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ABSTRACT

Objective: Drawing causal estimates from observational data is problematic, because datasets often contain un-

derlying bias (eg, discrimination in treatment assignment). To examine causal effects, it is important to evaluate

what-if scenarios—the so-called “counterfactuals.” We propose a novel deep learning architecture for propen-

sity score matching and counterfactual prediction—the deep propensity network using a sparse autoencoder

(DPN-SA)—to tackle the problems of high dimensionality, nonlinear/nonparallel treatment assignment, and re-

sidual confounding when estimating treatment effects.

Materials and Methods: We used 2 randomized prospective datasets, a semisynthetic one with nonlinear/non-

parallel treatment selection bias and simulated counterfactual outcomes from the Infant Health and Develop-

ment Program and a real-world dataset from the LaLonde’s employment training program. We compared differ-

ent configurations of the DPN-SA against logistic regression and LASSO as well as deep counterfactual

networks with propensity dropout (DCN-PD). Models’ performances were assessed in terms of average treat-

ment effects, mean squared error in precision on effect’s heterogeneity, and average treatment effect on the

treated, over multiple training/test runs.

Results: The DPN-SA outperformed logistic regression and LASSO by 36%–63%, and DCN-PD by 6%–10%

across all datasets. All deep learning architectures yielded average treatment effects close to the true ones with

low variance. Results were also robust to noise-injection and addition of correlated variables. Code is publicly

available at https://github.com/Shantanu48114860/DPN-SAz.

Discussion and Conclusion: Deep sparse autoencoders are particularly suited for treatment effect estimation

studies using electronic health records because they can handle high-dimensional covariate sets, large sample

sizes, and complex heterogeneity in treatment assignments.

Key words: biomedical informatics, big data, electronic health record, deep learning, causal inference, causal AI, propensity

score, treatment effect

INTRODUCTION

In many research fields, especially in biomedical sciences, observa-

tional data are abundant but may contain underlying bias, arising in

various steps of the data generation or collation process, for which

datasets cannot be used seamlessly to draw causal claims.1 For in-

stance, one may be interested in studying the effectiveness of a medi-
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cal treatment or an intervention in a population, but the way

in which people access the healthcare system could be different

(eg, due to social inequality or systemic racism); or, simply, one may

not be able to account for the heterogeneity in the population in

terms of age groups, prior comorbidities, surgical procedures, etc.

Due to such bias, the causal effects of the treatment or intervention

often cannot be estimated properly. One solution would be to force

the intervention to be nondifferentiated, performing a randomized

controlled trial (RCT).2,3 In an RCT, individuals are assigned to dif-

ferent treatment groups (or a control group) at random, regardless

of their background characteristics (ie, a pretreatment covariate or

feature space). The randomization process leads to strong ignorabil-

ity of individuals’ pretreatment characteristics, and thus the causal

effect of the treatment versus control can be evaluated objectively.4

The mean difference between the observed treatment outcomes of

the 2 different groups (eg, treatment vs control) is called the average

treatment effect (ATE). Note that estimating the individual treat-

ment effect (ITE) is a missing data problem5,6 because only 1 factual

outcome can be observed (ie, a person cannot be assigned to both

the treatment and control groups at the same time).

Since RCTs are not always feasible due to ethical or operational

constraints, for example, conducting a RCT to ask individuals to

smoke and then assess the effect of smoking toward the development

of lung cancer, observational data are used in attempts to draw

causal conclusions. Nevertheless, when using observational data,

one must account for possible types of underlying bias such as con-

founders, which represent true causal effects to be distinguished

from other correlated, spurious variables associated with an out-

come of interest.7

Propensity score matching (PSM) is a popular statistical ap-

proach for observational data that attempts to estimate the causal

effect of a treatment variable with respect to an outcome, taking

into account possible confounding bias from other pretreatment

characteristics.4,8 The propensity score is a scalar estimate p xð Þ rep-

resenting the conditional probability of receiving a certain treatment

T ¼ 1, versus the control group or no treatment T ¼ 0, given a

set of measured pretreatment covariates X; denoted as

p xð Þ ¼ P T ¼ 1jX ¼ xð Þ; (1)

Hence, PSM balances the pretreatment confounders by achieving

a quasi-randomization of the different treatment group assignments,

allowing more unbiased estimation of the treatment effect. How-

ever, traditional PSM approach accounts only for measured (and

measurable) covariates, and latent bias may remain after matching.9

PSM has been implemented historically through logistic regres-

sion, which calculates the probability of treatment assignment given

the pretreatment covariates.10 In the presence of high-dimensional

datasets, eg, those compiled from large electronic health record

(EHR) databases,11 different feature selection methods within PSM

have been employed, such as the high-dimensional propensity

score12 or LASSO logistic regression.13 However, logistic regression

is limited because it calculates a linear combination of input varia-

bles, and thus unable to capture the complex relationships between

the pretreatment covariates and the treatment assignment. This is

particularly true in high-dimensional settings, where it is difficult to

explicitly define variable-to-variable interactions (eg, as higher-

order terms in the logistic function) and computationally burden-

some to scan all possible interaction terms.

An artificial neural network is a universal approximator and can

smooth polynomial functions regardless of the order of the polyno-

mial or the number of interaction terms.14–16 In addition, it does not

require a priori knowledge of what interactions and functional

forms are likely to be relevant among covariates. Therefore, it is

suited to overcome the issues in the logistic regression-based PSM

approach. In fact, a number of neural deep learning approaches

have been devised to provide the estimation of nonlinear treatment

group assignment probability and predict treatment outcomes with

improved estimation of treatment effects. Popular frameworks with

available software implementations include the deep counterfactual

network with propensity dropout (DCN-PD)17 and the Dragon-

net.18 However, current deep learning approaches, even those that

exploit weight regularization, do not explicitly address the problem

of reducing the complexity of large covariate spaces, which can be

common when designing studies on EHR databases.

In this work, we propose a novel deep neural architecture—the

deep propensity network using a sparse autoencoder (DPN-SA)—

that addresses the problems of (1) high-dimensional PSM, and (2)

nonlinear/nonparallel treatment assignment bias, while maintaining

or outperforming other algorithms in terms of mean squared error

(MSE) and variance on estimated effects. The DPN-SA estimates the

propensity score using a sparse autoencoder19 which at the same

time learns a nonlinear feature representation and reduces the di-

mensionality of the pretreatment covariate space. Code is publicly

available at https://github.com/Shantanu48114860/DPN-SA.

MATERIALS AND METHODS

Problem formulation
Let us assume a population sample (independent and identically dis-

tributed) of N 1 . . . i . . . nð Þ individuals, given a background set of

pretreatment covariates X , a treatment T (binary, for simplicity of

demonstration), and a health outcome Y . Each subject i is repre-

sented by a tuple fXi, Ti, Yig. Let Yi
0 and Yi

1 be the potential out-

comes for individual i under treatment Ti ¼ 0 and Ti ¼ 1,

respectively.20,21 Given Xi ¼ x, the ITE s xð Þ is defined as the differ-

ence in the mean potential outcomes for the individual i under both

treatments, conditional on the observed covariate vector x

s xð Þ ¼ E Y1
i � Y0

i j Xi ¼ x
� �

(2)

The ITE formulation as s xð Þ—called the counterfactual frame-

work—is usually incalculable in reality, since an individual cannot

be assigned to 2 different treatments at the same time. However, un-

der the assumption of strongly ignorable treatment assignment

(SITA), the potential outcomes are independent of treatment condi-

tional on background variables, that is, fY1
i ; Y0

i g?T j X:5,22–24

Thus, under the assumption of SITA, the ITE can then be calculated

as

s xð Þ ¼ E Y1jT ¼ 1;X ¼ x
� �

� E Y0 j T ¼ 0; X ¼ x
� �

¼ E YjT ¼ 1;X ¼ x½ � � E Y j T ¼ 0;X ¼ x½ �

Further, under SITA and by averaging over the distribution of X ,

the ATE s01 can be calculated as

s01 ¼ E s Xð Þ½ � ¼ E Y j T ¼ 1½ � � E Y j T ¼ 0½ � (3)

However, by assuming SITA, ITE, and ATE can be calculated

only with x being the same in the different treatment groups, which

becomes quickly unfeasible with observational data, such as EHRs,

when the dimension of x grows. PSM, through the conditional prob-

ability p xð Þ (see Equation 1), attempts at balancing the probability

of receiving T given X ¼ x. Once propensity scores are obtained for

a population sample, the individuals in the treatment group must be
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matched with those in the control group to make sure that they are

balanced with respect to the background covariates x. The matching

process can be solved with a number of (approximate) solutions,

including k-nearest neighbor, Caliper matching,25 and propensity

weighing.26

The DCN-PD framework
As shown in Figure 1, our approach extends the DCN-PD frame-

work,17 by incorporating 2 interconnected neural networks: 1 for

the prediction of potential outcomes (DCN) and the other for the

calculation of propensity-dropout scores (PD). Both the DCN and

the PD components take the same input covariates. The DCN has a

classical feed-forward architecture with first a set of shared hidden

layers and then a bifurcation into 2 separate sets of hidden layers (ie,

the idiosyncratic layers) that predict factual and counterfactual out-

comes, respectively. The PD component is designed to ameliorate

the impact of treatment assignment bias, by regularizing the DCN

training through propensity scores. The PD idea can be thought of

as the conceptual analog of propensity weighting,26 which has been

previously applied to neural networks.27,28 The propensity score of

each training sample is transformed into a dropout probability,

which is higher for subjects with features that belong in a region of

poor treatment assignment overlap. The worse the propensity score

of one example is, the larger the penalty that the PD scheme

imposes, preventing the hidden units in the neural network from

adapting to unreliable examples. In conjunction with the PD

scheme, the DCN is trained in alternate phases. In each phase, either

the data from the treatment group or from the control group are

used for training only 1 idiosyncratic layer, respectively, at a time

(while the shared layer is trained in all epochs).

Proposed approach
DCN-PD can be affected by the curse of dimensionality, with associ-

ated residual confounding in study settings where the covariate

space has very high cardinality (eg, in study designs that use EHR

data).29,30 Our DPN-SA exploits a deep stacked sparse autoencoder

to encode the covariate space X into a lower dimensional, nonlinear

feature representation, which can then be used to calculate the pro-

pensity scores replacing the PD component of the DCN-PD, as

shown in Figure 1.31 An autoencoder is a neural network that learns

to copy its input to its output (encoder-decoder), but the input is

coded into a lower dimension within the hidden layers.32 In its sim-

plest form (ie, with a single layer), the autoencoder is closely related

to principal component analysis (PCA), while highly nonlinear codes

can be achieved by augmenting the layer architecture (eg, with deep

beliefs networks).33 Autoencoders have been employed in a number

of applications, from machine translation to drug discovery.34,35

The sparse autoencoder is an approach that includes extra units

(more than inputs) in the hidden layer, but only a small number of

those units are activated depending on the input.19,36 It has been

broadly applied in biomedical studies, including imaging and -omics

datasets.37–40

In Figure 2, we show a detailed schematic of the DPN-SA

exploiting multiple layer depths and sparsity. Technical details on

the architectural design and training procedure are given in the Sup-

plementary Material. In brief, the DPN-SA is trained using dataset

batches on which a forward propagation algorithm is executed. For

each batch, the network parameters are optimized using a gradient-

descent optimization algorithm, namely the Adam optimizer.41 The

autoencoder is composed by an encoder, which is used to derive a

nonlinear (lower-dimensional) latent feature space, and by a de-

coder, which reconstructs the original input. After training, the de-

coder is removed and replaced by a softmax classifier (attached to

the last layer of the encoder) that calculates the probability of treat-

ment T assignment, thus estimating the propensity score p X ¼ xð Þ.
The softmax function r is a generalization of the sigmoid logistic

function for multiple dimensions, that is, r zð Þi ¼ eziPK

j¼1
zj

, for

i¼1. . .K, z ¼ (z1. . .zK) 2 RK; thus, it can be used to calculate multi-

nomial probability over multiple treatment groups. The matching

procedure uses the PD component of the DCN-PD, which is also

used downstream for treatment effect calculations. In this work, we

evaluated different training (end-to-end vs greedy stacked/current)

procedures and layer (multiple vs single) architectures, as detailed in

the next sections.

Experimental setup
Datasets

We used the Infant Health and Development Program (IHDP) data-

set, a multisite, longitudinal RCT designed to evaluate the efficacy

of comprehensive early intervention in enhancing the outcomes of

low birth weight, prematurely born infants in the United States.42

The original IHDP dataset was resampled by throwing away a non-

random subset of the treatment group (based on the race/ethnicity

variable), thus inducing treatment imbalance. The counterfactual

Figure 1. Schematic of the Deep Propensity Network using a Sparse Autoencoder (DPN-SA) framework. The DPN-SA module performs dimensionality reduction

of the input through a latent variable space and then provides propensity scores to the Deep Counterfactual Network with Propensity Dropout (DCN-PD) that cal-

culates the potential outcomes for treatment exposures vs controls.
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outcomes (which are not available in the original RCT) were then

simulated using either a linear or nonlinear/nonparallel surface, cre-

ating a semisynthetic dataset at this point. This process allows to

have the knowledge of the true average treatment effect because the

outcomes are drawn from a known function and the treatment as-

signment bias is known. In detail, the bias in the treated group is

made by selecting only children with a particular ethnicity, while the

control group contains all the races and ethnicities in the original

RCT study (dichotomized into white vs nonwhite). Such design

ensures that the overlap assumption is satisfied for the treatment

group. In regards to counterfactual outcomes, they are generated us-

ing the full covariate set, thus ensuring ignorability (because the condi-

tioning is only on observed covariates). Outcomes are drawn from a

standardized distribution using 2 different surface functions. The first

one is a linear combination of covariates with a different intercept for

the treated group, that is, Y(0) ¼ N(Xb,1) and Y(1) ¼ N(Xbþ4,1),

which indicates no treatment heterogeneity and an average treatment

effect equal to 4. The second one is an exponential family function

Y(0) ¼ N(exp((XþW)b),1) for the control group with an offset ma-

trix W, and a linear function Y(1) ¼ N(Xb-x,1) for the treated, with

an offset vector on the variables, where x is made such that the aver-

age effect on the treated is also 4. Here, we used the second nonlinear

surface because the first one would have been easily solved by regular

PSM linear regression, as previously shown by Hill.42 The nonlinear

surface dataset consisted of 747 subjects (139 in the treatment group

and 608 controls) with 25 associated covariates, describing character-

istics of the infants and their mothers (excluding the ethnicity).

In order to evaluate the performance of the proposed framework

with larger covariate spaces to resemble EHR-based studies, we qua-

druplicated the original IHDP feature set through the creation of 25

random variables (shuffling the original ones) and then another set

of 50 covariates partially correlated to the original ones (approx.

Figure 2. Architecture of a deep stacked sparse autoencoder. The encoder progressively reduces the input space dimensions from the input layer through a num-

ber of layers (in light orange) down to the innermost layer (displayed in red), which represents the latent space. Some of the units of the inner layer are/are not ac-

tive given an input, depending on the sparsity constraint. The decoder reconstructs back the latent space into the original input through another set of layers

(displayed in blue). In our framework, after training, the decoder is replaced by a softmax function that uses the latent space to calculate propensity scores.
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q ¼ 0:4), using a Gaussian noise addition N 0;2�r xkð Þð Þ to each

original variable xk. The factual and counterfactual outcomes

matched those of IHDP.

Finally, we tested the framework on a real-world dataset (with

only factual outcomes), using the LaLonde’s National Supported

Work Demonstration experimental sample (297 treated, 425 con-

trol) and the Population Survey of Income Dynamics comparison

group (2490 control), collectively known as the Jobs dataset.43 The

treatment variable is job training, there are 46 sociodemographic

and behavioral covariates, and the outcome is posttraining employ-

ment status/income, with 15% of the subjects being unemployed by

the end of the study.

DPN-SA configurations and other comparison methods

Three different configurations of the DPN-SA were tested on all

datasets, given the number of input variables N, all using the spar-

sity constraints: (i) N-20-10-20-N; (ii) N-10-N, which is similar to

PCA; (iii) N-1-N, which is similar to regularized logistic regression.

For all 3, end-to-end and stacked/current greedy layer-wise training

were executed for 2000 epochs. The end-to-end training means that

the whole network is trained at one go. For the greedy layer-wise

training, we employed two strategies. In the first one, called stacked,

the network is optimized 1 layer at a time. After a layer is trained,

its weights are frozen, and the next layers attached are trained. The

second strategy, called stacked current, also trains layers iteratively,

but when passing from one layer to the next, the weights of the prior

layer are not frozen and get updated. Layer-wise training is an older

method compared to end-to-end and dropout; however, it can be ef-

fective in finding a good initialization for the network in order to fa-

cilitate convergence when a high number of layers are employed.

The learning rates for the sparse autoencoder and for the softmax

were 0.001 and 0.01, respectively. We set weight decay (k), sparsity

parameter (q), and sparse penalty (b) to 0.0003, 0.8, and 0.1, respec-

tively, with a batch size of 32. The softmax classifier was run for 50

epochs (Kc) with a batch size of 32. The DPN-SA was implemented

using the Pytorch framework (https://pytorch.org/). In addition to

the DPN-SA, we ran and compared: (i) the original DCN-PD, (ii)

standard logistic regression, and (iii) logistic regression with LASSO

regularization, where its shrinkage parameter was optimized

through cross-validation.

Performance measures and validation

On the IHDP data, models were trained on 80% of the data and val-

idated on the remaining 20%, repeating the procedure for 100

times; while on the Jobs data, the training/test split was 90%/10%

with a variable preselection (from 46 to 17), over 10 validation

runs, to be consistent with prior literature setup and results (https://

www.fredjo.com/). All parameter optimization for DPN-SA, DCN-

PD, and LASSO (eg, the shrinkage parameter) were done within the

training subsamples. On each test set, we calculated the ATE for

each method (knowing the true value), and the MSE on the empiri-

cal precision in estimation of heterogeneous effect, defined as ePEHE

¼ 1
N

PN
n¼0 ððyn 1ð Þ � yn 0ð ÞÞ � ðy0 n 1ð Þ � y

0
n 0ð ÞÞÞ2, which evaluates

the ability of the method to capture treatment effect heterogene-

ity.17,42

For the Jobs dataset, in the absence of counterfactual truth, we

calculated the average treatment effect on the treated (ATT) and the

error eATT as follows:

ATT ¼j Tj�1
X

i2T
yi� j C \ Ej�1

X
i2C\E

yi

eATT ¼j ATT � 1

j T j
X

i2T
f xið Þ; 1ð Þ � f xið Þ;0ð Þ

where C is the control group and T is the treated, out of the original

randomized sample E, f is the outcome prediction over the covariate

vector x, and y is the factual outcome. The performance distribu-

tions were compared by means of a t-test with adjustment for sam-

ple overlap.44

RESULTS

A summary of the population characteristics for the IHDP and Jobs

datasets is given in Table 1. As explained in the methods, the origi-

nal data were processed before being fed to the models (eg,

treatment-bias induction by selection in IHDP and counterfactual

outcome simulation) and normalized. The IHDP dataset shows high

balance among the covariates before the sample selection, while the

Jobs dataset is more diverse among intervention groups. Complete,

descriptive statistics for all variables of the original and processed

datasets are available in the Supplementary Material.

On the IHDP dataset, the propensity scores among all nonlinear

(ie, N-20-10- or N-10-) DPN-SA were moderately-to-highly corre-

lated (Pearson’s q between 0.67 and 0.82). However, the correla-

tions between nonlinear vs linear (ie, N-1-) DPN-SA configurations

were lower (q between 0.45 and 0.58). The correlation between

DPN-SA N-20-10 and DCN-PD was also moderate-to-high

(q¼0.72). Logistic regression and LASSO were very highly corre-

lated (q¼0.99) and exhibited a moderate-to-high correlation with

DPN-SA 20-10 (q¼0.72), while the correlation between LASSO

and DCN-PD was lower (q¼0.62). In terms of score distributions,

as shown in Figure 3, the DCN-PD covered low- and mid-

probability ranges, with few instances showing high propensity

scores. On the other hand, the DPN-SA covered all spectrum of pro-

pensity scores, while logistic regression and LASSO yielded primar-

ily low- and high-probability values. On the Jobs dataset, similar

correlations were observed among the methods. Logistic/LASSO

showed scores in the low-probability ranges, DCN-PD in the low-

and medium-, while DCN-PD covered all ranges.

Table 2 shows the MSE results for all models on the IHDP, aug-

mented IHDP, and Jobs datasets. On the IHDP dataset, the DPN-SA

configured with the N-20-10-layer encoder stacking, trained in an

end-to-end manner, yielded the best performance in terms of MSE,

with an improvement of 6% over the DCN-PD, and 62% over logis-

tic regression. The 1-neuron DPN-SA N-1- configuration was better

than LASSO, perhaps due to the attachment to the DCN-PD, but

worse than all the neural network-based classifiers, while the PCA-

like DPN-SA N-10- had performance comparable to all other net-

works. On the augmented IHDP dataset, performance of all models

decreased due to the artificial noise and correlated variables addi-

tion, but the regularization/sparsity constraints demonstrated to be

robust against such noise and the additional correlated variables.

The DPN-SA (N-10-) was the best model, 11% better than the

DCN-PD and 63% better than logistic regression and LASSO. On

the Jobs dataset, the DPN-SA with a single layer (N-1-) exhibited

the lowest error among the sparse autoencoders, better than logistic

regression/LASSO by 36%, and better than DCN-PD by 46%

(which in turn exhibited a higher error than logistic/LASSO); the dif-

ference between linear and nonlinear methods was less marked.

Overall, the null hypothesis of no difference could not be rejected at
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Table 1. Summary of population characteristics for the IHDP and Jobs datasets (original samples)

IHDP dataset

Variable mean (SD) [or %] Treated (n¼ 377) Controls (n¼ 608)

Newborn weight g 1819 (439) 1781 (469)

Newborn head cm 29.5 (2.5) 29.0 (2.5)

Mother’s age yrs 24.6 (5.9) 24.9 (6.1)

Mother’s race/ethnicity white 37% 37%

Mother’s race/ethnicity black 53% 52%

Mother’s race/ethnicity Hispanic 8% 12%

Mother’s marital status married 42% 48%

Mother’s high school degree 28% 27%

Mother’s education 17% 22%

Mother’s smoking 35% 35%

Mother’s first pregnancy 47% 60%

Mother’s alcohol drinking 11% 13%

Mother’s substance abuse 95% 96%

Newborn sex (male) 50% 51%

Newborn twins 10% 9%

Jobs dataset

Variable mean (SD) [or %] LaLonde (n¼ 297þ 425) PSID (n¼ 2490)

Age yrs 24.52 (6.63) 34.85 (10.44)

No high school degree 48% 31%

Black 80% 25%

Hispanic 11% 3%

Married 16% 47%

Real earnings in 1974 $ 3631 (6221) 19 429 (13 407)

Real earnings in 1975 $ 3043 (5066) 19 063 (13 597)

Zero earnings in 1974 45% 9%

Zero earnings in 1975 40% 10%

Abbreviations: IHDP, Infant Health and Development Program; PSID, Population Survey of Income Dynamics; SD, standard deviation.

Figure 3. Histograms of the propensity score distributions (stratified by treatment group) for the Deep Propensity Network using a Sparse Autoencoder (DPN-

SA), Deep Counterfactual Network with Propensity Dropout (DCN-PD), and LASSO logistic regression (LR) on the Infant Health and Development Program (IHDP)

and Jobs datasets.
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the 0.05 significance level for DPN-SA architectures and DCN-PD

(except for the Jobs dataset), while it was highly supported against

logistic regression and LASSO.

Figure 4 shows the violin plots of each model’s ATE estimation

compared to the true ATE on the IHDP data. The DPN-SA (N-20-

10-) with greedy stacked-current configuration showed the closest

resemblance to the test set ATE followed by the end-to-end and the

(N-10-) configurations that were similar to the DCN-PD. The DPN-

SA (N-1-) significantly underestimated the test set ATE but was

closer to the neural architectures than both logistic regression and

Table 2. Performance of the models on the IHDP, the augmented IHDP (adding noise/correlated variables), and the Jobs dataset

Dataset # Covariates/Samples Model

MSE (SD)

ePEHE/eATT

Bengio’s

P value

Raw

P value

IHDP 25/747 DPN-SA (N-20-10-) end-to-end 2.09 (0.22) Ref. Ref.

DPN-SA (N-20-10-) greedy stack. 2.10 (0.20) 0.95 0.74

DPN-SA (N-20-10-) greedy stack. curr. 2.11 (0.20) 0.89 0.50

DPN-SA (N-10-) 2.14 (0.22) 0.75 0.11

DPN-SA (N-1-) 2.52 (0.37) 0.05 2.23E-18

DCN-PD 2.22 (0.21) 0.40 3.37E-05

Logistic Regression 6.02 (1.19) 1.56E-09 2.88E-70

LASSO Logistic Regression 5.51 (1.03) 1.56E-09 2.92E-70

Augmented IHDP (noise and

correlated variables)

100/747 DPN-SA (N-20-10-) end-to-end 3.15 (0.50) 0.02 1.14E-23

DPN-SA (N-20-10-) greedy stack. 2.72 (0.39) 0.30 4.59E-07

DPN-SA (N-20-10-) greedy stack. curr. 2.72 (0.37) 0.28 1.92E-07

DPN-SA (N-10-) 2.47 (0.27) Ref. Ref.

DPN-SA (N-1-) 2.50 (0.27) 0.88 4.33E-01

DCN-PD 2.77 (0.46) 0.27 8.69E-08

Logistic Regression 6.85 (1.16) 1.65E-11 1.49E-77

LASSO Logistic Regression 6.71 (1.11) 1.18E-11 4.72E-78

Jobs 46 (17)/3212 DPN-SA (N-20-10-) end-to-end 0.09 (0.10) 0.28 0.17

DPN-SA (N-20-10-) greedy stack. 0.12 (0.10) 0.01 2.08E-03

DPN-SA (N-20-10-) greedy stack. curr. 0.11 (0.09) 0.03 0.01

DPN-SA (N-10-) 0.12 (0.10) 0.01 2.08E-03

DPN-SA (N-1-) 0.07 (0.10) Ref. Ref.

DCN-PD 0.13 (0.11) 4.71E-03 6.47E-04

Logistic Regression 0.11 (0.09) 0.03 0.01

LASSO Logistic Regression 0.15 (0.12) 6.48E-04 5.20E-05

Abbreviations: DCN-PD, deep counterfactual networks with propensity dropout; DPN-SA, deep propensity network-sparse autoencoder; IHDP, Infant Health

and Development Program

Figure 4. Violin plots of average treatment effect (ATE) estimation comparing the different methods and test/true values on the Infant Health and Development

Program (IHDP) dataset.
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LASSO which exhibited a much lower ATE (as expected, since the

IHDP outcome surface is nonlinear by design) and a higher variance.

Of note, on the Jobs dataset there is no true ATE to display; yet, dif-

ferently from IHDP, the variance of eATT was similar among all

methods.

When comparing training times, the fastest methods were logis-

tic regression and LASSO as expected, followed by the DCN-PD

and DPN-SA, with the stacked configuration being slower than the

end-to-end. In detail, on an i7 Mac laptop mounting OSX with

16GB RAM, in a single IHDP training/test run, the DPN-SA stacked

configuration completed in 6m15s, the DPN-SA end-to-end in 5m,

the DCN-PD in 3m, while logistic regression and LASSO took less

than 1m.

DISCUSSION

The DPN-SA architecture conjugates the ability to calculate nonlin-

ear propensity scores with dimension reduction and demonstrates

advantage over other methods in treatment effect estimation. In

both semisynthetic and real-world datasets the DPN-SA exhibited

best or near-best performance. In the IHDP counterfactual datasets,

the response surface was made nonlinear across treatment groups,

thus the true ATE could not be estimated by means of a single linear

model, demonstrating the utility of a deep learning approach. In

real-world observational data, nonparallel assignments and response

surfaces are common, (eg, when investigating the effect of an investi-

gational drug which is indicated on a population with prior comor-

bidities, at different ages, likely producing nonmonotonic

responses). Therefore, the DPN-SA and related deep learning

approaches are advantageous over linear estimators, as they do not

require investigating explicitly interactional terms. Further, the

DPN-SA architecture allows flexibility in configurations, from the

simple 1-neuron akin to LASSO, to the single-layer PCA-like, to the

fully nonlinear multilayer setup. All the multilayer DPN-SA gave

ATE estimates close to the true ones, and even the simpler configu-

rations yielded ATE better than the linear models. However, the

DPN-SA—as any other deep learning approaches—neither provide

an explicit, interpretable characterization of the propensity score in

relation to the input, nor of the outcome surface. While variable im-

portance can be directly ascertained using logistic regression (ie,

through odds ratios), the black box nature of deep learners allows

only for indirect, marginal representations. Lack of explainability

can hinder the choice of a model in clinical settings—even if poten-

tially better than others—especially when treatment decisions solely

depend on ‘blind trust.’ Even after extensive validation in different

populations, black-box models might be more widely accepted as

aiders, not as rulers, in decision-making (eg, helping to choose

among a set of already viable options. A number of recent perspec-

tive and review articles have explored the topic of black-box models,

explainability, and the impact of their use in clinical practice

extensively.45,46

The advantage in MSE of DPN-SA over the DCN-PD, which

also employs regularization, is small and would need to be assessed

on larger and more diverse datasets. The DPN-SA might be prefera-

ble because of its latent space encoding that can be directly chosen

and compared (eg, linear vs PCA vs more complex nonlinear setup).

This work has some limitations. First, the choice of a softmax

classifier as a replacement to the decoder is relatively simplistic;

nonetheless, it provided lower MSE and lower variance in treatment

effect estimation. The softmax also allows for multiple treatment

arms. Other solutions for embedding the sparse autoencoder within

the DCN-PD framework or within alternative approaches could be

devised, such as individual treatment effects estimation with general-

ized adversarial networks.47 Another limitation is that the IHDP

datasets had limited sample size (747 subjects) and relatively small

covariate space (25 variables), and, therefore, the differences in aver-

age performance between models are subject to uncertainty. None-

theless, the performance of the method proved stable with the

covariate-augmented IHDP (100 variables) and the larger Jobs data-

set (3000þ samples). Finally, the distribution of propensity scores

among treatment/control groups is often highly dependent on the

dataset and can be highly imbalanced, therefore, the results obtained

with one experimental dataset are not assured to be reproducible

with others.

Although the DPN-SA and other deep learning approaches allow

for a flexible representation of the treatment propensity of the out-

come surface and doubly robust estimation, they are not a panacea

for estimating treatment effects from observational data. Alaa and

Schaar48 pointed out that “relative importance of the different

aspects of observational data vary with the sample size . . . selection

bias matters only in small-sample regimes, whereas with a large

sample size, the way an algorithm models the control and treated

outcomes is what bottlenecks its performance.” Therefore, in real-

world situations, the number of available observations (also in rela-

tion to the number of covariates) must be taken into account when

choosing between simpler approaches such as logistic regression/

LASSO or a deep learning framework.

CONCLUSION

Deep learning frameworks for propensity score-based treatment ef-

fect estimation are particularly suited for large-scale EHR studies be-

cause they can take account of high-dimensional covariate sets,

large sample sizes, and model complex heterogeneity in treatment

assignments. In these cases, regularized linear propensity score

methods (eg, high-dimensional propensity score or LASSO) would

not be able to provide reliable estimates of treatment effects, likely

yielding biased predictions. The DPN-SA provides a valid, possibly

improved, alternative to DCN-PD and to more traditional PSM

methods.
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