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ABSTRACT

Objective: Access to palliative care (PC) is important for many patients with uncontrolled symptom burden

from serious or complex illness. However, many patients who could benefit from PC do not receive it early

enough or at all. We sought to address this problem by building a predictive model into a comprehensive clini-

cal framework with the aims to (i) identify in-hospital patients likely to benefit from a PC consult, and (ii) inter-

vene on such patients by contacting their care team.

Materials and Methods: Electronic health record data for 68 349 inpatient encounters in 2017 at a large hospital

were used to train a model to predict the need for PC consult. This model was published as a web service, con-

nected to institutional data pipelines, and consumed by a downstream display application monitored by the PC

team. For those patients that the PC team deems appropriate, a team member then contacts the patient’s corre-

sponding care team.

Results: Training performance AUC based on a 20% holdout validation set was 0.90. The most influential varia-

bles were previous palliative care, hospital unit, Albumin, Troponin, and metastatic cancer. The model has been

successfully integrated into the clinical workflow making real-time predictions on hundreds of patients per day.

The model had an “in-production” AUC of 0.91. A clinical trial is currently underway to assess the effect on clini-

cal outcomes.

Conclusions: A machine learning model can effectively predict the need for an inpatient PC consult and has

been successfully integrated into practice to refer new patients to PC.

Key words: palliative care, machine learning, decision support systems, clinical, precision medicine

INTRODUCTION

A challenging issue in modern medicine is that of aligning care deci-

sions with patients’ personal preferences. This alignment problem is

particularly true for patients with progressed stages of illness who

might prefer treatment courses focusing on comfort or on the poten-

tial for remaining in their home. Several recent studies have shown
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that many individuals prefer such care, however, there is a large gap

between what they want and what they receive.1–3 According to the

National Palliative Care (PC) registry for example, less than half of

all hospital admissions that could benefit from PC actually receive

it, despite a large recent growth in the availability of PC providers.4

The literature identifies several factors that contribute to this gap

in care received versus preferred care, including a general lack of PC

providers,4 the potential for physician overoptimism,5–7 and the

time frame required for a patient to make a decision to engage in

PC.8 Given these challenges and the wide gap in preferred versus re-

ceived care, a better method for identifying patients for PC assess-

ment presents a clear opportunity for improving standards of care.

Naturally, many attempts have been made to address this issue.

Traditional predictive models based on point scales or classical sta-

tistics were common in early years in both hospital and ICU popula-

tions and are discussed in Section II of Avati et al.9 They take a deep

learning approach to inpatient populations, building a binary classi-

fier to predict 12-month mortality based on prior year electronic

health record (EHR) data including demographics, diagnoses, proce-

dures, medications, and encounters. Jung et al10 take a similar set of

predictors but consider an outpatient population and build models

based on regularized logistic regression and gradient-boosted trees.

These recent approaches are strong from a methodological point of

view, but they use mortality as a proxy for PC need. Additionally, to

the best of our knowledge, none of these models are actually imple-

mented into the clinical workflow at their respective institutions.

When considering related works, it is important to distinguish

between PC and the closely related hospice care.8,11,12 PC focuses

on integrating therapeutic regimens while concurrently considering

social, emotional, and spiritual dynamics of both patients and their

families. In contrast, hospice care, or end-of-life care, centers on

symptom control rather than curative treatment and typically fo-

cuses on patients with a life expectancy of less than 6 months.

In this work we address the PC treatment gap by building a predic-

tive model to identify patients likely to benefit from assessment by a PC

team. This technical approach leverages 3 recent advances in modern

medicine: the adoption of EHRs, a growing acceptance of the role of

machine learning (ML) models in clinical care pathways, and an im-

proved informatics approach to deploying such models in clinical envi-

ronments. Unlike previous approaches, we directly predict PC consult

rather than using mortality as a proxy. Most importantly, we effectively

deliver the model results in a production setting and have integrated its

predictions into the clinical workflow of our PC team. We are hopeful

that other teams can use an approach similar to the 1 described here to

develop and deploy PC consult models at their own institutions.

MATERIALS AND METHODS

Base data and standardization
Our IRB-exempt quality improvement initiative consisted of a base

dataset of 68 349 encounter records of 50 143 adult (age 18 years or

older) patients admitted to a Mayo Clinic hospital during the 1-year

period 01/01/2017–12/31/2017. We included all adult patients with

a hospitalization during this period, with repeat hospitalizations

treated as (conditionally) independent events. Baseline data can be

found in Table 1.

Predictors and response
Predictors (also called covariates or features) were drawn from 4

major categories: patient demographics, prior utilization, comorbid-

ities, and time varying data, such as laboratory values and current

stay length. Although known to be potentially informative, some

variables, including medications and vital signs, were excluded as

predictors until further validation and integration performance im-

provement could be done for future iterations of the algorithm. A

complete list of predictors used is provided in Supplementary Table

S1. Comorbidity predictors were established by normalizing ICD10

diagnosis codes to the hierarchical condition categories in the EHR

data, then assigning a 1 or 0 based on whether or not the patient

had been given a diagnosis code for a given comorbidity within the

2 years prior to admission. Prior utilization predictors were con-

structed by counting recent inpatient, ICU, and PC encounters prior

to admission. The response variable was constructed using time

from admission until a PC consult (right-censored at time of dis-

charge). As described in the Temporal Component and Deployment

Predictions sections below, we model the response as a heterogenous

Poisson process, directly predicting the rate of PC intervention per

unit time. For practical use in the clinic, we convert this rate into the

7-day probability of PC consult. When this probability exceeds a

triggering threshold, the PC team is notified. This choice of outcome

is a distinguishing feature of this work since the bulk of the PC pre-

diction literature (eg, 9,10) predicts mortality rather than PC inter-

vention. Mortality as a proxy is suboptimal as many terminal

outcomes are not caused by conditions amenable to PC, and many

patients can benefit from a PC consult even if their short-term mor-

tality risk is low.

Temporal component
One of the major goals of this work was to produce a time-varying

model that calculates updated predictions whenever new informa-

tion becomes available; this process required the following steps.

Any update in predictor values resulted in the creation of a new row

in our data table, with unchanged values from previous measure-

ments carried forward. For example, if a new laboratory value was

recorded for a patient, a new row in our cohort was created with all

predictors equal to their previous values other than the newly

recorded laboratory value. Time from admission, recorded in days,

was also directly included as a time-varying predictor. Thus, each

row in the dataset included all predictors describing the state of the

patient, including whether or not a PC consult occurred, as well as

the time period (day) during which the patient was in that state.

This carry-it-forward dataset construction approach resulted in

training data containing 705 194 observations from 68 349 encoun-

ters of 50 143 unique patients. Implicit in this approach is the as-

sumption that all predictor values remain constant between

observations.

Modeling approach
We consider the PC consult as a time-to-event outcome that follows

a heterogeneous Poisson process (that is, a Poisson process whose

rate can vary over time) with rate equal to k xð Þ ¼ kðx1; x2 tð ÞÞ,
where x1 is a vector of all static predictors, and x2 is a vector of all

time-varying predictors. For practical purposes, a computational ap-

proximation is used that assumes x2 is constant during certain win-

dows of time. As described above, any change in x2 values resulted

in the creation of a new row in our data table, with unchanged val-

ues from previous measurements carried forward and treated as con-

stant over the given window of time. During this period of constant

x, the likelihood of this model is Poisson.13 That is, the outcome of

PC consult or not for each row is treated as Poisson with rate equal
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to k xð ÞDt, where Dt, is the corresponding length of the window of

time for that row (also called the exposure). Thus, any ML model that

can use Poisson likelihood can be used to estimate k xð Þ. In particular,

Gradient Boosting Machine (GBM)14,15 has an option to allow for a

loss function equal to the minus log likelihood for Poisson, where

log k xð Þð Þ ¼ f xð Þ

with f ðxÞ an additive expansion of simple trees. Thus, we treat each

row as Poisson with an offset term of logðDtÞ in a GBM to estimate

the rate of the desired Poisson process.

Table 1. Cohort baseline properties

Did not receive palliative

care (N¼ 702 814)

Received palliative

care (N¼ 2380)

Total

(N¼ 705 194)

P

value

Age <.001

Mean (SD) 61.072 (17.411) 67.881 (15.790) 61.095 (17.410)

Gender .048

F 311 571 (44.3%) 1115 (46.8%) 312 686 (44.3%)

M 391 242 (55.7%) 1265 (53.2%) 392 507 (55.7%)

Community Status <.001

Community 343 313 (48.8%) 1389 (58.4%) 344 702 (48.9%)

Non-community 359 501 (51.2%) 991 (41.6%) 360 492 (51.1%)

Admission Source <.001

SNF/ICF 11 969 (1.7%) 111 (4.7%) 12 080 (1.7%)

Non-SNF/ICF 690 845 (98.3%) 2269 (95.3%) 693 114 (98.3%)

Hospitalizations in past 6 months <.001

Mean (SD) 0.652 (1.258) 1.203 (1.557) 0.654 (1.259)

Hospitalizations in past 12 months <.001

Mean (SD) 0.940 (1.767) 1.708 (2.214) 0.943 (1.769)

ICU in past 6 months <.001

Mean (SD) 0.080 (0.366) 0.171 (0.482) 0.080 (0.366)

ICU in past 12 months <.001

Mean (SD) 0.118 (0.486) 0.238 (0.616) 0.118 (0.486)

ICU Transfer Rate <.001

Mean (SD) 0.167 (0.373) 0.236 (0.425) 0.167 (0.373)

Troponin .092

N-Miss 583 085 1674 584 759

Mean (SD) 0.357 (1.225) 0.435 (1.573) 0.357 (1.228)

Bilirubin .004

N-Miss 333 127 640 333 767

Mean (SD) 1.575 (3.973) 1.851 (4.851) 1.576 (3.977)

Albumin <.001

N-Miss 446 016 1155 447 171

Mean (SD) 3.300 (0.715) 3.040 (0.648) 3.299 (0.715)

Anion Gap <.001

N-Miss 93 156 72 93 228

Mean (SD) 13.955 (3.381) 14.587 (3.803) 13.957 (3.382)

Neutrophil Count <.001

N-Miss 148 989 195 149 184

Mean (SD) 7.423 (6.510) 8.512 (7.450) 7.427 (6.514)

Metastatic Cancer and Acute Leukemia (HCC) <.001

Mean (SD) 0.056 (0.290) 0.231 (0.614) 0.057 (0.292)

Lung and Other Severe Cancers (HCC) <.001

Mean (SD) 0.071 (0.296) 0.180 (0.473) 0.071 (0.297)

Pressure Pre-ulcer Skin Changes or Unspecified Stage (HCC) <.001

Mean (SD) 0.026 (0.232) 0.072 (0.435) 0.026 (0.233)

Septicemia Sepsis Systemic Inflammatory Response Syndrome Shock (HCC) <.001

Mean (SD) 0.026 (0.175) 0.051 (0.240) 0.026 (0.175)

Congestive Heart Failure (HCC) <.001

Mean (SD) 0.149 (0.474) 0.217 (0.616) 0.150 (0.475)

Previous Palliative Care (HCC) <.001

Mean (SD) 0.009 (0.095) 0.075 (0.264) 0.009 (0.096)

Previous Palliative Note <.001

Mean (SD) 0.231 (1.769) 2.203 (6.554) 0.238 (1.810)

Days since previous Palliative Care <.001

N-Miss 674 857 1722 676 579

Mean (SD) 128.516 (150.763) 53.834 (99.959) 126.799 (150.205)

Abbreviations: HCC, hierarchical condition categories; ICF, intermediate care facility; SD, standard deviation; SNF, skilled nursing facility.
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The GBM estimation described above was carried out via the

“gbm” package implemented by Ridgeway15 in R 3.4.2.16 This ap-

proach may be less familiar than the ubiquitous Cox proportional

hazards model. However, GBM brings many advantages over Cox

proportional hazards, such as a robust inclusion of both nonlinear-

ities and interactions, as well as implicit and appropriate handling of

missing data. As with all tree-based algorithms, GBM can handle

missing values seamlessly as separate nodes in its variable splits.

This is particularly important in the current work due to the natural

sparsity and informative missingness found in laboratory values and

diagnosis codes.

The data set was split into 80% training and 20% test. Hyper-

parameters for the GBM model (ie, number of trees, shrinkage, and

interaction depth) were chosen via grid search in concert with 10-

fold cross-validation17,18 on the training set. The optimal hyperpara-

meters were chosen by selecting the values that produced the highest

area under the curve (AUC) for the out-of-sample predictions.18,19

These values (n.trees¼4000, shrinkage¼0.025, depth¼2) were

then used to train a model on the entire training data set. Predictions

were then made on the 20% test sample and these test predictions

and outcomes were used to produce the cross-validation results.

Lastly, a final model was fit to all available data to be used in pro-

duction.

Deployment predictions
Our model directly predicts the rate of PC intervention per unit

time, conditional on the current values of a patient’s predictors. In

order to make the score more interpretable, we convert this rate into

a 7-day probability. Specifically, given a current patient state, we

compute the 7-day probability of PC consult assuming all variables

remain constant except for days in hospital. We also report a cate-

gorical “low,” “medium,” or “high.” The “high” threshold was cal-

ibrated to fall in line with the average capacity of the PC service

(about 12 consults a day, including consults via the traditional path-

way).

Model environment
Translating our predictive model for practical use in the hospital is 1

of the key contributions of this work. To do so, we leverage model

publication concepts described by Murphree et al20 and expand sig-

nificantly in terms of practical connections to institutional data

sources as well as effective dissemination to clinical end users.

Broadly speaking there are 3 main components to our deployment

architecture: a) making the model available as a web service, b)

ingesting and preprocessing input data from our informatics envi-

ronment, and c) effectively communicating predictions from the

model to the clinical team via a graphical user interface (GUI).

Model provision

As architected in,20 the model is published as a web service21 embed-

ded in a docker container (www.docker.com). Publishing the model

as a web service means that consumer applications can use it by con-

structing URLs that incorporate the predictor variables, most com-

monly via a JSON text file, and making a web request at a specific

application programming interface (API) endpoint. We used the R

package “jug” v0.1.722 to conveniently create the API. Embedding

the model in a docker container means that we install our trained

model and all of the dependencies needed to run it into a special

lightweight, portable package that can be run on any machine with

a kernel-compatible operating system. Our deployment is based on

Docker v17.12.1-ce with custom base containers designed by our In-

formation Technology team to meet institutional security standards.

This web service/docker approach affords us several advantages,

including streamlined and flexible consumption by downstream dis-

play applications as well as seamless transition from sandbox to en-

terprise environments. By publishing our model as a web service we

are able to effectively decouple model development from display de-

velopment—either can change independently of the other as long as

the API structure is maintained. By embedding our model in a

docker container we can guarantee that it will function identically in

our development environment and the enterprise-hardened produc-

tion environment, as well as future versions of these environments.

This directly improves the reproducibility and robustness of our

work.

Data ingestion and preprocessing

A full discussion of our hospital informatics environment is beyond

the scope of this document. Briefly however, the relevant architec-

ture consists of the following (Figure 1, glossary in Table 2). When

any update to our institutional health record (www.epic.com) is

made, the Epic system generates HL7 messages which are propa-

gated institutionally across the Enterprise Service Bus (ESB). Mes-

sages on this bus are continuously monitored by the Control Tower

Data Pipeline, which consists of an IBM Streams application (www.

ibm.com) for reading and writing messages to the ESB and a rules

manager based on IBM Operational Decision Manager (ODM) for

applying clinical enrichment rules to messages. Output from ODM

can consist of information important to the function and display of

the Control Tower application. It can also kick off prediction proc-

essing if changes in relevant variables occur for patients being moni-

tored. The primary information needed by the Control Tower GUI

is stored in our institutional data store known as the Unified Data

Platform (UDP) via FHIR APIs, with the enrichment data in an IBM

DB2 database and patient state data for complex event processing in

the ODM cache.

When a prediction call is triggered, a predict request with patient

identifier, admit date, and current time information is sent to the

preprocessing environment or model broker. This Java Spring Boot

application runs on a virtual server on the institution’s internal

cloud. Using input from the data pipeline as well as any needed in-

formation collected from institutional data stores, the model broker

assembles the data required by the model, calls the predictive mod-

el’s web service, and then returns the results to the ESB where they

can be read and acted upon by the data pipeline.

All model input and output are also logged by the model broker

so that production model input and output can be evaluated and

compared to training results. It is also necessary to monitor the log

data for drift and/or abrupt changes in time to the model predictor

distribution or model performance. Currently, this is being done

manually but should be automated and is a subject of further work.

Control tower application

The browser-based monitoring application, known as Control

Tower was developed using Angular 7. A prototypical screenshot

can be seen in Figure 2. The algorithm is currently running on all

inpatients in Mayo Clinic’s St. Mary’s and Methodist Hospitals in

Rochester, Minnesota in an automated fashion and monitored by

the PC team. Patients receive PC probability scores (0–100) from

Control Tower and are subsequently ranked from highest to lowest

need. In addition to the PC score, data on age, sex, problem list,
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hospitalization duration, vital signs, and laboratory results are avail-

able and presented to give the score some context.

RESULTS

Predictive performance
The model was evaluated using a 20% holdout set and achieves an

AUC¼0.90; see Figure 3. In our clinical deployment we currently

set the “high” threshold at a 7-day probability of PC equal to 0.08

(in order to match the capacity of our PC team as described above)

which results in 82% specificity. At this threshold the positive pre-

dictive value is 0.19, however, that is based on historical PC consults

where it was suspected that many patients who needed a PC consult

did not receive 1. Out of the over 500 patients reviewed in produc-

tion thus far from 11/14/19 to 01/13/20, the PC team has accepted

43% of the patients above this threshold and has rejected only 29%

(28% deferred to next day).

The time-varying aspect of modeling requires the receiver operat-

ing characteristic (ROC) plot in Figure 3 to be constructed nontradi-

tionally. Recall that in a traditional ROC curve, the sensitivity and

1-specificity of a model are plotted at a series of different classifica-

tion thresholds (cutoff values for turning a predicted probability

into a predicted output class such as PC consult). For our model,

probability of PC consult isn’t a single number but instead changes

whenever a time-varying predictor changes. Furthermore, as de-

scribed above in Deployment Predictions, the score that is calculated

and displayed to the clinical team at any time point during an en-

counter is the “probability of receiving a PC consult in the next 7

days if all predictors were to remain in the current state.” Because of

this, to produce the ROC plot in Figure 3 we take the maximum

score a patient received during their encounter (prior to an event or

discharge) and we use this maximum score as the probability needed

to construct the curve. This performance assessment method is cho-

sen over a time-dependent ROC curve or survival concordance in or-

der to mirror use in actual practice (ie, once a patient’s score crosses

a threshold at any point during their encounter, that patient will be

brought to the PC team’s attention).

In addition to AUC, we evaluated the precision and calibration

(Figure 4) of the model. Precision, also known as positive predictive

Table 2. Glossary

API Application Programming Interface, a set of functions in our case allowing access to the predictive model

CT Control Tower, a web browser application that displays information about patients, including output from the predictive model

docker A docker container is a software package that includes an executable program as well as all dependencies necessary to run it

DP Control Tower data pipeline, the central actor in our informatics architecture.

Reads and writes messages to the ESB via IBM Streams, applies application logic via ODM, calls the predictive model

via the Model Broker (MB)

ESB Enterprise Service Bus, the institution-wide pipeline for communication between applications

GUI Graphical user interface

HL7 Messaging standard for EHRs

JSON JavaScript Object Notation, a human-readable text file format

ODM Operational Decision Manager, an IBM product that applies logic or rules

MB Model Broker, Data preprocessing and ingestion application. Feeds data to and from model

UDP Unified Data Platform, our institution’s primary data resource

URL Universal resource locator, or web address

web service A piece of software made available over the internet

Figure 1. Overall architecture schematic.
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value, is found on the right axis of Figure 3. One can tune the false

positive rate and its inevitable effect on alert fatigue by selecting an

appropriate threshold from this curve.

Variable importance
Figure 5 displays main effect plots for the 6 most informative varia-

bles. These plots are based on the predicted probability of getting a

PC consult in the next 7 days. Grey points are (a sample of 10 000)

model predictions displayed across the values of the respective pre-

dictor. The blue curve represents the average prediction across a par-

ticular predictor (ie, averaged over all other predictors). This main

effect curve is a visual display of how important the respective pre-

dictor is (how much prediction changes across that variable). The

dashed line is the population average prediction score. The propor-

tion of variance explained by this predictor (Pct.Var at the top of

each plot) is calculated as the main effect index23 of the predicted

probabilities. This is the variance of the main effect curve across the

marginal distribution of the respective predictor divided by the total

variance of the predictions. This quantity can be interpreted as the

proportion of the variability in the predictions that could be

explained by this predictor alone. Supplementary Table S1 presents

a list of every predictor used in the model and its variable type, along

with the percentage of variance explained by each variable, sorted

by contribution. The top 6 variables according to this measure are

those presented in Figure 5. Supplementary Figure S1 presents the

main effect plots for all predictors in the model for completeness.

The most influential variable overall was days since palliative care

consult. This variable is the number of days (prior to the admission

date) of the most recent PC service note (it takes a value of “NA” if

there is not such a note in the previous 2 years for this patient). A

PC consult in the past couple weeks, followed by a hospital admis-

sion is a good indication that something may have escalated. The

second variable is the hospital unit where the patient currently

resides, which is a proxy for current medical need (ie, Oncology,

Cardiac ICU, Transplant, etc). The next 4 are laboratory values

(which are often missing), but we can see the influence that a missing

value (a lab not being ordered) has on the prediction; generally, a

missing lab is somewhat protective. If a clinician does not order a

lab, it may indicate they are not worried about that particular lab

value and its corresponding organ system.

The main effect curves can be used to assess individual influence

on a particular prediction as well. Namely, we can simply use the

difference between the overall average (dashed line) and the main ef-

fect curve for a particular value of a predictor presented by a patient.

When this difference is large, then this predictor can be thought to

“lift” the predicted probability higher. When a score is presented in

the Control Tower GUI, a “hover over” feature also the variable in-

fluence score (ie, probability lift) for the 5 most influential variables.

This can help the operator understand what the model is seeing as

the reasons why this patient is a good candidate for a PC consult.

Figure 3. ROC curve and Positive Predictive Value (Precision) curve of the cur-

rent model predictions with cross-validation. The threshold that is currently

in clinical use are denoted by the fine dashed lines.

Figure 2. Screenshot of Control Tower application. This AngularJS browser-based application is monitored by a dedicated operator team. When a palliative care

alert is triggered, the team considers the patient for forwarding to the PC team.
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Figure 4. Calibration curve of cross-validated model predictions from training.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 6 1071



Clinical deployment
Our clinical deployment consists of a Control Tower operator who

will interact with the inpatient PC consult service at Mayo Clinic’s

St. Mary’s and Methodist hospitals in Rochester, Minnesota. The

operator will monitor the Control Tower during weekday mornings

and select daily a cohort of patients with the highest need who may

benefit from PC review. In addition to assessing whether the patient

is appropriate, the operator will exclude patients satisfying exclu-

sion criteria (ie, patients who are or are about to be discharged or

are currently in hospice care). The on service PC team will also as-

sess the need for each patient; and for those patients which they

agree could benefit, they will approach the attending clinical team

(via a secure message, page, or phone) to suggest a PC referral.

Deployment model performance
Once the model was running in real time on production data, we

inspected the model performance to ensure it was comparable to

that achieved in cross-validation of the training data. Initially, pro-

duction performance was poor (eg, AUC¼0.77) due to several

issues, but the largest 2 problems were the following. (i) The patient

population in production was different than that in training. The

intended cohort was all inpatients, but the production system was

providing predictions on all patients (ie, even those visiting for rou-

tine appointments or out-patient procedures, etc). (ii) Several labs

had different units of measure, causing them to be inconsistent with

training data. Once these problems were resolved, the production

data and model results fell in line well with what was expected from

the training results. Figure 6 shows the ROC curve comparison from

training to production (0.90 vs 0.91).

DISCUSSION

We have built a machine learning (ML) model that can accurately

identify patients likely to benefit from assessment by a PC team.

Two major distinguishing features of this work are our choice of a

more finely targeted outcome, namely time until PC intervention

rather than a proxy, such as mortality, and our practical translation

of the model to practice. Thanks to this translation, our work is al-

ready having direct impact on patient care. Although this current ap-

plication targets PC, the broad objective of our program is to

develop a framework for the hospital where predictive modeling, vi-

sualization tools, and alert-delivery mechanisms are able to assist

clinicians in the identification of patients at risk of a variety of diag-

nostic delays and who may benefit from review with a specialist.

One of the largest challenges faced on this project stemmed from

differences between the retrospectively collected training dataset

and the streaming data the model received in production. We expect

many applications of ML models to face similar challenges. This

concern can be mitigated with collection of training data from ex-

actly the same source as eventual production data.

One of the key elements in the success of this project was bring-

ing together the necessary people and technologies required to oper-

ationalize ML models in clinical practice. Our broader team

depended on a tight integration of clinical, research, informatics,

and IT teams overseen by capable project management. For other

teams interested in similar predictive model translation projects, it is

critical to arrange buy-in from all potential project participants care-

fully ahead of time and plan a specific intervention and assessment.

As with any study, ours includes known weaknesses as well as

areas for future improvement. One weakness is that the carry-it-

forward assumption for time-varying predictors is restrictive (eg, it

is clearly not the case that a patient’s hemoglobin value is constant

for 3 days just because a lab was ordered on a Monday and not mea-

sured again until Thursday). In terms of future improvement, an im-

portant next step is to include vital signs and medications. Work in

progress includes utilizing a patient’s history of laboratory measure-

ments and vitals rather than just the single most recent value. Addi-

tionally, the ideal outcome of interest is whether this patient would

benefit from a PC consult, but the model was trained on an outcome

of historical PC consult which is not without error; namely, there

Figure 5. Main effect plots for the 6 most informative variables. These plots

are based on the predicted probability of getting a PC consult in the next 7

days. Grey points are a sample of 10 000 model predictions displayed across

the values of the respective predictor. The blue curve represents the average

prediction across a particular predictor averaged over all other predictors.

Figure 6. ROC curve (black) of cross-validated model predictions from train-

ing and the ROC curve (green) resulting from the model predictions on the

production data.
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are many people who could benefit from a PC consult that did not

receive 1. This mismatch could potentially lead to missed detections

by the algorithm, particularly if there is a systematic bias for PC con-

sults under the current practice.

CONCLUSION

We have trained and effectively deployed into clinical workflow a

ML model that can accurately and efficiently predict which adult

hospital patients are likely to benefit from a PC consult. This enables

providers to target patients most likely to benefit, lessening the gap

between those who receive PC and those who could benefit from it.

The strategy we have taken to translate our model from research to

practice is both robust and effective and can serve as a blueprint for

future efforts. Although the current application focuses on PC inter-

ventions, our deployment and monitoring framework is flexible and

general, and the project’s ultimate goal is to have a portfolio of

patient-centric predictive models to improve care.
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