Skip to main content
. 2021 Dec 4;21(23):8114. doi: 10.3390/s21238114

Table 4.

Parameters of the proposed CNN model.

Model: “Sequential”
Layer (type) Output Shape Parameter #
conv2d (Conv2D) (None, 64, 64, 32) 2432
max_pooling2d (MaxPooling2D) (None, 32, 32, 32) 0
conv2d_1 (Conv2D) (None, 32, 32, 32) 9248
max_pooling2d_1 (MaxPooling2D) (None, 16, 16, 32) 0
conv2d_2 (Conv2D) (None, 16, 16, 64) 18,496
max_pooling2d_3 (MaxPooling2D) (None, 8, 8, 64) 0
conv2d_3 (Conv2D) (None, 8, 8, 96) 55,392
max_pooling2d_3 (MaxPooling2D) (None, 4, 4, 96) 0
flatten (Flatten) (None, 1536) 0
dense (Dense) (None, 512) 786,944
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 256) 131,328
dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 10) 2570
Total parameters: 1,006,410
Trainable parameters: 1,006,410
Non-trainable parameters: 0