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ABSTRACT

Objective: The objective was to develop a fully automated algorithm for abdominal fat segmentation and to de-

ploy this method at scale in an academic biobank.

Materials and Methods: We built a fully automated image curation and labeling technique using deep learning

and distributive computing to identify subcutaneous and visceral abdominal fat compartments from 52,844

computed tomography scans in 13,502 patients in the Penn Medicine Biobank (PMBB). A classification network

identified the inferior and superior borders of the abdomen, and a segmentation network differentiated visceral

and subcutaneous fat. Following technical evaluation of our method, we conducted studies to validate known

relationships with visceral and subcutaneous fat.

Results: When compared with 100 manually annotated cases, the classification network was on average within

one 5-mm slice for both the superior (0.4 6 1.1 slice) and inferior (0.4 6 0.6 slice) borders. The segmentation net-

work also demonstrated excellent performance with intraclass correlation coefficients of 1.00 (P<2 � 10-16) for

subcutaneous and 1.00 (P < 2 � 10-16) for visceral fat on 100 testing cases. We performed integrative analyses

of abdominal fat with the phenome extracted from the electronic health record and found highly significant

associations with diabetes mellitus, hypertension, and renal failure, among other phenotypes.

Conclusions: This work presents a fully automated and highly accurate method for the quantification of abdom-

inal fat that can be applied to routine clinical imaging studies to fuel translational scientific discovery.
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INTRODUCTION

Medical centers collect enormous quantities of imaging data that

could be extremely valuable for translational science, but many

quantitative traits are not systematically extracted. One of these

quantitative traits is abdominal adipose tissue volume, which is

highly relevant to human health and disease and can be quantified

from medical images such as computed tomography (CT) scans.

Obesity, a condition of increased adipose tissue, has been associated

with numerous diseases including cardiovascular disease, diabetes,

stroke, and cancer.1,2 However, obesity is diagnosed by body mass

index (BMI), which is a poor measure of fat, as it is calculated using

only weight and height and does not account for variations in body

composition.3

Furthermore, not all fat is equal. Visceral adipose tissue (VAT),

which is located within the abdominal cavity adjacent to vital

organs, portends an even greater risk for many pathologies including

cardiovascular disease, insulin resistance, and certain cancers.4

However, the complex relationship between VAT and disease is not

yet understood.4–7 Fundamental to the continued study of this topic

is the ability to accurately quantify and distinguish VAT and subcu-

taneous adipose tissue (SAT). Many studies rely on waist circumfer-

ence as a proxy for VAT.8–10 However, while waist circumference

has demonstrated clinical significance beyond BMI, it correlates

more strongly with SAT than VAT.11,12 CT scans offer a solution as

they are routinely performed and provide a cross-sectional view of

anatomy that is often used to measure abdominal adipose tissue.

Robust and automatic techniques for extracting fat imaging

traits from CT could help in the at-scale task of processing data in

large biobank populations, developing precision medicine algo-

rithms, expediting clinical workflows, or even deepening our under-

standing of machine learning bias. There are numerous biobanks in

the United States and internationally that collect genetic data and

correlate this with electronic health record (EHR)–documented pa-

thology.13 By better understanding the relationship between body

composition and genetics, environment, and disease, we can begin

to offer patients more targeted, precision medicine interventions.

This knowledge combined with the processing algorithm could then

be integrated into a radiology practice to provide valuable informa-

tion to clinicians making care decisions. Furthermore, machine

learning algorithms excel in pattern recognition but sometimes

make predictions that are incorrect and based on biases learned dur-

ing training.14,15 These biases are easiest to detect when an algo-

rithm is applied to a large diverse cohort, but this requires a method

that can be efficiently applied at scale.

Many methods that have been proposed for automatic fat quan-

tification have limitations that prevent their application to a large

clinical cohort. These methods often rely on expected anatomic pro-

files to apply a statistical model.16–24 The active contour model is an

example of a common segmentation technique that has been applied

to body composition analysis,20,24 and works by minimizing an en-

ergy function designed to create a smooth boundary at regions of

high gradients.25 However, this approach can easily fail when image

noise creates local minima or when the object has boundaries with

high curvature.26 Another approach is model-based segmentation in

which a model is constructed based on expected geometry and then

deformed to identify the object of interest on new cases.21,23 This

approach can work well with homogeneous data, but variations in

shape and size limit its generalizability.27 In summary, the previ-

ously highlighted methods rely on expected attenuation profiles or

geometric properties and can work well on curated datasets but eas-

ily fail when artifacts, anatomical variation, or unexpected pathol-

ogy are encountered.

Deep learning offers a data-driven approach to overcome these

limitations by learning and prioritizing features based on training

data. Deep learning has been applied to a range of biomedical seg-

mentation and classification tasks with impressive results.29–32 Spe-

cific to abdominal fat quantification, deep learning has been utilized

in multiple studies.28,33–35 However, many of these methods are

only applicable to single-slice quantification and do not address

identifying the slices of interest. Additionally, further work is needed

to evaluate the utility of applying these deep learning approaches at

scale on a diverse dataset. Altogether, these clinical and translational

applications are increasingly motivating a need for automated meth-

ods to extract fat biomarkers from CT.

We built a fully automated abdomen and pelvis image curation

and fat labeling technique using deep learning and applied it to CT

scans to identify SAT and VAT. After technical validation, this tech-

nique was applied to 52 844 CT scans from 13 502 patients enrolled

in the Penn Medicine Biobank (PMBB), a centralized resource of an-

notated blood and tissue samples linked with clinical EHR and ge-

netic data. As additional validation of the methodology, we

performed integrative analyses of the imaging traits with other phe-

notypic data extracted from the EHR including blood biomarkers,

body mass index, and diagnoses (International Classification of Dis-

eases–Ninth Revision [ICD-9] and International Classification of

Diseases–Tenth Revision [ICD-10]) codes.

MATERIALS AND METHODS

Penn Medicine Biobank
This study used data collected from participants in the PMBB. The

PMBB is a resource for advanced imaging, genetics, blood bio-

markers, and other EHR data at Penn Medicine, a multihospital

health system headquartered in Philadelphia, Pennsylvania. It is a

detailed long-term, prospective, epidemiological study of over 50

000 volunteers containing approximately 27 485 unique diagnostic

codes (ICD-9 and ICD-10) and 1 025 963 radiology studies. All

patients provided informed consent to participate in the PMBB and

to utilization of EHR and image data, which was approved by the

Institutional Review Board of the University of Pennsylvania.

Study cohort
At the time this study was completed (January 2020), the biobank

had enrolled 52 441 patients. Participants of the PMBB were in-

cluded in this study if they had an abdominal and pelvis CT scan. A

detailed flowchart showing the number of participants in this study,

imaging studies, and number of imaging scans (multiple scans are

collected per study) is shown in Figure 1. Details of the demographic

and clinical summary statistics are available in Table 1.

Image analysis
A schematic of the overall approach to subcutaneous and visceral

fat segmentation using deep learning is shown in Figure 2. Two deep

learning neural networks were used to (1) classify 2-dimensional

(2D) images of the abdomen or pelvis as showing the abdomen and

then (2) segment these images for the abdominal compartment. In a

final step, intensity-based thresholding criteria were applied to vis-

ceral and subcutaneous compartments to label fat in these regions.

Processing was performed by utilizing distributive cloud computing
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across 50 virtual instances each equipped with an NVIDIA K80

GPU (NVIDIA, Santa Clara, CA). Please see the Supplementary Ap-

pendix for further details on our data, model training, and predic-

tion framework.

Classification model: Identification of images showing abdominal

anatomy

The first network labeled 2D slices as belonging to the abdominal

cavity. Four candidate deep learning architectures were evaluated

for this task, selected based on excellent performance demonstrated

in the literature for classification tasks: VGG-16,36 ResNet-50,37 In-

ception V3,38 and DenseNet-121.39 These architectures were trained

once with randomly initialized weights and then again using pre-

trained weights from the ImageNet dataset for a total of 8 model

variants. The plus sign (eg. VGG-16þ) will be used to indicate an

architecture trained using ImageNet weights. The networks were

trained to output a probability between 0 and 1 indicating the

likelihood that the slice is within the boundary of the abdomen.

To extract the boundaries from this array of probabilities we first

subtracted 0.50 from every value such that such that values were in

the range [-0.5, 0.5]. Next, we applied Kadane’s algorithm to

find the contiguous sublist of these values that gives the

maximum sum.39

Training was conducted on a set of 468 scans, of which 375

scans (35 305 slices) were used for the training set and 93 scans

(8775 slices) were used for the validation set. Performance of all

8 networks (4 distinct architectures, trained with and without pre-

trained weights) was then evaluated for its sensitivity, specificity,

and accuracy on a separate testing set of 100 scans, which were ran-

domly selected from the PMBB. For each network, these metrics

were first calculated individually on each scan, and then the metrics

were averaged across all 100 scans. For both the classification and

Figure 1. Detailed description of the Penn Medicine Biobank participants in-

cluded in this study and exclusion criteria applied at each step of analysis. An

imaging study was defined as a single visit and 1 or more computed tomog-

raphy (CT) scans of the abdomen or pelvis. An imaging scan was defined as a

set of CT images with or without contrast; multiple scans were performed per

imaging study. Abdominal classification convolutional neural network (CNN)

is the network used to identify axial CT views that show the abdomen. Seg-

mentation CNN is the network that delineates the abdominal contour. After

applying exclusion criteria, association studies were performed using body

mass index, blood biomarkers, and diagnostic codes.

Table 1. Population characteristics for cohort (N¼ 13 405)

Demographics

Age, y 57.9 6 15.2

Sex

Male 6,745 (50.3)

Female 6653 (49.7)

Ancestry

European 8400 (62.7)

African 3490 (26.0)

Asian 213 (1.6)

Other/unknown 1302 (9.7)

Clinical metrics

Height, m 1.70 6 0.10

Weight, kg 85.6 6 22.1

Body mass index, kg/m2 28.8 6 7.0

Systolic blood pressure, mm Hg 126.5 6 12.0

Diastolic blood pressure, mm Hg 74.8 6 7.3

Diagnoses

Hypertension

Yes 7103 (63.3)

No 5409 (36.7)

Diabetes

Yes 3650 (35.0)

No 8862 (65.0)

Heart failure

Yes 2497 (22.6)

No 10 015 (77.4)

Ischemic heart disease

Yes 3109 (27.1)

No 9403 (72.9)

Renal failure

Yes 3672 (35.5)

No 8840 (64.5)

Lab values

Cholesterol, mg/dL 176.0 6 39.1

HDL cholesterol, mg/dL 50.8 6 15.5

LDL cholesterol, mg/dL 98.6 6 32.2

Triglycerides, mg/dL 124.8 6 64.2

HbA1c, % 6.4 6 2.5

BUN, mg/dL 17.9 6 9.8

Creatinine, mg/dL 1.01 6 0.42

Values are mean 6 SD or n (%).

BUN: blood urea nitrogen; HbA1c: glycated hemoglobin; HDL: high-

density lipoprotein; LDL: low-density lipoprotein.
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segmentation tasks, metrics were compared using pairwise t tests

with Bonferroni multiple comparison correction and a level of sig-

nificance of 0.05. The highest performing network was selected, and

5-fold cross-validation was then performed on this network using all

available 568 scans.

Segmentation model architecture: Labeling of subcutaneous and

visceral fat pixels

The second network delineated SAT and VAT from axial 2D slices.

Three candidate deep learning architectures were selected based on

excellent performance in the literature for segmentation tasks: U-

Net,40 Deep Lab V3 using Xception encoder,41,42 and Deep Lab V3

using MobileNet V2 encoder.41,43 The networks output a probabil-

ity for each voxel indicating the probability that it belongs to the

foreground, and probabilities �0.50 are attributed to the fore-

ground. Additional postprocessing steps include only preserving the

largest connected component and filling any holes for each slice.

Training was conducted on a set of 62 scans with 50 scans (2059

slices) randomly selected for the training set and 12 scans (498 sli-

ces) for the validation set. Performance of these networks was evalu-

ated on a separate testing set of 20 scans, which were randomly

selected from the PMBB. Region-of-interest area overlap ratios

(Dice scores)44 were calculated to measure agreement between man-

ual and automatic segmentations for the abdominal contour as well

as SAT and VAT. The highest performing network was selected, and

then 5-fold cross-validation was conducted on this network using all

82 scans. For additional evaluation, 100 abdomen and pelvis CT

scans were randomly selected from the PMBB, and VAT and SAT

was manually segmented on a single slice between L3 and L4. These

values were compared with automatically derived measurements

from the highest-performing model.

Association studies
BMI correlation analysis

The highest performing networks for both the classification and seg-

mentation tasks were then used to process all 31 419 studies. The

convolutional neural network (CNN)–derived metrics for SAT and

VAT were further validated by comparing these values with clini-

cally assessed BMI values. The most recent BMI measurement was

attributed to each scan, and measurements acquired >365 days

from the scan were excluded. Pearson’s correlation coefficient was

computed to measure the degree of association. In all association

analyses, we utilized the average metric area of SAT or VAT across

all slices. To associate a single fat value to each patient, we took the

median (or mean if exactly 2) value for studies with multiple scans

or for patients with multiple studies. This approach for attributing a

single image-derived phenotype to a patient was utilized in all asso-

ciation studies.

Phenome-wide association study

A phenome-wide association study (PheWAS) was performed to in-

vestigate the phenotypic associations of having a higher VAT-SAT

ratio (VSR). ICD-10 codes were first mapped to ICD-9 codes using

the 2017 general equivalency mapping. Next, ICD-9 codes were ag-

gregated into phecodes using the PheWAS R package to create 1816

phecodes. Patients with at least 2 occurrences of a phecode are

considered cases, those with none are control subjects, and those with

1 are treated as missing. Phecodes with <100 cases were excluded.

Logistic regression was then performed with each phecode as the out-

come and VSR as a predictor. Regression was performed controlling

for the covariates of age, sex, and race. Bonferroni multiple

comparison correction was used to determine the level of significance.

Relationship between lab values and VSR

To investigate the relationship between VSR and common clinical

laboratory studies, VSR values were organized into quartiles. Be-

cause VSR is associated with both sex and race, patients were first

stratified into 4 categories based on sex and race. Patients with the

highest and lowest 25% of values within each of these categories

were identified and the distribution of laboratory measures between

the high and low groups was compared. Lab values acquired >90

days and BMI measurements acquired >365 days from the scan date

were excluded. To compare the distributions, a Wilcox rank sum

test was performed.

RESULTS

Patient cohort acquisition and analysis
After applying exclusion criteria, 31 419 studies containing a total

of 52 844 scans corresponding to 13 502 patients were analyzed to

identify SAT and VAT. Processing was performed in 5 hours and

8 minutes (0.35 s/scan) by using parallel processing. The total

runtime across all 50 instances was 201 hours and 43 minutes

Figure 2. Automated extraction of abdominal fat from computed tomography (CT) scans. Abdominal classification network (convolutional neural network 1

[CNN1]) classifies 2-dimensional image slices as belonging inside the abdomen or outside the abdomen. Segmentation network (CNN2) delineates the border of

the inner abdominal contour. Fat voxels are identified based on CT attenuation and those within the contour represent visceral and those outside represent sub-

cutaneous adipose tissue.
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(13.7 s/scan). Following the exclusion of additional scans based on

the size of abdominal window and volume of fat detected, 31 158

studies containing 47 470 scans corresponding to 13 405 patients

were utilized in association studies (Figure 1).

Image analysis: Technical validation
Localizer network

Without the use of pretrained weights, the VGG-16, ResNet-50, In-

ception V3, and DenseNet-121 networks converged after 27, 59, 54,

and 40 epochs, respectively. When using ImageNet weights, the net-

works converged more quickly after 9, 17, 8, and 17 epochs, respec-

tively. The performance of the classifier networks is shown in

Table 2. All architectures achieved a sensitivity >0.97, specificity

>0.98, and accuracy >0.98. Using pretrained weights for model

training did not significantly increase sensitivity for any of the archi-

tectures (P � .081), but specificity (P ¼ 1.4� 10-5) and accuracy (P ¼
3.9 � 10-7) did increase for ResNet-50. When comparing the metrics

between all architectures, VGG-16þ had a significantly greater aver-

age sensitivity (P ¼ .025), specificity (P ¼ 5.9 � 10-5), and accuracy

(P ¼ 2.5 � 10-7) than ResNet-50, but pairwise t tests between VGG-

16þ and the other architectures demonstrated no difference (P � .18).

Regarding runtime, the VGG-16, ResNet-50, Inception V3, and

DenseNet-121 models took on average 4.2, 3.6, 5.0, and 4.3 seconds,

respectively, per scan to process the 100 testing cases.

VGG-16þ was selected as the architecture of choice based on its

noninferior performance, simplicity of design, and fast runtime. The

automated method was on average within one 5-mm slice from the

manually selected slice for both the superior (0.4 6 1.1 slice) and in-

ferior (0.4 6 0.6 slice) borders. For the superior border, the predic-

tion ranged from 3 slices below to 3 slices above the manual label.

For the inferior border, they ranged from 6 slices below to 8 slices

above (1 vertebral level) the manual label. Before application of the

maximum sub-list algorithm, the VGG-16þ algorithm had a sensi-

tivity of 0.99 6 0.03, specificity of 0.99 6 0.01, and accuracy of

0.99 6 0.01. These metrics were without significant change after ap-

plication of Kadane’s algorithm—P values of .82, .65, and .92, re-

spectively. Fivefold cross-validation on the VGG-16þ architecture

was then performed using all available 568 studies. It demonstrated

excellent sensitivity, specificity, and accuracy values with average

values of 0.99 for all 3 metrics (Table 2). These metrics obtained

during cross-validation were not significantly different from those

obtained with VGG-16þ on the testing set (P � .32).

Segmentation network

The U-Net, DeepLabþMobileNet V2, and DeepLabþXception con-

verged after 39, 70, and 63 epochs, respectively. When assessing per-

formance on the testing set of 20 scans, all architectures achieved

mean Dice values �0.98 for the abdominal contour as well as the

SAT and VAT regions (Table 3). When conducting pairwise com-

parison between the 3 algorithms, there was no significant difference

in the means for any of the metrics (P � .16). Regarding runtime, U-

Net, DeepLabþMobileNet V2 and DeepLabþXception ran in 7.3,

7.3, and 8.5 seconds per case, respectively. The U-Net architecture

was selected for its non-inferior performance, runtime efficiency,

and simplicity of design. 5-fold cross-validation was then performed

for the U-Net architecture, and it obtained mean Dice values of at

least 0.97 for all 3 metrics (Table 3). The metrics obtained during

cross-validation were also not significantly different from those

obtained with U-Net on the original testing set (P � .11).

In our experience, while extending the duration of training does

not yield a significant improvement in Dice metrics, it can result in

better performance on edge cases, provided that the model is not

allowed to overfit. For this reason, we trained the U-Net for 345

epochs and selected epoch 326 based on Dice values for the valida-

tion set; these weights were used for processing studies at scale. Dice

metrics for evaluation of this model are shown in Table 3 and repre-

sentative segmentation results are shown in Figure 3. Scatterplots

and Bland-Altman plots showing evaluation results for the single

Table 2. Performance metrics for classifier networks

Type Inferior Superior Sensitivity Specificity Accuracy

VGG-16 0.40 6 0.65 0.55 6 1.40 0.988 6 0.031 0.991 6 0.015 0.990 6 0.014

DenseNet-121 0.61 6 1.05 0.67 6 1.32 0.978 6 0.042 0.990 6 0.012 0.986 6 0.017

ResNet-50 0.82 6 1.11 1.03 6 1.76 0.972 6 0.053 0.982 6 0.024 0.978 6 0.022

Inception V3 0.42 6 0.64 0.38 6 1.09 0.986 6 0.034 0.987 6 0.017 0.986 6 0.016

VGG-161 0.42 6 0.64 0.38 6 1.09 0.989 6 0.025 0.993 6 0.014 0.991 6 0.013

DenseNet-1211 0.49 6 1.24 0.30 6 1.03 0.987 6 0.032 0.995 6 0.010 0.992 6 0.014

ResNet-501 0.36 6 0.73 0.41 6 1.02 0.988 6 0.030 0.993 6 0.013 0.991 6 0.013

Inception V31 0.42 6 0.56 0.54 6 1.37 0.985 6 0.035 0.993 6 0.011 0.990 6 0.015

VGG-16 1 5-Fold 0.32 6 0.88 0.41 6 0.98 0.988 6 0.029 0.994 6 0.013 0.992 6 0.014

Values are mean 6 SD.

Table 3. Performance metrics for segmentation networks

Abdominal Contour Subcutaneous Fat Visceral Fat

U-Net 0.980 6 0.008 0.998 6 0.003 0.991 6 0.007

DeepLab1MobileNet V2 0.975 6 0.008 0.998 6 0.002 0.986 6 0.009

DeepLab1Xception 0.979 6 0.006 0.998 6 0.001 0.990 6 0.006

U-Net 5-fold 0.972 6 0.052 0.978 6 0.072 0.997 6 0.008

U-Net Extended Training 0.982 6 0.007 0.998 6 0.002 0.992 6 0.006

Values are mean 6 SD.
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slice segmentations on 100 different patients is shown in Figure 4A

to 4D. Intraclass correlation coefficients of 0.9999 (P < 2 � 10-16)

and 0.9998 (P < 2 � 10-16) were achieved for the prediction of SAT

and VAT, respectively. There was a significant bias of 1.4 6 1.6 cm2

(P ¼ 3.1 � 10-15) for SAT and -1.4 6 1.6 cm2 (P ¼ 3.1 � 10-15) for

VAT. For this analysis, the average areas were 298.7 6 167.1 cm2

for SAT and 153.5 6 109.6 cm2 for VAT.

Association studies
Association studies were conducted investigating the relationship be-

tween the CNN-derived fat values and BMI, clinical lab values, and

billing codes. The relationships between the CNN-derived fat values

and BMI are shown in Figure 4E and 4F. There was a significant

correlation between BMI and both subcutaneous (r¼0.876; P < 2

� 10�16) and visceral (r¼0.522; P < 2 � 10�16) fat.

Next, we compared the distribution of lab values and BMI meas-

urements for patients in the bottom quartile of VSR values with

those in the top quartile. For the high-VSR group there was a signifi-

cant increase in triglycerides (P ¼ 5.9 � 10�10), glycated hemoglo-

bin (P ¼ 2.0 � 10�4), blood urea nitrogen (P ¼ 1.0 � 10�14),

creatinine (P ¼ 9.8 � 10�55), and BMI (P ¼ 1.7 � 10�5). There was

also a significant decrease in high-density lipoprotein (HDL) (P ¼
0.0014). Density plots showing the distribution of values for the 2

groups are shown in Figure 5.

A PheWAS of VSR revealed significant associations with several

pathologies. The plot is shown in Figure 6. The strongest association

was with diabetes mellitus (P ¼ 1.7 � 10�23). There were multiple

hits for other endocrine disorders related to diabetes or lipid metab-

olism. Within the circulatory system, the strongest signals were for

hypertension (P ¼ 2.5 � 10�19) and hypertension-related complica-

tions. In the renal system, there were 7 significant hits, including

chronic kidney disease (P ¼ 5.4 � 10�18), renal failure (P ¼ 1.7 �
10�15), and renal transplant (P ¼ 1.6 � 10�12).

DISCUSSION

In this article, we present a fully automated approach to accurately

quantify abdominal fat from clinical CT scans. We provide a rigor-

ous evaluation of several prominent deep learning architectures for

this task as well as an evaluation on the use of transfer learning by

using ImageNet weights. Following architecture selection, we uti-

lized distributive processing in a cloud computing environment to

quantify full abdominal volumes of visceral and subcutaneous fat

from 52,844 scans in 5 hours (�172 scans/min). This demonstrates

the efficiency of a fully trained deep learning network to label ab-

dominal CT images at a high rate which is necessary to perform

large-scale research applications or to support automatic, quantita-

tive reporting of abdominal fat by radiologists. To our knowledge,

this is the first automatic technique for 3-dimensional CT abdominal

fat segmentation to be associated at scale to unbiased EHR data

from an academic biobank.

During the technical validation of our methods, the results

showed outstanding agreement between manual and automated

measurements of fat. There was a significant bias of 1.4 cm2 for

both SAT and VAT. However, compared to the average areas of

299 cm2 for SAT and 154 cm2 for VAT in our testing set, this bias

represented a small error (<1%). While previous studies that uti-

lized radial projections or shape analysis were not tested on patients

with extreme body habitus,16,21 our method demonstrated excellent

performance on both the randomly selected testing set and during 5-

fold validation, which included testing on many studies that were in-

tentionally selected for either noise or extreme body habitus. Figure 3

highlights the fault tolerance of the algorithm to variations in patient

body habitus and BMI. Indeed, when representative diverse cases

Figure 3. Representative segmentation results from 6 different patients. First

column shows computed tomography slice with yellow line indicating the

convolutional neural network–predicted contour. From this contour, our algo-

rithm identifies subcutaneous fat (second column) and visceral fat (third col-

umn). Row 5 shows a patient with beam hardening artifact from a left

ventricular assist device, and row 6 shows a patient with subcutaneous scar

tissue from a spinal fusion surgery.
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are included in the training data, data-driven segmentation correctly

quantified fat area when there was no visible SAT or when body

habitus or postsurgical changes caused significant artifacts. Work by

Weston et al33 applied a similar U-Net CNN for body composition

analysis to manual selected CT slices and achieved Dice scores of

0.98 6 0.03 for SAT and 0.94 6 0.12 for VAT. These are compara-

ble to our values of 0.998 6 0.002 for SAT and 0.992 6 0.006 for

VAT. Given that we used a similar method, the small improvement

in our approach is likely due to the diversity of pathology in our

training data.

We found that the association between SAT or VAT and BMI

was strong and similar compared with previous studies that found

associations of r¼0.73 to 0.93 for SAT and r¼0.61 to 0.77 for

VAT.7,45,46 In agreement with these studies, we found a stronger as-

sociation between BMI and SAT than between BMI and VAT.

When comparing lab values between patients with high and low val-

ues of VSR, the high-VSR group had significantly higher triglycer-

ides and lower HDL but no significant change in low-density

lipoprotein. This was consistent with previous findings that VSR

was positively associated with triglycerides, negatively associated

with HDL, and showed no significant association with low-density

lipoprotein.19 Glycated hemoglobin levels were significantly ele-

vated in our analysis, which aligns with a known association with

diabetes.4 While an association between VSR and liver enzymes has

been reported,47 our analysis did not find significant associations for

AST or ALT. Our finding of increased creatinine and blood urea ni-

trogen in the higher-VSR group is consistent with previous findings

that increased VAT is associated with decreased renal function and

progression to end-stage renal disease, particularly in diabetic kid-

ney disease.48

By investigating association between VSR and phecodes, we

were able to interrogate disease associations in an unbiased manner.

Figure 4. Scatterplots and Bland-Altman plots comparing convolutional neural network (CNN) to manually derived area for (A, B) subcutaneous and (C, D) vis-

ceral fat, in which fat was derived from a single slice on 100 randomly selected scans. (E, F) Scatterplots of CNN-derived area vs body mass index for (E) subcuta-

neous and (F) visceral fat, in which fat was derived from all available biobank scans. ICC: intraclass correlation coefficient.
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As expected, we found numerous associations with diabetic, hyper-

tensive, and kidney disease pathologies. There were some unex-

pected associations with transplants and human immunodeficiency

virus infections. The association with human immunodeficiency vi-

rus is likely due to lipodystrophy, which is commonly seen in these

patients.49 Similarly, the association with transplants is likely sec-

ondary to the use of corticosteroids following transplant, which is

known at high doses to increase the amount of VAT.50 The negative

association with bariatric surgery is likely because patients who get

bariatric surgery have significant depots of subcutaneous fat.

While the VGG-16 and U-Net networks are frequently applied

for medical imaging applications, there are multiple technical and

translational advances demonstrated in this article. These major

contributions include (1) developing a 2-step classification-

segmentation pipeline that efficiently processes scans without the

need for any manual input, (2) providing rigorous comparisons of

multiple deep learning architectures for this application, and (3)

conducting association studies between image features and pheno-

types in an academic biobank to provide both additional validation

as well as to highlight the utility of applying our method at scale.

There are several limitations to this study. While the attenuation

range for fat has been defined in literature, CT scans acquired over

several decades may contain artifacts or utilize reconstruction algo-

rithms that distort attenuation. Specifically, implanted devices can

distort attenuation by creating beam hardening artifacts or scar tis-

sue can be introduced, changing the tissue attenuation by physio-

logic means. Given our automated approach, it is also possible that

scans do not reach the inferior or superior borders of the abdomen,

and this could skew the resulting fat values. This study also derived

disease phenotypes from EHR billing codes, which are often incom-

plete. As this was a retrospective cohort, there could be significant

selection bias for sicker patients or certain diseases based on bio-

bank recruitment methods. Further work should be performed to in-

vestigate the associated phenotypes to refine our understanding and

identify any causative relationships. Additionally, there is great po-

tential in the utilization of this method in the context of a biobank

such as the PMBB in which genetic information is available. This

may provide greater insight into the mechanism of pathogenicity for

VAT, which would be of great interest to the scientific community.

In conclusion, this study presents a fully automated method for

the quantification of abdominal fat that functions with high accu-

racy and can be applied efficiently in a cloud computing environ-

ment. This method has been validated through traditional technical

approaches and by integration of our results with clinical data.

This integration further highlights how autonomous image trait

Figure 5. Biomarker distributions dichotomized by visceral adipose tissue-to-

subcutaneous adipose tissue ratio values. A1C: glycated hemoglobin; ALT: al-

anine aminotransferase; AST: aspartate aminotransferase; BMI: body mass

index; BUN: blood urea nitrogen; HDL: high-density lipoprotein; LDL: low-

density lipoprotein.

Figure 6. Phenome-wide association study of the visceral adipose tissue-to-subcutaneous adipose tissue ratio. The blue line indicates the level of significance

with Bonferroni multiple-comparison correction. Upward-facing triangles indicate a positive association and downward-facing triangles indicate a negative asso-

ciation. CKD: chronic kidney disease; HIV: human immunodeficiency virus; T2DM: type 2 diabetes mellitus.
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quantification can facilitate translational research especially in the

context of an academic biobank.

FUNDING

This work was supported by the Sarnoff Cardiovascular Research Foundation

(to MM); National Institutes of Health National Center for Advancing Trans-

lational Studies UL1TR001878; National Institutes of Health/National

Heart, Lung, and Blood Institute R01 HL137984, R01 AA026302-02, P30

DK0503060 (to RC); and the Penn Center for Precision Medicine.

AUTHOR CONTRIBUTIONS

WRW, DR, RC, and MM obtained the funding. WRW, DR, RC, and MM

were responsible for the concept and design of the study. WRW, DR, MM,

MS, DM, and AB were involved in patient identification and data procure-

ment from the clinical workflow. MM, QJ, JC, DT, and MR were involved in

the process of annotating ground-truth data. WRW, MM, HS and HL were

involved in model training and evaluation. WRW, MM, HS, MV, YK, and

SD were involved in the statistical analysis. WRW, DR and MM drafted the

manuscript, and all authors revised and approved the final manuscript.

COMPETING INTERESTS STATEMENT

All authors have no competing interests to declare.

DATA AVAILABILITY STATEMENT

Data is available upon reasonable request to investigators.

REFERENCES

1. Frezza EE, Wachtel MS, Chiriva-Internati M. Influence of obesity on the

risk of developing colon cancer. Gut 2006; 55 (2): 285–91.

2. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with

cardiovascular disease. Nature 2006; 444 (7121): 875–80.

3. Burkhauser RV, Cawley J. Beyond BMI: the value of more accurate meas-

ures of fatness and obesity in social science research. J Health Econ 2008;

27 (2): 519–29.

4. Bergman RN, Kim SP, Catalano KJ, et al. Why visceral fat is bad: mecha-

nisms of the metabolic syndrome. Obesity (Silver Spring) 2006; 14 (2S):

16S–9S.

5. Funahashi T, Nakamura T, Shimomura I, et al. Role of adipocytokines on

the pathogenesis of atherosclerosis in visceral obesity. Intern Med 1999;

38 (2): 202–6.

6. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syn-

drome: contribution of visceral fat accumulation and its molecular mecha-

nism. J Atheroscler Thromb 2011; 18 (8): 629–39.

7. Janssen I, Heymsfield SB, Allison DB, et al. Body mass index and waist cir-

cumference independently contribute to the prediction of nonabdominal,

abdominal subcutaneous, and visceral fat. Am J Clin Nutr 2002; 75 (4):

683–8.

8. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference,

and health risk: evidence in support of current National Institutes of

Health guidelines. Arch Intern Med 2002; 162 (18): 2074–9.

9. Pouliot M-C, Despr�es J-P, Lemieux S, et al. Waist circumference and ab-

dominal sagittal diameter: best simple anthropometric indexes of abdomi-

nal visceral adipose tissue accumulation and related cardiovascular risk in

men and women. Am J Cardiol 1994; 73 (7): 460–8.

10. Lofgren I, Herron K, Zern T, et al. Waist circumference is a better predic-

tor than body mass index of coronary heart disease risk in overweight pre-

menopausal women. J Nutr 2004; 134 (5): 1071–6.

11. Staiano AE, Reeder BA, Elliott S, et al. Body mass index versus waist cir-

cumference as predictors of mortality in Canadian adults. Int J Obes

2012; 36 (11): 1450–4.
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