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ABSTRACT

Objective: Multimodal automated phenotyping (MAP) is a scalable, high-throughput phenotyping method, de-

veloped using electronic health record (EHR) data from an adult population. We tested transportability of MAP

to a pediatric population.

Materials and Methods: Without additional feature engineering or supervised training, we applied MAP to a pe-

diatric population enrolled in a biobank and evaluated performance against physician-reviewed medical

records. We also compared performance of MAP at the pediatric institution and the original adult institution

where MAP was developed, including for 6 phenotypes validated at both institutions against physician-

reviewed medical records.

Results: MAP performed equally well in the pediatric setting (average AUC 0.98) as it did at the general adult

hospital system (average AUC 0.96). MAP’s performance in the pediatric sample was similar across the 6 spe-

cific phenotypes also validated against gold-standard labels in the adult biobank.

Conclusions: MAP is highly transportable across diverse populations and has potential for wide-scale use.
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INTRODUCTION

For next generation biobanks enrolling widely across health states

and conditions,1–5 methods for high-throughput genomic sequenc-

ing are better established and more reliable than methods for ascer-

taining accurate phenotypes from electronic health record (EHR)

data. Computable phenotypes, once developed for a particular con-

dition, can reduce the need to review charts manually to assign a

phenotype to each subject.6–8 However, each computable phenotype

typically requires a separate effort for feature selection by domain

experts and extensive chart review for algorithm training and valida-

tion.6,7 In contrast, high-throughput phenotyping algorithms are

engineered to require minimal human input and annotation.9 To ad-

vance genomic and biobanking research in children, it would be

cost- and time-efficient to reuse phenotyping algorithms developed

in adults. Algorithms often lose recall and precision when trans-

ported from 1 population to another. To date, most studies of trans-

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For permissions, please email: journals.permissions@oup.com 1265

Journal of the American Medical Informatics Association, 28(6), 2021, 1265–1269

doi: 10.1093/jamia/ocaa343

Advance Access Publication Date: 17 February 2021

Brief Communications

http://orcid.org/0000-0002-8574-0133
http://orcid.org/0000-0002-0235-7543
https://academic.oup.com/
https://academic.oup.com/


portability of computable phenotype algorithms have focused on

rules-based algorithms for identifying specific disease phenotypes;

few machine learning-based phenotype algorithms have been vali-

dated for transportability.6,8,10,11

We assess transportability of a high-throughput computable phe-

notyping pipeline from an adult to a pediatric setting. Multimodal

automated phenotyping (MAP) is a scalable method for unsuper-

vised phenotyping that can classify millions of subjects across ap-

proximately 1800 phenotypes.9 MAP was developed using adult

patient EHR data from the Partners Biobank; we applied MAP to

EHR data from the PrecisionLink Biobank at Boston Children’s

Hospital.2

MATERIALS AND METHODS

Subject selection
Boston Children’s Hospital (BCH) is a freestanding children’s hospi-

tal that cares for some adult patients with pediatric conditions (eg,

adult congenital heart disease [CHD]). Subject enrollment for the

PrecisionLink Biobank at BCH has been described previously2 and

is further detailed in the Supplementary Appendix. Written elec-

tronic informed consent was obtained at the time of biobank enroll-

ment.2 The BCH Institutional Review Board granted approval—

with waiver of informed consent for review of EHR data—for this

study.

MAP application
Inputs for MAP included diagnostic codes (grouped into pheco-

des10,12,13) and clinical note text for all subjects enrolled in the bio-

bank. MAP was applied as previously described9 and as detailed in

the Supplementary Appendix available online. The count of all In-

ternational Classification of Diseases (ICD) codes corresponding to

a given phecode (Table 1) was used as the main diagnostic code fea-

ture for MAP. To create the main clinical text (referred to subse-

quently as natural language processing [NLP]) feature for MAP,

clinical notes with at least 500 characters were processed using Nar-

rative Information Linear Extraction (NILE) to extract nonnegated

concept unique identifiers (CUIs). NILE uses a modified prefix-tree

search for named entity recognition and rule-based finite state

machines for semantic analyses.14 The extracted CUIs were matched

to an automatically curated custom dictionary (Supplementary

Methods and Supplementary Figure 1) for each phecode, and only

matching CUIs were counted (Table 1 and Supplementary Table 1).

For each phenotype, the candidate cohort consisted of subjects

with at least 1 ICD code for the phenotype of interest. MAP models

included the total number of ICD codes for each subject as a proxy

for healthcare utilization in order to adjust for the noise incurred by

unbalanced healthcare utilization.15 MAP uses an ensemble mixture

modelling strategy9 on “filter positive” subjects while the risk prob-

ability for the “filter negative” subjects is set as 0. We define “filter

positive” subjects as those with ICD code and CUI counts both

greater than 0. For each phenotype, the probabilities predicted by

MAP are cut to create a binary yes/no classification for that pheno-

type at a cutoff point such that the prevalence of the condition

equals the prevalence estimated from gold-standard labels, as de-

scribed below.

Predicted phenotype evaluation
We first validated the predicted phenotypes against physician-

determined diagnoses of 1 of 10 phenotypes (Table 1). Further

details are provided in the Supplementary Appendix. We also evalu-

ated the performance of MAP in the PrecisionLink Biobank using

subjects enrolled in 2 investigator-driven, disease-specific registries

(CHD and inflammatory bowel disease [IBD]). All subjects in each

registry have the disease of interest, as determined by clinicians in

that field. We excluded registries that were not disease- or

condition-specific (eg, “Pulmonary Biobanking Initiative”) or those

for a phenotype for which a phecode does not exist (Supplementary

Table 2). We excluded registries with fewer than 200 enrolled sub-

jects to ensure the stability of the model evaluation method. We

evaluated model performance using subjects with only positive

labels and unlabeled subjects with at least 1 relevant ICD code using

the method of Zhang et al.16 To enable their method, we modeled

the true disease status versus the logarithm of ICD code count and

logit of the MAP-predicted probability using piecewise linear spline

models, with the number of knots equaling the size of registry data

to the one-fifth power. We compared AUCs estimated from positive-

only labels with the AUCs from gold-standard chart review

performed for patients with CHD, Crohn’s disease, and ulcerative

colitis.

Table 1. Phenotypes used in the study. Additional concept unique identifiers (CUIs) for each phenotype are listed in Supplementary Table 1.

The last column indicates whether validation was performed against unlabeled subjects in the biobank whose charts were manually

reviewed or against a registry cohort

Phenotype Phecode CUIsa (Primary and Secondary) Type of Validation Data

Asthma 495. C0004096, C0038218 Manually reviewed charts

Crohn disease 555.1 C0010346, C0156147 Manually reviewed charts

Ulcerative colitis 555.2 C0009324, C2937222 Manually reviewed charts

Cardiomyopathy 425. C0878544, C0007194 Manually reviewed charts

Congestive heart failure; nonhypertensive 428. C0018802, C0018801 Manually reviewed charts

Epilepsy, recurrent seizures, convulsions 345. C0014544, C0009951 Manually reviewed charts

Juvenile rheumatoid arthritis 714.2 C0553662, C0157917 Manually reviewed charts

Chronic pulmonary heart disease 415.2 C0152171, C0238074 Manually reviewed charts

Type 1 diabetes 250.1 C0011854, C0375114 Manually reviewed charts

Cardiac congenital anomalies 747.1 C0041207, C0018818 Registry cohort & Manually

reviewed charts

Inflammatory bowel disease 555. C0010346, C0009324 Registry cohort

aUnified Medical Language System Release 2012AA.
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Six phenotypes were evaluated against gold-standard labels at

both the adult institution at which MAP was originally developed

and, in the current study, at BCH. We compared performance of

MAP versus ICD codes alone for these conditions at the 2 institu-

tions.

To compare the populations at the 2 institutions, we compared

demographic data between institutions as well as histograms of

counts of ICD and NLP features at the 2 institutions. We also

assessed differences in NLP features between MAP-predicted cases

and controls using the same approach. We estimated 95% confi-

dence intervals for the evaluation parameters using the standard

bootstrap with 500 replications. All analyses were performed using

R version 3.5.1 (R Foundation for Statistical Computing). MAP is

available from https://cran.r-project.org/package¼MAP

RESULTS

Demographics of subjects in the PrecisionLink Biobank

(N¼14 303) and the Partners Biobank, on which MAP was initially

evaluated, are shown in Supplementary Table 3. Distribution of

ICD counts, length of stay, and CUI counts differed between cohorts

both overall and for specific phenotypes (Supplementary Figures 2–

4). As expected, the most prevalent phecodes at each institution

showed little overlap (Supplementary Table 4).

The classification performance of MAP was superior to pheno-

typing using only ICD codes for all phenotypes except cardiomyopa-

thy (Table 2). Using NLP features alone led to a substantial false

positive rate (FPR), reflecting overlap in the distribution of CUI

counts between subjects whom MAP predicted to have the pheno-

type and those predicted not to have the phenotype (Supplementary

Figure 5). Overall, MAP performed equally well at the children’s

hospital (average area under the receiver operating characteristic

curve [AUC] 0.98) as it did at the general adult hospital system (av-

erage AUC 0.96). MAP had AUC of 100% for 3 of the 10 pheno-

types (Table 2). MAP’s performance on the pediatric sample was

similar across the 6 phenotypes also validated against gold-standard

labels in the adult biobank9 (Figure 1). In contrast, ICD code-based

phenotyping performance had more variability between institutions

(Figure 1).

To explore whether we could reduce the burden of manual chart

review usually required to test transportability of an algorithm, we

estimated MAP’s performance based on existing positive labels from

patients enrolled into disease-specific registries within the pediatric

biobank. Because these registries enrolled only subjects with a speci-

fied condition and not those without that condition, these registry

cohorts do not have “true negative” labeled subjects. MAP’s perfor-

mance was similar when estimated using positive labels from the

registry cohorts (AUC ¼ 0.95 for CHD and IBD) and by chart re-

view (AUC ¼ 0.93 for CHD and AUC ¼ 1 for both IBD phenotypes)

(Table 2). The MAP algorithm also identified nearly 50% more sub-

jects with CHD (1943 PrecisionLink subjects predicted by MAP vs

1297 subjects enrolled in the registry) and 3 times the number with

IBD (1986 subjects predicted vs 487 enrolled in the registry) as were

enrolled in either registry, with an estimated false positive rate of

less than 20% for all phenotypes.

DISCUSSION

MAP, a high-throughput algorithm for computable phenotyping us-

ing EHR data, performed equally well at a freestanding children’s

hospital as it did at the adult institution at which it was first devel-

oped. MAP’s performance is superior to phenotyping using only

ICD codes because of incorporation of knowledge extracted from

the clinical narrative into the predictive algorithm. While the benefit

of unstructured data for computable phenotyping has been widely

demonstrated,8,17 we hypothesize that MAP’s transportability stems

partly from use of clinician descriptions of clinical conditions in nar-

rative notes, reducing the algorithm’s dependence on laboratory val-

ues, which may vary by assay and patient demographics.18

MAP was previously shown to be highly scalable.9 The current

study shows that this scalability extends across practice settings and

patient populations. Even without manual feature engineering or su-

Table 2. Comparison of computable phenotype algorithm performance using diagnostic codes (ICD), concept unique identifiers (NLP), and

multimodal automated phenotyping (MAP). FPR and AUC are shown with 95% confidence intervals. Cohorts marked (RC) are registry

cohorts. The remaining cohorts were evaluated using Biobank subjects without labels for a random selection of whom we reviewed medi-

cal records.

Disease

Number

Validated

Number

Positive

FPR AUC

ICD NLP MAP ICD NLP MAP

Asthma 20 10 0.5 (0.21, 0.79) 0.5 (0.22, 0.78) 0.2 (0, 0.45) 0.78 (0.57, 0.99) 0.67 (0.41, 0.94) 0.9 (0.76, 1)

CD 20 17 0.33 (0, 0.88) 0.33 (0, 0.93) 0 (0, 0) 0.94 (0.84, 1) 0.96 (0.86, 1) 1 (1, 1)

UC 20 15 0.4 (0, 0.86) 0.2 (0, 0.6) 0 (0, 0) 0.99 (0.96, 1) 0.97 (0.91, 1) 1 (1, 1)

CM 20 7 0 (0, 0) 0 (0, 0) 0.08 (0, 0.22) 1 (1, 1) 1 (1, 1) 0.99 (0.96, 1)

HF 20 5 0.33 (0.08, 0.59) 0.13 (0, 0.30) 0.07 (0, 0.20) 0.67 (0.42, 0.93) 0.95 (0.85, 1) 0.99 (0.94, 1)

Epilepsy 20 9 0.09 (0, 0.27) 0.18 (0, 0.41) 0.09 (0, 0.24) 0.94 (0.83, 1) 0.92 (0.78, 1) 0.99 (0.95, 1)

JIA 20 12 0.12 (0, 0.35) 0.12 (0, 0.42) 0.12 (0, 0.38) 0.94 (0.84, 1) 0.89 (0.7, 1) 0.98 (0.91, 1)

PH 91 66 0.24 (0.07, 0.41) 0.24 (0.07, 0.41) 0.08 (0, 0.18) 0.94 (0.89, 0.99) 0.95 (0.91, 0.99) 0.98 (0.96, 1)

T1DM 20 19 0 (0, 0) 0 (0, 0) 0 (0, 0) 1 (1, 1) 1 (1, 1) 1 (1, 1)

CHD 20 15 0.4 (0, 0.85) 0.8 (0.42, 1) 0.2 (0, 0.63) 0.8 (0.47, 1) 0.63 (0.32, 0.95) 0.93 (0.82, 1)

CHD (RC) 1297 0.2 (0.17, 0.24) 0.19 (0.05, 0.32) 0.06 (0.02, 0.09) 0.88 (0.85, 0.91) 0.85 (0.77, 0.93) 0.95 (0.93, 0.97)

IBD (RC) 255 0.34 (0.14, 0.54) 0.21 (0, 0.48) 0.18 (0, 0.38) 0.84 (0.69, 0.99) 0.94 (0.84, 1) 0.95 (0.85, 1)

Abbreviations: AUC, area under the receiver operating characteristic curve; CD, Crohn’s disease; CHD, congenital heart disease; CM, cardiomyopathy; FPR,

false positive rate; HF, heart failure; IBD, inflammatory bowel disease; ICD, International Classification of Diseases; JIA, juvenile idiopathic arthritis; MAP, multi-

modal automated phenotyping; NLP, natural language processing; PH, pulmonary hypertension; T1DM, type 1 diabetes mellitus; UC, ulcerative colitis.
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pervised training, MAP’s performance at a pediatric site was as

good as or better than its performance at the adult institution at

which it was developed. The only human input needed to transport

the algorithm was to create gold-standard labels to evaluate algo-

rithm performance. Furthermore, as previously shown with simu-

lated data,16 we demonstrate with real-world data that even the

effort for this chart review step can be reduced when registry cohorts

are available.

It is notable that while many of the conditions used to test

MAP’s performance are conditions with little clinical overlap,

others, such as heart failure and cardiomyopathy or Crohn disease

and ulcerative colitis, have more overlapping features. For all these

conditions except cardiomyopathy, ICD codes had a higher FPR,

whereas the FPR for MAP remained at or near zero. MAP’s addi-

tional strength for these conditions likely stems from combining in-

formation from clinical notes and diagnostic codes into the

phenotyping algorithm. In contrast, the FPR for asthma, though

lower with MAP than with ICD codes alone, remained 20%. This

variation may come from less specific descriptions of asthma in the

pediatric setting, where distinguishing early childhood wheezing

from true asthma can be challenging.19 Supporting this hypothesis,

the number of CUIs for the asthma phenotype varied less between

cases and controls than for other phenotypes, such as type 1 diabetes

(Supplementary Figure 5).

Transportability is an essential component of scalable machine

learning algorithms,20,21 as it provides a means for collaborating

across institutions in large-scale population-based research.6 Many

prior phenotyping algorithms have shown a decrease in performance

when transported to other settings.6,22 Although retraining models

locally can improve performance,6 such efforts require additional,

expensive human annotator effort. Thus, 1 of the benefits we dem-

onstrate for MAP is its ability to maintain performance across set-

tings without additional human annotation.

This study has several limitations. Repetition of text copied from

prior notes is common,23 and MAP does not account for such repeti-

tion. MAP does control for the total number of ICD codes for each

subject, which may help account for some subjects having more

encounters with the healthcare system and thus having notes that

are more likely to have copied text. Future iterations to the algo-

rithm will explore the added value of accounting for the percent of

text in a note that appears to be copied from prior notes. Many of

our phenotype predictions were evaluated based on chart review of

only 20 subjects per phenotype. While this results in wide confidence

intervals for performance for those phenotypes in which perfor-

mance was less than perfect, average AUC across all phenotypes is

based on the review of 271 charts. In future work, we plan to use a

semi-supervised learning approach to enhance the statistical power

of MAP’s evaluation by combining gold-standard labels with large

amounts of unlabeled data.24 Finally, because MAP’s performance

depends on conditions being identifiable using CUIs and diagnostic

codes, granular endotypes or rare conditions may be less well pre-

dicted and require targeted, lower-throughput approaches.

MAP thus represents a transportable, scalable approach for high-

throughput phenotyping, enabling approaches such as phenome-wide

association studies (PheWAS), where the goal is to create hundreds or

thousands of phenotypes simultaneously across a biobank cohort.12

Famously, in a battle of search engine giants, Google outlasted Yahoo

by automating its processes while Yahoo relied heavily on manual

curation. Our study represents 1 step toward a more Google-like ap-

proach for high-throughput biomedical informatics research.25 MAP’s

high performance with commonly available input data makes it ideal

for use in cross-institutional studies.
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