

cardial infarction research units attempted to do this by complement-

ing the clinical care units, but they did not reach the level necessary for

eActions. It is the intended clinical care delivery unit that should be

the human outcomes research laboratory.

NOT YET SUPPORTED BY PUBLISHED RESULTS

5.EHR-platform-independent, public domain eActions Future widespread distribution of eActions will not be achievable or ca-

pable of proper curation if applications are installed within proprie-

tary EHR systems. These EHR systems are unlikely to achieve the

level of interoperability necessary to allow rapid revision of eActions

rules when new evidence appears. A single cloud-based application us-

ing SMART on FHIR and other strategies now seems a solution that

would allow proper curation, like the Agency for Healthcare Research

and Quality “CDS Connect” website (https://cds.ahrq.gov/cdscon-

nect).

6.Academic curation of the protocol Academic curation requires constant vigilance of eActions, a requirement

consistent with the concern raised by Schwartz regarding the danger

of centralized clinical decision-making.109 Such curation will likely re-

quire a change in current healthcare organizational culture and social

pressure,140 especially at academic sites.

7.Funding from healthcare industry sources Funding from healthcare industry sources seem necessary since neither

the initial rule development investment required for eActions96,98 nor

eActions curation needs are met by current research funding sources.

The return on investment can justify the business decision by the

healthcare industry. For example, the original eActions mechanical

ventilation research protocol27 was subsequently seamlessly translated

to clinical care and consistently delivered lung-protective ventilation

to Acute Respiratory Distress Syndrome patients.24 This eActions gen-

erated about 2,000,000 protocol care instructions in about 22,000

patients during about 3 decades at the original development hospi-

tal27,55,92 and at 1 of the collaborating research sites.97
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rules and knowledge may suddenly emerge and be more easily cap-

tured with widespread use of eActions, than with current depen-

dence on individual clinician recognition and reporting. The rules

would subsequently, when appropriate, be modified through itera-

tive refinement.96 eActions would complement, not replace, other

strategies currently employed in healthcare.

Complexity theory indicates that patient trajectories might, un-

der some circumstances, be exquisitely sensitive to initial condi-

tions, as in chaotic systems that sometimes make weather

prediction difficult.165 This exquisite sensitivity is imperceptible

and hidden below measurement resolution. This theoretically might

preclude patients with identical problems and the same comprehen-

sive clinical input data from following the same trajectory.60 We

are unaware of any systematic clinical explorations of this potential

complexity theory limitation. eActions would still enable different

clinicians to achieve replicable actions and eliminate unwarranted

variation. We believe that using the best available evidence to initi-

ate therapy of even complex diseases, like glaucoma or insulin-

dependent diabetes with multiorgan dysfunction and heart failure,

is reasonable.52 As long as we make relatively short-term decisions

and use iterative refinement and intelligent decision-making rules to

deal with those patients who do not respond in the expected man-

ner to eActions instructions,96 we assert this strategy will advance

patient care.60

The totality of clinical problems amenable to eActions and to its

widespread scaling both need exploration. Exploring more eActions

should help drive collection of more relevant and important clinical

EHR data. We believe eActions will be widely applicable because

human cognitive limitations56–59,166 are ubiquitous and independent

of healthcare discipline, disease, and clinical context complex-

ity.25,27,55,92–94,97,104 Both automated and nonautomated eActions

are disruptive innovations not well addressed by mature businesses

such as healthcare.22,23,70 Funding for development, validation, im-

plementation, and curation of eActions for multiple clinical prob-

lems will be important and should be provided by the healthcare

industry. Not only will patient care quality increase (the face value

imperative for moving ahead with this work) but profits might in-

crease as well. One-quarter or more of clinical expenses are nonbe-

neficial wasted resources.46,47,198–202 Broad application of eActions

could reduce clinical waste. In addition to providing resources,

healthcare industry acceptance will be key to providing environmen-

tal support, social pressure, and organizational cultural contribu-

tions that are important for clinician acceptance and compliance

with eActions decisions/actions.1,4,140 Admittedly, convincing the

healthcare industry to fund work on eActions is challenging.22,23

Key to achieving healthcare culture change is not just individual

compliance but also acceptance of the utility and value of our pro-

posed eActions approach and linking it to clinician goals.20,52,140

Clinicians will alter their behavior to comply with demands of

employers, a widely recognized human response. Clinician deskill-

ing203,204 may occur and must be incorporated in assessment of risks

and benefits of our proposed strategy. Although deskilling is de-

clared an unavoidable consequence of civilization’s advance (p.

42205 and p. 29206), clinician deskilling does not have to occur.207

Instructions for the use of our first eActions in the HELP computer

system144 clearly identified consistently applied principles and rules

for mechanical ventilation of ARDS patients.27,94,96,97 This en-

hanced our trainees’ understanding, as was anticipated decades

ago.107,108

CONCLUSION

Computer protocols leading to replicable clinician actions (eActions)

reduce mindless, unwarranted variation in clinical care and research.

eActions could improve both clinical care quality and research by

unburdening overtasked clinicians and by reducing noise in clinical

databases. Common current clinical decision-support tools or aids,

including guidelines and protocols, neither enable replicable

evidence-based actions, nor provide individual patient-specific care.

eActions should be formally discussed and pursued, nationally and

internationally, in our efforts to reduce clinician variation, improve

care, and establish a learning healthcare system.
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