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Abstract

During the COVID‐19 pandemic, genetic variants of SARS‐CoV‐2 have been

emerging and spreading around the world. Several SARS‐CoV‐2 endemic variants

were found in United Kingdom, South Africa, Japan, and India between 2020 and

April 2021. Studies have shown that many SARS‐CoV‐2 variants are more in-

fectious than early wild strain and produce immune escape. These SARS‐CoV‐2

variants have brought new challenges to the prevention and control of COVID‐19.

This review summarizes and analyzes the biological characteristics of different

amino acid mutations and the epidemic characteristics and immune escape of

different SARS‐CoV‐2 variants. We hope to provide scientific reference for the

monitoring, prevention, and control measures of new SARS‐CoV‐2 variants and the

development strategy of the second‐generation vaccine.
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1 | INTRODUCTION

Over the last two decades, SARS‐CoV‐2 is the third coronavirus

known to cause severe acute respiratory disease in humans, following

SARS‐CoV in 2003 and MERS‐CoV in 2012.1–3 Compared to MERS

and SARS limited to relatively more minor populations, coronavirus

disease 2019 (COVID‐19) caused by severe acute respiratory syn-

drome coronavirus 2 (SARS‐CoV‐2) has affected the whole world,

wreaking havoc on healthcare systems and costing millions of

lives.4–6 Critical illness includes acute respiratory distress syndrome,

coagulopathies, septic shock and multiple organ injuries, including

heart injury,7 kidney injury,8 liver injury,9 and gastrointestinal symp-

toms.10 As of September 22, 2021, COVID‐19 spread fast to more

than 200 countries, there have been 229 373 963 confirmed cases of

COVID‐19, including 4 705 111 deaths (https://www.who.Int/).

SARS‐CoV‐2 has ~30 kb genome and encodes four structural pro-

teins including Spike (S), Envelope (E), Membrane (M), and Nucleocapsid

(N) proteins, six accessory proteins open reading frame (ORF) (ORF3a,

ORF6, ORF7a, ORF7b, ORF8, and ORF10) and 16 nonstructural pro-

teins (NSP1−NSP16).11,12 The SARS‐CoV‐2 spike protein is cleaved

by furin into S1 subunit and S2 subunit. S1 subunit consists of an

N‐terminal domain (NTD) and the receptor‐binding domain (RBD), and is

responsible for binding to the host‐cell ACE2 receptor. Whereas, the S2

subunit includes the trimeric core of the protein and is responsible for

membrane fusion.13,14 The structural proteins constitute the mature

virion, whereas the nonstructural proteins of CoVs are indispensable for

viral replication and transcription.15 The substitution, deletion and in-

sertion of amino acid sites, which occurred in spike protein and the ORF

of SARS‐CoV‐2, led to many virus variants. Furthermore, these muta-

tions may alter the virus biological characteristics, including increasing

transmissibility and generating immune escape from innate or acquired

immune responses.16,17

At the end of January 2020, the D614G mutant, which turns

Aspartic acid (Asp) into Glycine (Gly) at site 614 in the amino acid

sequence of spike, was first discovered in the UK and quickly became

the significant epidemic strain in the world and attracted widespread

attention.18,19 During the COVID‐19 pandemic, genetic variants of

SARS‐COV‐2 have been emerging and spreading around the

world.20,21 Therefore, it is significant to understand the biological

characteristics of amino acid mutations, the epidemiological char-

acteristics, and vaccine reactivity of new SARS‐CoV‐2 variants for the

surveillance, prevention, and control of COVID‐19.
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1.1 | The epidemiological characteristics of
“variant of concern (VOCs)” and their crucial amino
acid mutations

The established nomenclature systems for naming and tracking

SARS‐CoV‐2 genetic lineages by GISAID, Nextstrain and Pango are

currently and will remain in use by scientists (https://covlineages.

org/resources/pangolin.html). The SARS‐CoV‐2 variants were clas-

sified as VOCs and “Variant of Interest, VOI” by WHO. At present,

WHO described four VOCs, namely, Alpha B.1.1.7 (known as 20I/

501Y.V1, VOC 202012/01),22 Beta B.1.351 (known as 501Y.V2),23

Gamma P.1 (known as 501Y.V3),24 and Delta B.1.617.2 (known as

478 K.V1).25

1.1.1 | Key mutations related to enhancing the
infectivity of VOC

D614G

D614G mutation is present in all VOC. In vivo and ex vivo studies

found that in the early stages of virus infection, the D614G

viruses exhibited significantly faster droplet transmission be-

tween hamsters, and the virus with D614G mutation resulted in a

0.5 to twofold higher gene expression than wild strain.26 The

infection efficiency of D614G pseudovirus was reported to be

8–10 fold higher than wild strain. D614G is hypothesized to “shift

the RBD to an 'up' conformation, promoting binding with the

ACE2 receptor, leading to enhanced virion infectivity.”27 More-

over, clinical samples infected with D614G mutant had a high titer

of SARS‐CoV‐2 RNA.28 Therefore, both clinical infection studies

and animal experiments of pseudovirus infection suggested that

the virus with D614G mutation have higher infectivity than wild

strain.

N501Y

N501Y mutation located in the RBD region and appeared in B.1.17,

B.1.351, P1. Structural modeling data showed that RBD with N501Y

mutation could form a potential aromatic ring–ring interaction and an

additional hydrogen bond with ACE2, and these interactions made

the binding tightness of N501Y‐RBD to ACE2 was 10‐fold than wild

strain.29 In addition, N501Y mutation can decrease the polarity of

critical residues in RBD, increasing the affinity between RBD and

cellular surface ACE2.30,31 Interestingly, the binding affinity of

N501Y‐RBD to ACE2 was much higher than K417N/T‐E484K‐

N501Y‐RBD.32 Therefore, N501Y mutation can enhance the binding

affinity and tightness of RBD to ACE2, increasing the chance of the

virus infecting host cells.

L452R

L452R mutation located in the receptor‐binding motif (RBM) re-

gion and appeared in B.1.617 lineages and B.1.427/B.1.429. Starr

et al. used quantitative deep mutation scanning found that L452R

mutation could increase the expression of S protein by 0. 32

times and enhanced the infectivity of the virus.30 In addition,

B.1.167.1 and B.1.167.3 lacks E484K‐N501Y mutation but shows

a unique L452R‐E484Q double mutation in RBM of S protein.

Using combined structural modeling and biophysical approach,

researchers revealed that B.1.167 variants with L452R‐E484Q

double mutations possess a stronger binding affinity to the

host‐cell receptor ACE2, and has a ability to evade humoral

immunity.33

HV69⁃70del

There were multiple amino acid mutations in the NTD of VOC. By

analyzing the S gene sequence from December 1, 2019, to October

24, 2020 in the GISAID database, 90% deletions were found in the

NTD region in 1108 sequences of the S gene with deletion muta-

tion.34 HV69‐70del is present in B.1.1.7 and B.1.258, and it had often

emerged after some mutations known to increase binding affinity of

S protein to the ACE2 receptor or confer immune escape, such as

N501Y, N439K, Y453F.35 Through the pseudovirus model found that

B.1.1.7 containing N501Y without HV69‐70del mutation significantly

reduced its infectivity. Structural modeling indicated that the B.1.1.7

with HV69‐70del induces more rapid cell–cell fusion and the for-

mation of multi‐nucleated cells. Whereas, repairing these two amino

acids can lead to reduced the infectivity of B.1.1.7 and reduced cell‐

cell fusion kinetics back to wild strain level.36

Furthermore, an experiment in vitro indicated that D796H mu-

tation produces immune escape but reduces infectivity. When

D796H and HV69‐70del appeared in SARS‐CoV‐2 variants simulta-

neously, HV69‐70del can compensate for the reduction of infectivity

caused by D796H mutation.37 The above study demonstrated that

HV69⁃70del is responsible for increasing the infectivity of B.1.1.7 by

increasing the rate of S2/S2 cleavage and cell–cell membrane fusion,

and can compensate for the reduction of infectivity caused by im-

mune escape mutations.

T478K

Compared to B.1.617.1 and B.1.617.3, B.1.617.2 lacks the E484Q

mutation and has a unique T478K mutation in the S protein. An in

silico molecular dynamics study on the S protein structure has pre-

dicted that the T478K mutation may increase the electrostatic and

steric hindrance of the S protein and increase the binding affinity of

RBD to cellular surface ACE2.38

P681H/R

The furin protease cleavage sites located between S1 and S2 subunits

of S protein of SARS‐CoV‐2, which contain amino acid site: 681–685.

The cleavage of this region is key to the entry of the virus into human

host cells. P681H is present in the Alpha VOC and theTheta VOI, and

P681R is found in the Delta VOC and the Kappa VOI, respectively.

Previous studies have noted that P681H and P681R may increase

S1/S2 cleavage by furin‐like proteases and enhance virus‐host cell

membrane fusion.39
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1.1.2 | Ability to spread more quickly

B.1.1.7

B.1.1.7 was first detected in New York in November 2020.22 B.1.1.7

variant had 10 key amino acid mutations accumulated in Spike (S)

protein (HV69‐70del, Y144del, N501Y, A570D, D614G, P681H,

T716I, S982A, D1118H).40 Three mutations of B.1.1.7 with the

greatest potential to affect the virus's transmissibility are H69‐

V70del, N501Y, and P681H. Epidemiological studies and dynamic

modeling methods suggested that the transmissibility of the B.1.1.7

in Britain was increased by 43%–90% and became the dominant

strain in the United Kingdom. B.1.1.7 was reported in the United

States in December 2020, and the transmissibility of B.1.1.7 was

59%–74% higher than wild strain in Denmark, Switzerland, United

States.41 Moreover, the viral loads was higher in B.1.1.7 samples than

in non‐B. 1.1.7 samples, with cycle threshold value (Ct) (mean Ct 28.8

vs. 32.0 for B.1.1.7 vs. non‐B.1.1.7, p = 0.0085) and genomic read

depth (1280 vs. 831 for B.1.1.7 vs. non‐B.1.1.7, p = 0.0011).42 (lower

Ct values are correlated with larger amounts of virus in the sample).

B.1.351

B.1.351 was first detected in Nelson Mandela Bay, South Africa, in

early October 2020.23 One month later, it replaced the circulating

viruses and became the dominant strain in South Africa. B.1.351 has

several biologically significant mutations in S protein, including D80A,

D215G, LLA241‐243del, K417N, E484K, N501Y, D614G, A701V.40

In Zambia, the number of COVID‐19 patients infected with B1.351

from 44 cases to 700 from December 1–10 to January 1–10, 2021.

Another study in South Africa showed that B.1.351 was 50% more

transmissible than wild strain and had a higher viral loads in samples

infected with B.1.351 variant (Ct < 30).43,44

P.1

P.1, a strain of B.1.1.28, was initially detected during routine

screening of foreign passengers from Brazil at Haneda Airport in

Tokyo, Japan, on January 10, 2021.24 P.1 has 17 unique gene mu-

tations, and its S protein accumulated 12 amino acid mutations, in-

cluding L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y,

D614G, H655Y, T1027I, V1176F.40 A two‐category dynamical model

that integrates genomic and mortality data estimated that P.1 was

1.7–2.4‐times more transmissible than wild strain, with Ct values of E

gene and N gene decreased by 1.43 [95% confidence interval [CI]:

0.17–2.60, p = 0.029] and 1.91 (95% CI: 0.49–3.23, p = 0.01),

respectively.24

B.1.617.2

Recently, Delta (B.1.617.2) was earliest reported in India but has

spread globally.25 Except for D614G, B.1.617.2 accumulated eight

amino acid mutations in the S protein, including T19R, G142D,

FR156‐157del, R158G, L452R, T478K, P681R, D950N.40 Delta has

been linked to the second outbreak of COVID‐19 in Nepal, southeast

Asia, and South Africa. In the United Kingdom, Delta seems to be

around 60% more transmissible than B.1.1.7. In France, the number

of COVID‐19 cases infected with Delta increases by 50–150 cases

per day, accounting for 2%–4% of the total new cases of COVID‐19.

In addition, Delta is rising fast in the United States, particularly in the

Midwest and southeast. Using a rapid genotyping test, the genomics

company Helix in San Mateo, California has found that the number of

COVID‐19 cases caused by B.1.1.7 fell from more than 70% of cases

in the end of April to 42% as of mid‐June 2021 in the United States,

with the rise of Delta variant driving much of the shift.45

Delta was first identified in Guangzhou, Guangdong, China, on

May 21, 2021. A preprint46 reported that the time interval from

exposure to the first polymerase chain reaction (PCR) positive was

4 days (interquartile range [IQR]: 3.00–5.00) in the Delta epidemic

2021 and 6 days (IQR: 5.00–8.00) during the 2020 epidemic. The

relative viral loads of cases infected with the Delta variant (n = 62,

Ct = 24.00 for the ORF1ab gene, IQR: 19.00–29.00) were 1260 times

higher than wild strain (n = 63, Ct = 34.31 for ORF1ab gene, IQR:

31.00–36.00) when SARS‐CoV‐2 was first detected by PCR. More-

over, 80.65% of samples infected with the Delta variant contained

>6 × 105 copies/ml in oropharyngeal swabs when the viruses were

first detected, compared to 19.05% of samples infected with wild

strain contained >6 × 105 copies/ml. Epidemiological investigation

showed that typical clinical symptoms were observed 2–3 days after

infection with Delta. The fifth generation of cases emerged just ten

days after the first case infected with Delta. Moreover, the basic

transmission (Basic reproduction number, R0) was 4.04–5.0 was

higher than the wild strain (R0: 2.2–3.77).47 (The basic transmission

value [R0] means that the infected person can transmit the pathogen

to several other people). The above results indicated that Delta could

be more transmissible during the early stage of the infection and has

higher viral loads.

Altogether, these results indicated that multiple amino acid mu-

tations (D614G, N501Y, L452R, P681H/R, T478K, HV69‐70del)

which can enhance the infectivity of the virus appeared in the RBD

and NTD of S protein of VOC. By increasing the expression of Spike

and the interaction forces (aromatic ring–ring interaction, hydrogen

bond) bond between spike and host cell ACE2 or increasing the rate

of S1/S2 cleavage, these mutations can increase the binding affinity

and binding tightness of SARS‐CoV‐2 spike to hACE2 receptor, and

leading to enhance the infectivity of VOC variants, as shown in

Figures 1 and 2 and Table 1. Compared with the wild strain, the

transmission speed and infection rate of VOC variants were in-

creased. In addition, the viral loads in samples infected with VOC

variants was higher than wild strain, and the Ct value was less than

30. It is worth noting that Delta may be more transmissible than other

VOC variants (B.1.1.7, B.1.351, and P.1), spreading to 54 countries

and rapidly replacing the Alpha variant in the United Kingdom47,48

and the United States.49

1.1.3 | Non‐spike mutations

Several studies have confirmed that coronavirus accessory proteins

play a role in virus‐host interactions, pathogenesis, and virulence.50
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F IGURE 1 The biological characteristics of key amino acid mutations of Spike in B.1.1.7 and B.1.617.2 variant. Mutations (HV69‐70del,
N501Y, D614G, P681H/R, L452R, T478K) could increase the binding affinity and binding tightness of SARS‐CoV‐2 spike to hACE2 receptor, or
increase cell‐cell membrane fusion, result in increasing the infectivity of B.1.1.7 and B.1.617.2 variant. 144del and L452R mutations generated
resistance to the neutralization activity of mAbs, convalescent plasma, and post‐vaccination serum against B.1.1.7 and B.1.617.2 variant,
respectively. del, deletion; FP, fusion peptide; HR1, heptad repeat 1; HR2, heptad repeat 2; IC, intracellular domain; NTD, N‐terminal domain;
RBD, receptor‐binding domain; RBM, receptor binding motif; SD1, subdomain 1; SD2, subdomain 2; TD, transmembrane domain

F IGURE 2 The biological characteristics of key amino acid mutations of Spike in B.1.351 and P.1 variant. Mutations including N501Y,
D614G could increase the binding affinity and binding tightness of SARS‐CoV‐2 spike to hACE2 receptor, and result in increasing the infectivity
of B.1.1.7 and B.1.617.2 variant. 241‐243del, L18F, K417N/T, E484K mutations generated resistance to the neutralization activity of mAbs,
convalescent plasma, and postvaccination serum against B.1.351 and P.1 variant. del, deletion; FP, fusion peptide; HR1, heptad repeat 1; HR2,
heptad repeat 2; IC, intracellular domain; NTD, N‐terminal domain; RBD, receptor‐binding domain; RBM, receptor binding motif; SD1,
subdomain 1; SD2, subdomain 2; TD, transmembrane domain
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Among the accessory proteins, ORF3a is the largest one containing

274 amino acids in SARS‐CoV.51 Cell surface localization of ORF3a in

SARS‐CoV potentiates viral entry within the host, and ORF3a is also

implicated in ion channel formation and modulates the release of

virus from the host cell.51,52

ORF1ab and ORF3a mutations

Analysis of SARS‐CoV‐2 gene polymorphism found that several in-

dependent recurrent mutations in NSP6, NSP7, NSP12, NSP13 en-

coded by ORF1ab are identified as mutational hotspot are closely

associated with inter‐species transmission and virulence.21,53 Several

mutations in ORF3a appear in B.1.1.7, B.1.351, P.1, and B.1.167.2.

Parinita Majumdar et al. analyzed two group COVID‐19 positive

cases with different infection rates and mortality found that ORF3a

mutations of SARS‐CoV‐2 are associated with a higher infection and

mortality rate. Thirteen different amino acid mutations in ORF3a

(P25L, Q57H, K67E, V90F, Y109C, R126T, D142N, W149L, D155Y,

Y156N, T176I, T217I, G251V) were deleterious, and these mutations

resulted in the loss of predicted motifs and B‐cell epitope as found in

wild‐type (WT) ORF3a protein.53

1.1.4 | Higher risk of hospitalization and mortality
in patients infected with VOC than wild strain

An initial matched case‐control study from London reported no sig-

nificant difference in the risk of hospitalization or mortality of cases

infected with B.1.1.7 compared to other existing variants.42 How-

ever, several studies have subsequently reported that the risk ratios

of hospitalization were from 1.15 to 1.43 for patients infected with

B.1.1.7 compared with the non‐B.1.1.7 group.54–56 Retrospective

observational studies performed in the UK reported that the mor-

tality hazard ratio of patients infected with B.1.1.7 was 1.64 (95% CI:

1.32–2.04, p < 0.0001) compared with individuals with non‐B.1.1.7

variant57 and estimated 35% (12%–64%) increased risk of death

associated with B.1.1.7 variant.58

Both the matched and unmatched multi‐variable analysis found

that a more significant proportion of VOC cases were admitted to

hospital (B.1.1.7 11.0%; B.1.351 19.3%, and P.1 20.0%; p < 0.001)

and ICU admission (B.1.1.7 1.4%, B.1.351 2.3% and P.1 2.1%,

p < 0.005) compared with non‐VOC cases (7.5% for hospitalization

and 0.6% for ICU admission).59

For Delta, preliminary evidence from England and Scotland

suggested that people infected with Delta are about twice as likely to

hospitalization as those infected with B.1.1.7.45 Patients infected

with Delta have an increased risk of hospitalization: hazard ratio (HR)

1.85 (95% CI: 1.39–2.47) compared to B.1.1.7 or ancestral strains in

Scotland.60 Similarly, a retrospective cohort study from Ontario,

Canada showed that compared to non‐VOC variants, the adjusted

elevation in risk associated with N501Y‐positive VOC variants

(B1.1.17, B.1.351, and P.1) was 59% (49%–69%) for hospitalization,

105% (82%–134%) for ICU admission and 61% (40%–87%) for death.

In addition, the risk of patients infected with Delta was 120%

(93%–153%) for hospitalization, 287% (198%–399%) for ICU ad-

mission and 137% (50%–230%) for death.61

Based on these data, patients infected with VOC variants were

more likely to be admitted to hospitals and ICU than non‐VOC cases.

Delta may cause severe diseases than N501Y‐positive VOC variants

(B1.1.17, B.1.351, and P.1), and cases infected with Delta had a

higher risk of hospitalization and mortality, as shown in Table 1.

1.2 | Immune escape of VOC

1.2.1 | Key mutations related to enhancing immune
escape of VOC

E484K

The Spike protein is the dominant neutralization target of monoclonal

antibodies (mAbs), convalescent plasma and vaccines. The virus

would likely need to accumulate multiple mutations in the Spike to

evade immunity induced by vaccines or by natural infection.62 E484K

mutation located in RBM and is present in B.1.351, p.1 VOC variants

and in the VOIs Eta (B.1.525), Iota (B.1.526), Theta (P.3), and Zeta

(p.2).40 Many studies indicated that the E484K mutation generated

apparent resistance to mAbs and convalescent plasma.63–65 Collier

Da et al. found that E484K mutation reduced the neutralization ac-

tivity of the BNT162B2 vaccine‐induced antibody and 61% (19 of 31)

mAbs against the virus.66

L452R

L452R is present in the Delta, Kappa (B.1.617.1), and Epsilon

(B.1.427/9). L452R mutation could not only increase the transmissi-

bility of the virus but also cause immune escape. Studies found that

the pseudovirus carrying L452R mutation could escape the neu-

tralization activity of mAbs and convalescent plasma67 and was sig-

nificantly resistant to mAbs X593 and P2B‐2F6.68

K417N/T

K417N and K417T are present in B.1.351 and P.1, respectively.

Using pseudovirus models found that the neutralization activity of

29.4% (5/17) mRNA vaccine‐induced neutralizing antibodies against

pseudoviruses carrying the K417N mutation was at least 10% lower

than wild strain.69 Data reported in another study showed that the

neutralization activity of 35% mAbs (6 of 17) was decreased by

4‐fold against pseudoviruses carrying K417N or K417N‐N501Y

mutations.70

The deletion in the NTD

Despite the RBD is the dominant neutralization targeted by mAbs.

Evidence indicated that the NTD of the SARS‐CoV‐2 Spike has a

substantial role in antigenicity.71 Andreano et al. reported that con-

valescent plasma thoroughly neutralized the live virus at the initial

stage of coculture, but after 45 days of cultivation, the deletion of

F140 in the NTD N3 loop led to partial resistant to the neutralization

activity of convalescent plasma. After coculture 80 days, an insertion

852 | TIAN ET AL.



in the NTD N5 loop containing a new glycan sequon generated a

complete resistance to the neutralization activity of convalescent

plasma. In line with, computational modeling predicted that the NTD

loops also have some key mutations, including the F140 deletion in

loop N3 and the 11‐amino‐acid insertion in loop N5 that introduces a

novel N‐glycan sequon at position N248d. These mutations remodel

this critical antigenic region and have the potential to obstruct or hide

the binding to neutralizing epitopes, and could effectively eliminate

the neutralization of some antibodies.72 In addition, it is reported that

Y141‐144del can enable the B.1.1.7 pseudovirus to escape the

neutralization of mAbs (4A8, S2X28, S2M28, and S2X333).73 Another

study showed that the B.1.351 variant carrying LAL242–244del

mutations in the NTD was most resistant to current mAbs and con-

valescent plasma, followed by the P.1 variant and the B.1.1.7

variant.74

1.2.2 | Escape from the neutralization activity of
mAbs and convalescent plasma

Studies showed that the neutralization activity of some mAbs and

convalescent plasma against B.1.1.7, B.1.351, P.1 pseudovirus was re-

duced.75 One study demonstrated that convalescent plasma shows a

significant reduction in neutralization activity against B.1.351 pseudo-

virus (9.4‐fold) and shows a modest reduction against P.1 pseudovirus

(2.4‐fold) and no significant reduction against the B.1.1.7 pseudo-

virus.76 Wibmer et al. found that 48% (21/44) of the neutralizing an-

tibodies isolated from convalescent plasma lost neutralization against

B.1.351.77 Similarly, it is reported that the neutralization susceptibility

of 45% of convalescent plasma against Delta variant was reduced by

approximately 3‐fold to 10‐fold and 5% of convalescent plasma against

Delta variant was reduced by >10‐fold, respectively.33,75 In addition,

the neutralization activity of 30% (6/20) mAbs against the Delta variant

was reduced more than 5‐fold. Interestingly, the neutralization curves

assay found that the neutralizing activity of plasma from individuals

infected with B.1.351 and P.1 showed loss entirely against Delta

variant, suggesting that individuals infected with B.1.351 and P.1 may

be at risk of reinfection with Delta variant.75

1.2.3 | Resistance to antibody‐mediated immunity
elicited by vaccines

Live‐virus and pseudovirus neutralization assays indicated that the

neutralizing activity of sera elicited by some vaccine against

B.1.351variant showed a significant reduction: BNT162b2 (10.4‐

fold),78 Moderna mRNA (6.4–27.7‐fold),79–81 Novavax subunit vac-

cine (14.5‐fold),81 respectively. By contrast, postvaccination serum

elicited by some vaccines exhibited a modest reduction in the neu-

tralizing activity against B.1.1.7: BNT162b2 (less than 3‐fold),78

Moderna mRNA vaccine (2–2.3‐fold),79 Novavax subunit vaccine

(2‐fold).79 In addition, the P.1 variant also showed more significant

decreases with both BNT162b2 (6.7‐fold78) and Moderna mRNA

vaccine (4.5–4.8‐fold)82 postvaccination serum, respectively. Fur-

thermore, it is reported that approximately 15% displayed 3‐fold to

the 10‐fold reduced neutralizing activity of sera elicited by the

BNT162b vaccine against the Delta variant.75,78

Similarly, the neutralization activity of sera elicited by the

inactivated‐virus vaccines‐BBIBP‐CorV (Sinopharm) and CoronaVac

(Sinovac) against B.1.1.7 pseudovirus and B.1.351 pseudovirus was

decreased by 2.0‐fold, 2.5–3.3‐fold, respectively.83 A randomized con-

trolled trial showed that the neutralization activity of sera elicited by

ChAdOx1 adenovirus vector vaccine against B.1.1.7 and B.1.351 live‐

virus was reduced by 2.5–8.9‐fold and 4.1–31.5‐fold, respectively.84

Altogether, mutations in RBD region (K417N/T, S477N, E484K,

F490s) and NTD region (F140del, Y144del, LLA242‐244del) may lead

to the transfer of the antigen spectrum of S protein of SARS‐CoV‐2.

These mutations occur in VOC variants and generate resistance to

mAbs, convalescent plasma, and vaccine, as shown in Figures 1 and 2,

and Table 1. Molecular dynamic simulations have pointed out

“K417N‐E484K‐N501Y” triple mutations induces S protein con-

formational change was greater than N501Y or E484K alone,

allowing the virus‐carrying “K417N‐E484K‐N501Y” triple mutations

to be a more effective escape from the neutralization activity.74 All

these results indicated that B.1.351 variant was most resistant to the

neutralization activity of most mAbs, convalescent plasma, and

postvaccination serum, followed by P.1 variant and B.1.1.7 variant,

primarily due to triple mutations” K417N‐E484K‐N501Y” occur in

B.1.351 variant.

1.3 | The epidemiological characteristics of
“variants of interest (VOIs)” and their key amino acid
mutations

July 1, 2021, theWHO Epidemiological update described sevenVOIs,

namely B.1.427/B.1.429 (Epsilon), Zeta (P.2), Eota (B.1.525), P.3, Iota

(B.1.526), Kappa (B.1.617.1), Lambda (C.37) (WHO (2021a) (https://

www.who.int/en/activities/tracking-SARS-CoV-2-variants/).

1.3.1 | N439K

N439K was located in RBM and present in B.1.258 variant.85 It was

found that the RBD region of Spike carrying N439K mutation could

form a strong noncovalent salt bridge with ACE2, which could en-

hance the binding affinity of spike to ACE2.35 Compared with the

D614G epidemic strain, the neutralization activity of sera elicited by

BNT162B2 vaccine against the variants with N439K mutation was

not significantly changed.80

1.3.2 | S477N

S477N mutation existed in some B.1.526 strains, but it did not co-

exist with E484K mutation simultaneously. Singh et al. found that
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S477N mutation could enhance the binding affinity of spike to ACE2

and can attenuate the neutralization of some mAbs and convalescent

plasma.86

1.3.3 | L452Q, del247‐252, F490S

Recently, Lambda (C.37) was first reported in South America on June

16, 2021.87,88 Lambda showed an several mutation in the spike

protein, including G75V, T76I, del247‐252, L452Q, F490S, D614G,

T859N.89 A preprint from the University of Tokyo revealed that T76I

and L452Q mutations contributed to the higher infectivity. The

RSYLTPGD246‐66 253N mutation, a unique 7‐amino‐acid deletion

mutation in the NTD and F490S, is responsible for evasion from

neutralizing antibodies.90

1.3.4 | Epsilon (B.1.427/B.1.429)

It was reported that in California, the incidence of B.1.427/B.1.429

variants increased from 0% to >50% of sequenced cases from

September 1, 2020, to January 29, 2021, exhibiting an 18.6%–24%

increase in transmissibility relative to wild strains.91 In throat swab

samples, the viral load of B.1.427/B.1.429 was approximately twice

that of the nonmutant virus.92 The neutralization activity of antibody

assays showed B.1.427/B.1.429 variants have 4.0–6.7‐fold and

2.0‐fold reduction in neutralizing titers from convalescent patients

and vaccine recipients, respectively.91 The neutralization activity of

the sera elicited by the Moderna mRNA vaccine and Novavax subunit

vaccine against B.1.427/B.1.429 variant was decreased by 2.0‐fold80

and 2.5‐fold,81 respectively.

1.3.5 | Lambda (C.37)

As of July 6, 2021, Lambda (C.37) variant accounted for about 81% of

new cases and is responsible for the second peak of COVID‐19 in

Peru. It was reported that about a third of new cases were infected

with the Lambda variant in Chile, and this variant accounted for 37%

total of COVID‐19 cases between April 2 and May 19 in Argentina.89

As of July 6, GISAID data showed the Lambda variant had been re-

ported in 31 countries (https://www.gisaid.org; as of July 6, 2021).

One study from the University of Chile also found that the

neutralization activity of the CoronaVac vaccine against Lambda

variant was reduced by 67% than wild strain.93 Another preprint

paper from the University of Tokyo revealed that the Lambda variant

has two abilities associate with the massive infection: increased in-

fectivity and increased immune escape.90 Although, the Lambda

variant was classified as VOI by WHO. Based on all above results,

Lambda variants have a strong potential to cause new massive pan-

demics in the future. However, there are few studies about the

epidemiological characteristics of Lambda variant. It is significant to

understand the biological characteristics of amino acid mutations, the

epidemiological characteristics, and the vaccine efficacy of the

Lambda variant.

1.3.6 | Other VOIs

In contrast to the Delta VOC, the Kappa (B.1.617.1) has not de-

monstrated increased transmissibility. However, the Kappa variant

has a greater ability to evade humoral immunity than the Delta var-

iant. Several studies demonstrated that about 40% had 3‐fold to

10‐fold and 15% had >10‐fold reduced neutralizing activity of con-

valescent plasma against the Kappa variant. Similarly, approximately

55% displayed 3‐fold to the 10‐fold and 5% had >10‐fold reduced

neutralizing activity of sera elicited by an mRNA vaccine against the

Kappa variant.33,75,94 In addition, the P.2 variant is circulating in Rio

de Janeiro, Brazil, and has resulted in two separate clinical cases of

secondary infection.95,96 Geometric mean neutralization titers

against B.1.617.1 were reduced 2.7‐fold (p < 0.0001) for the Pfizer‐

BioNTech vaccine serum and 2.6‐fold (p < 0.0001) for the Oxford‐

AstraZeneca vaccine than wild strain.75

2 | CONCLUSIONS

In this review, we described the characteristics of several amino acid

mutations in RBD, NTD, furin protease cleavage sites, and ORF, in-

cluding D614G, N501Y, L452R, N439K, S477N, HV69‐70del,

E484K/Q, K417N/T, S477N, Y144Del, LLA242‐244Del, P681H/R,

ORF3a mutations, N439K, S477N, L452Q, T76I, del247‐252, F490S.

These mutations alter VOC and VOI variants' biological behavior,

including more transmissibility, higher risk of hospitalization and

mortality, and increased immune escape than wild strain. What is

more, the Delta variant may be more transmissible and has a higher

risk of hospitalization and mortality than other VOC variants (B.1.1.7,

B.1.351, and P.1 variant).
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