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Abstract

The pervasion of three daily meals and snacks is a relatively new introduction to our shared 

experience, and is coincident with an epidemic rise in obesity and cardiometabolic disorders of 

overnutrition. The past two decades have yielded convincing evidence regarding the adaptive, 

protective effects of calorie restriction (CR) and intermittent fasting (IF) against cardiometabolic, 

neurodegenerative, proteostatic and inflammatory diseases. Yet, durable adherence to intensive 

lifestyle changes is rarely attainable. New evidence now demonstrates that restricting carbohydrate 

entry into the hepatocyte by itself mimics several key signaling responses and physiological 

outcomes of IF and CR. This discovery raises the intriguing proposition that targeting hepatocyte 

carbohydrate transport to mimic fasting and caloric restriction can abate cardiometabolic and 

perhaps other fasting-treatable diseases. Here, we review the metabolic and signaling fates of a 

hepatocyte carbohydrate, identify evidence to target the key mediators within these pathways, and 

provide rationale and data to highlight carbohydrate transport as a broad, proximal intervention to 

block the deleterious sequelae of hepatic glucose and fructose metabolism.
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INTRODUCTION

Long before three daily meals and interceding snacks became part of modern industrialized 

life, the Ancient Romans viewed consumption of more than one meal daily to be a form 

of gluttony, and monastic practices of the Middle Ages forbade food consumption prior 

to morning Mass (Denise Winterman, BBC News Magazine, 2012). The act of “breaking 

fast”, only became a widespread, shared practice across social classes during the Industrial 

Revolution, initially as a means to sustain day laborers through long workdays in the 

mid-1800s.

In contrast with the practice of three meals, caloric restriction and intermittent fasting (CR 

and IF), have long been known to exert therapeutic effects on healthspan and lifespan in 

animals from worms to humans (1). In real-world clinical contexts, however, implementing 

and sustaining such lifestyle changes has proven to be difficult. As a result, we have yet to 

fully leverage this biology to mitigate a range of fasting-responsive human diseases. Recent 
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provocative data now demonstrate that restricting carbohydrate entry into the hepatocyte 

recapitulates several key metabolic effects of CR and IF (2–14). This raises the possibility 

that fasting mimetic therapies that target hepatocyte carbohydrate metabolism may be viable 

treatments against metabolic disease, including non-alcoholic fatty liver disease, and type 2 

diabetes mellitus (15). The purpose of this review is to briefly examine the metabolic fate of 

a carbohydrate in the hepatocyte, define downstream hepatocyte carbohydrate signaling, and 

then finally focus on promising nodes within this axis to leverage against metabolic disease.

Clinical utility of CR, IF, and reduced dietary carbohydrate

IF and CR exert manifold protective metabolic effects in rodents and in humans (16, 

17). This includes broadly adaptive effects on hepatic steatosis and inflammation, insulin 

resistance, and cardiovascular disease (1, 16, 18–29). These effects occurred independently 

of whether the intervention consisted of chronic daily caloric restriction, or of a fast:fed 

intermittent fasting of 5:2 days, 16:8hr, or 18:6hr. Furthermore, IF exerts several key 

effects, even when controlled for caloric intake, and even in the absence of weight loss. For 

example, 18h intermittent fasting for five weeks reduce insulin resistance, blood pressure, 

oxidative stress and appetite without lowering weight in pre-diabetic men, when compared 

with men consuming an isocaloric diet instead over a 12h timespan (23, 29). Together, these 

observations suggest that IF and CR in humans improve cardiometabolic function.

In parallel, a significant body of data interrogating specific macronutrient withdrawal has 

come to light. Whereas low-fat foods surged in popularity over the preceding decades 

amidst an unprecedented rise in obesity in the United States, recent studies have examined 

the metabolic effects of dietary carbohydrate restriction. Carbohydrate-selective restriction 

overall appears to improve circulating lipids, glucose and insulin tolerance with equal or 

greater efficacy as compared with calorie restriction and low-fat intervention. This seems 

to hold true in varied populations. For example a randomized trial of ketogenic diet 

(KD) in both obese men and women demonstrated that the low carbohydrate, high-fat, 

high-protein diet was equally efficacious when compared to a low calorie, low-fat, high-

carbohydrate diet with regard to lowering diastolic BP and improving glucose tolerance. 

In addition, the low-carbohydrate diet produced lower initial weight loss, and increased 

HDL and lowered TG in ketogenic diet-treated subjects when compared with those on a 

low-calorie, low-fat diet (30). In 132 severely obese subjects with a high prevalence of 

diabetes or metabolic syndrome, patients on a carbohydrate-restricted diet lost more weight, 

and exhibited improved insulin sensitivity and triglycerides when compared with subjects 

on a low-fat diet (31). In overweight, dyslipidemic subjects, KD was more effective than a 

calorie-restricted, low-fat diet at reducing endogenous lipogenesis, insulin resistance, body 

weight, adiposity, and dyslipidemia (32). In obese females without co-morbidities, a very 

low carbohydrate diet was more efficacious in reducing body weight, raising HDL and 

ketones without adversely affecting other cardiometabolic risk factors when compared with 

calorie-restricted low-fat diet (33). Similarly, when compared with calorie restriction and 

Mediterranean diet interventions, low-carbohydrate diets produced the most weight loss, 

and had the most favorable effects on lipid profiles in moderately obese human subjects 

over a 2-year period (34). Moreover, in children with NAFLD, low-glycemic index foods 

reduced systolic blood pressure, plasma ALT, and insulin resistance indices (HOMA-IR) 
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after 3- and 6-months treatment (35). In mice, ketogenic diets reduce circulating lipids, 

intrahepatic lipids, and insulin resistance markers (36), and improve cardiac function during 

heart failure (37). In balance of these findings, low-carbohydrate diets in some contexts do 

not outperform other forms of caloric restriction (38). Nevertheless, data from human and 

mouse models indicate the efficacy of carbohydrate-specific withdrawal, and substantiate 

further investigation into how carbohydrates regulate metabolic function, and the extent to 

which targeting carbohydrate metabolism is a therapeutically viable option.

The fate of a carbohydrate in the hepatocyte

The liver sits at the nexus of portal and venous circulations. In this position, the hepatocyte 

negotiates an organism’s present and immediate future systemic energetic status. In light 

of promising data to suggest that dietary carbohydrate is an important determinant of 

cardiometabolic risk, significant efforts have focused on carbohydrate metabolism in the 

liver, and its subsequent host effects.

Carbohydrate entry into the hepatocyte occurs via at least two primary facilitative 

transporters in the glucose transporter (GLUT) family of solute carrier proteins (Figure 

1) (39, 40). These are GLUT2 (encoded by the Slc2a2 gene) and GLUT8 (encoded by the 

Slc2a8 gene), each of which transports glucose and fructose, among other carbohydrates 

(39, 40). GLUT2 is a high-capacity, low-affinity glucose, fructose, and galactose transporter 

(39). Its rapid transport kinetics are tuned such that its substrate concentrations quickly 

equilibrate with the extracellular fed, fasting, or diabetic milieu. GLUT2 is the most highly 

expressed liver GLUT, and accordingly, its activity comprises the majority of carbohydrate 

flux into the hepatocyte (39). In contrast GLUT8 is a high-affinity, low-capacity facilitative 

carrier of glucose, fructose, galactose, and possibly trehalose (39, 41–45). GLUT8 mediates 

only about 20–25% of hepatocyte glucose transport (44), and it differs from GLUT2 most 

prominently in that it localizes both to plasma membrane and intracellular organellar 

membranes (43, 44, 46–48), although its intracellular functions are not fully understood. 

Together, these two transporters mediate the preponderance of carbohydrate entry into the 

hepatocyte cytoplasm.

Glucokinase (GCK) and glucokinase regulatory protein (GCKRP) represent the first 

regulatory step following facilitative diffusion into the hepatocyte (49). GCK (hexokinase 

IV) phosphorylates glucose to glucose-6-phosphate (G6P), which attenuates glucose 

excursion to the cell exterior. Indeed, this is a highly regulated step, mediated in large 

part by GCK regulatory peptide (GCKRP). This enzyme binds and inhibits GCK to attenuate 

GCK-mediated glucose phosphorylation and subsequent hepatocyte glycolytic metabolism 

(50, 51). This regulation is particularly critical, because glucose conversion to G6P also 

might be a rate-limiting step for glycolysis in hepatocytes (49).

Glucose-6-phosphate subsequently has both signaling and catabolic functions (Figure 1) 

within the hepatocyte (52). In the post-prandial hepatocyte, G6P undergoes glycolysis, and 

is converted to pyruvate to generate fatty acids via de novo lipogenesis, or it is converted 

to UDP-glucose, and stored as glycogen (53). First, following G6P conversion to pyruvate 

through glycolysis, pyruvate is either converted to lactate by lactate dehydrogenase, or 

transported into the mitochondrial matrix via the mitochondrial pyruvate carrier (MPC) 
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(54). After entry into the mitochondrion, mitochondrial pyruvate metabolism is important 

for de novo lipogenesis. Pyruvate can be carboxylated to produce oxaloacetate (anaplerotic 

metabolism) or oxidized to acetyl-CoA (catabolic metabolism), and both play a role in 

de novo lipogenesis (54–56). Moreover, pyruvate carboxylation is important for producing 

new glucose via gluconeogenesis and cholesterol synthesis (54, 56, 57). Second, from 

a metabolic signaling standpoint, ATP generated by G6P catabolism suppresses AMPK 

activity, to contribute to hepatic steatosis and obesity (7, 8, 58). In addition, G6P 

and potentially other metabolites activate a key carbohydrate sensor in hepatocytes, 

the carbohydrate response element binding protein (ChREBP) (59). Activated ChREBP 

transcriptionally activates genes of de novo lipogenesis (Figure 1) (60).

Although glucose and fructose both ultimately activate ChREBP, fructose and glucose 

entering the hepatocyte take initially divergent metabolic pathways. These key differences in 

initial fructose and catabolism are considered to mediate their distinct physiological sequelae 

(5, 6, 61–63). Whereas GCK phosphorylates free glucose to G6P, ketohexokinase (KHK) 

phosphorylates free fructose to fructose-1-phosphate (F1P) upon entry into the hepatocyte. 

Aldolase B catabolizes F1P to generate dihydroxyacetone phosphate (DHAP) and (after the 

triose kinase or triose phosphate isomerase reactions) glyceraldehyde-3-phosphate (GA3P). 

GA3P is the common metabolite in glycolysis at which glucose and fructose metabolism 

converge.

At least two additional points of divergence exist when comparing fructose metabolism 

with glucose metabolism. First, KHK is an ATP-dependent enzyme, and AMP generated in 

the KHK reaction provides substrate for AMP-deaminase, a committed enzymatic step in 

uric acid synthesis (61). Both decreased intracellular [phosphate] and F1P allosterically 

activate AMP deaminase to exacerbate uric acid generation, which predisposes the 

host to cardiometabolic syndrome unless cleared by the kidney or intestine (64–67). 

A second divergence between fructose and glucose metabolism is that carbon from 

F1P is used to produce the triacylglycerol backbone, glycerol-3-phosphate (G3P). This 

occurs via concerted catalysis of aldolase B and glyceraldehyde phosphate dehydrogenase 

(GAPDH). TAGs are exported systemically in the form of VLDL, which by itself portends 

cardiometabolic risk (68). Overall, the divergence between fructose and glucose metabolism 

may explain added risk in response to intracellular fructose (6).

Carbohydrate-Induced Pathways as Targets for Metabolic Intervention

Our current understanding of hepatocyte carbohydrate metabolism and signaling gives us 

glimpses into therapeutic targets against metabolic disease (Table 1). We have alluded to the 

hepatic and extrahepatic metabolic effects of hepatocyte GLUT deletion (11, 44, 69, 70), and 

will discuss this specific therapeutic approach in greater detail in a subsequent section.

Glucokinase may be an attractive target, because it is a proximal enzyme that links 

glucose influx with glycolysis and downstream metabolism, such as glycogen synthesis and 

lipogenesis. This is highlighted by data that pharmacological GCK activation as a method to 

treat type 2 diabetes mellitus produces hypoglycemia, hyperlipidemia and hepatic steatosis 

(71). Genetic GCK overexpression similarly increased hepatic triglyceride deposition, and 

induced hyperglycemia, hyperinsulinemia, insulin resistance and glucose intolerance in 
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mice (72). Conversely, liver-specific GCK-deficient mice have decreased hepatic glycogen 

content (73, 74), and reduced de novo lipogenic gene expression in liver, including pyruvate 

kinase and fatty acid synthase (73). However, GCK heterozygous mice develop fasting 

hyperglycemia (73) and liver-specific GCK-knockout mice also exhibited impaired glucose 

tolerance. Thus, targeting GCK to treat NAFLD may not be ideal, since many patients with 

NAFLD are also insulin resistant and/or diabetic, and inhibiting GCK has the potential to 

exacerbate these conditions.

GCKR encodes the GCK regulatory protein, GCKRP. This protein inhibits glucose trapping 

and metabolism by binding and inhibiting GCK. Therefore it is unsurprising that the GCKR 

locus is associated with NAFLD in humans (68, 75, 76). More specifically, polymorphisms 

that prevent GCKRP-GCK binding (e.g. P466L) result in lower plasma glucose, and 

increased hepatic steatosis, circulating triglycerides and cholesterol in human subjects (68, 

77, 78). Similarly, pharmacologically disrupting the GCKRP and GCK interaction lowered 

circulating glucose and increased respiratory exchange ratio (RER) in Zucker diabetic rats. 

The data indicate a switch from fat oxidation to a glucose oxidative predilection (79), 

although direct measurements of circulating or intrahepatic lipid contents are not reported. 

Overall, the data point to an important glucose homeostatic function for the interaction 

between GCK and GCKRP. However, understanding how to optimally target this segment of 

hepatocyte glucose metabolic pathway is required, due to the delicate, inverse relationship 

between GCK activity and hepatic steatosis.

In regard to fructose metabolism, recent promising pre-clinical and clinical demonstrations 

suggest that proximal fructose metabolism blockade improves hepatic and peripheral energy 

metabolism. KHK regulates the first committed step in fructose metabolism upon entry 

into the hepatocyte cytoplasm. There are two major KHK isoforms, a minor A-isoform, 

and a major C isoform. KHK-A and KHK-C deletion together, germline whole-body KHK-

C deletion, and liver-specific KHK-C knockdown each block fructose-induced metabolic 

dysfunction in multiple models (6, 80, 81). These data suggest that targeting dual KHK-A/C 

isoforms, or single-isoform KHK-C alone is a viable therapeutic strategy against metabolic 

disease. This is underscored by recent phase 2 clinical trial data, which demonstrate 

that pharmacologic KHK inhibition reduces hepatic steatosis, as measured by magnetic 

resonance imaging proton density fat fraction in patients with NAFLD (82). In contrast, 

patients with aldolase B deficiency have increased intrahepatic lipid content (83), and 

genetic aldolase B inhibition in mice phenocopies hereditary fructose intolerance in humans. 

Data by Lanaspa and colleagues recently implicated the product of KHK enzymatic 

action, fructose-1-phosphate (F1P), as a potential mechanistic link that explains differential 

outcomes due to aldolase B and KHK targeting (80). They showed that aldolase B deletion 

exacerbated fructose-induced hepatic TG and uric acid accumulation. In contrast deleting 

KHK-C reversed these detrimental effects of aldolase B on fructose-induced metabolism, 

indicating that F1P availability in hepatocytes may be deleterious (80). Thus, aldolase B 

targeting has not been a major focus for clinical development against metabolic disease (84, 

85).

Anaerobic metabolism of both glucose and fructose generates pyruvate, which can enter 

the mitochondrion via a carrier-mediated mechanism. The mitochondrial pyruvate carrier 
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(MPC) is composed of two proteins, MPC1 and MPC2, which form a heterodimer in 

the inner mitochondrial membrane. Liver-specific MPC1 or MPC2 deletion or knockdown 

improved basal hyperglycemia and glucose tolerance in high-fat diet-fed or genetically 

obese db/db mice (86). It is likely that these effects were mediated, at least in part, 

by blocking pyruvate entry into the gluconeogenic pathway, since that requires pyruvate 

carboxylation in the mitochondrial matrix (86). Acute pharmacological MPC blockade 

by the novel PPARγ-sparing thiazolidinedione, MSDC-0602, also attenuated diet-induced 

insulin resistance, glucose tolerance (87) and hepatic steatosis, inflammation, and fibrosis in 

mice (56, 88–90). In patients with NASH with or without insulin resistance, MSDC-0602 

lowered glycated hemoglobin, circulating insulin, and serum transaminases, but failed to 

affect NASH histology (91). Moreover, although such data are not yet published in liver, 

MPC inhibition by MSDC-0160 in neurons induces autophagic flux and compensatory 

branched chain amino acid catabolism (92). Together, the data suggest that pyruvate 

transport is the mitochondrial extension of glycolytic flux, and inhibiting substrate 

catabolism at any of these catabolic steps induces compensatory changes that benefit host 

metabolism. In addition, the broad, adaptive effects of acute inhibition, and corroborating 

genetic data highlight an important role for the hepatic MPC in peripheral and hepatic 

glucose and lipid homeostasis, and hepatic inflammation.

Restricting hepatocyte carbohydrate entry mimics the broader effects of fasting

The above data demonstrate tremendous advances in understanding hepatocyte glucose 

and fructose intermediary metabolism and signaling. To add to this, preventing hepatocyte 

carbohydrate entry prior to commitment into glycolysis, fructolysis and downstream 

signaling merits its own consideration as a viable target to prevent and treat metabolic 

disease. Our group and others recently examined some of the molecular intermediaries 

that convey the effects of hepatocyte carbohydrate restriction. In this section, we briefly 

review the rationale to translate this particular therapeutic approach, define intermediaries 

and mechanisms that are activated upon blocking carbohydrate entry, and delineate future 

considerations for study in hepatocyte glucose fasting.

Rationale to target hepatocyte carbohydrate transport—A primary goal of fasting 

physiology is to provide glucose and ketones to the brain (17). To that end, the hepatocyte 

switches to anabolism to generate glucose via glycogenolysis and gluconeogenesis, and to 

generate ketones from fatty acids. It then follows that the absence or paucity of glucose 

entering the hepatocyte activates homeostatic pathways that signal fasted status to the 

periphery. These peripheral carbon sources for the latter processes are fatty acids from 

peripheral adipose stores, and alanine derived from skeletal muscle (17). Aoki, Cahill and 

colleagues provided some of the early human data to suggest that glucose determines the 

systemic (and hepatocyte) fasting response in classical experiments (93). In this experiment, 

Glucose feeding was sufficient to maintain circulating insulin, and suppress ketogenesis 

and peripheral lipolysis even in the context of profound caloric restriction. Even after 

three weeks of starvation, 150 g / day glucose (~70% calorie restriction) by itself raised 

serum insulin, and suppressed hepatic ketogenesis and urea nitrogen excretion. The data 

underscore that, even during starvation and severe caloric restriction, minimal amounts 

of glucose are sufficient to abrogate the fasting response. A substantial body of data 
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have accumulated to demonstrate that both endocrine and cell-autonomous hepatocyte 

regulation direct ketogenesis, gluconeogenesis, glycogenolysis, and the peripheral lipolysis 

and glucose-alanine cycling that fuel these processes. Our focus here will remain on cell-

autonomous substrate regulation of hepatocyte glucose transport, because this process is 

quite directly amenable to small-molecule therapeutics.

Cellular Consequences of Hepatocyte Carbohydrate Restriction—Blocking 

carbohydrate entry activates autophagy primarily by AMPK-dependent (7, 94, 95) and 

potentially AMPK-independent pathways (Figure 2) (96). This activates homeostatic 

processes to correct for this perturbation. First, the hepatocyte activates autophagic flux 

to recycle damaged or misfolded proteins as a means to free substrate to meet subsequent 

energy demands (7, 8, 13, 14, 97, 98) in part by direct AMPK stimulatory phosphorylation 

of Beclin 1 (99) and unc52-like kinase 1 (ULK1) (94, 95, 100). Secondly, glucose 

deprivation activates ER and oxidative stress-responsive pathways, and this includes GRP78 

(101, 102), NRF2/KEAP1, and AMPK alpha 2 (103) pathways (104). Distally, glucose 

deprivation activates several key transcriptional regulators, including TFEB (105–107), 

PGC1α (108–110), and PPARα (111). These factors activate lysosomal biogenesis and 

fat oxidative transcriptional programs to coordinate the metabolic switch from glucose to 

autophagy-derived macromolecules and fat. In addition, glucose-stimulated ATP production 

regulates the redox state through NAD+/NADH levels to activate the deacetylase sirtuin 

family member, SIRT1, which deacetylates and activates PGC1α and the stress-responsive 

factor, FOXO1 (112). Finally, we identified non-canonical fasting mediators of hepatocyte 

glucose-specific restriction (10, 113), including the lipoxygenase, Aloxe3 and the arginine 

ureahydrolase, Arg2. Both genes are induced by macronutrient withdrawal, fasting, and 

trehalose and LT treatment in vivo and in vitro, and mediate aspects of the hepatocyte fasting 

response (10, 113).

Carbohydrate withdrawal therefore exerts important molecular changes within the 

hepatocyte. This suggests that methods to target hepatocyte cytosolic carbohydrate excursion 

via GLUT2 and GLUT8 have translational value. In the liver-specific GLUT2 knockout 

model (LG2KO), liver fluorodeoxyglucose uptake was blunted when compared with uptake 

in WT mice (69), but increased skeletal muscle glucose uptake renders basal glycemia in 

these mice unchanged when compared with wild-type mice. Moreover, although the role 

of hepatocyte GLUT2 in obese or diabetic models has not been reported, LG2KO mice 

had decreased fasting cholesterol biosynthesis and were protected from fasting-induced 

steatosis. This phenotype was attributed to lower glucose substrate entry to fuel lipid droplet 

deposition. These adaptations were observed despite paradoxically higher expression of 

ChREBP and its target lipogenic and glycolytic genes, and despite progressive pancreatic 

β-cell dysfunction over time in LG2KO mice versus WT mice (69). Accordingly, GLUT8 

deletion attenuated radiolabeled hepatocyte fructose uptake, fructose-induced ChREBP 

activation, de novo lipogenic gene expression, and triacylglyerol synthesis when compared 

with wild-type cultured primary murine hepatocytes (44). In addition, germline whole-body 

GLUT8-deficient mice were protected from high-fat and high-fructose diet-induced hepatic 

steatosis, dyslipidemia and glucose intolerance without any obvious chronic maladaptive 
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metabolic sequelae reported, in comparison with WT littermates. These effects were 

mediated in part by enhanced fasting-induced hepatic PPARα activity (11, 44, 70, 114).

Pharmacological studies of restricted hepatocyte carbohydrate entry largely recapitulate 

the metabolic effects of hepatocyte GLUT deficiency. In particular the disaccharide 

glucose mimetics trehalose and lactotrehalose (LT) are useful probes to define the effects 

of hepatocyte GLUT blockade (7, 8, 13, 14, 98, 115–118). Both disaccharides block 

enterohepatic glucose transport (GLUT) (7, 8, 13, 14, 98), thus offering a window 

into acute effects of enterohepatic GLUT blockade. Trehalose and LT reduced fructose-

induced hepatic steatosis and induced hepatocyte fasting response signals, PGC1α, 

TFEB and FGF21. Extrahepatic cardiometabolic effects of these compounds are broad, 

including peripheral insulin sensitization (119), activating peripheral thermogenesis, reduced 

adipocyte hypertrophy (120, 121), in addition to reduced atherosclerotic plaque lesion 

area (27, 122) and pathological cardiac remodeling in response to injury (123, 124), 

that mimicked ketogenic dietary effects on heart failure (37). Treating liver-specific 

GLUT8-deficient mice with oral trehalose did not increase the efficacy of trehalose on 

diet-induced hepatic steatosis, which implies some mechanistic overlap between GLUT8 

deletion and trehalose action (98). Restricting carbohydrate entry into the hepatocyte thus 

exerts hepatic and extrahepatic therapeutic adaptative effects. The complex interactions 

between hepatocyte glucose transport and extrahepatic tissues therefore justify much deeper 

exploration into both the potential limitations and the physiologic and signaling adaptations 

of hepatocyte GLUT-specific targeting.

By corollary, detailing the intracellular consequences of hepatocyte carbohydrate restriction 

may illuminate novel therapies against both hepatic and extrahepatic metabolic disease. For 

example, hepatocyte glucose restriction induces ALOXE3, a lipoxygenase that metabolizes 

arachidonic acid intermediaries to enhance peripheral insulin sensitivity, thermogenesis 

and reduce hepatic steatosis in genetic and diet-induced obese models (113). In addition, 

Arg2 is upregulated during fasting, and we postulate that the purpose of this is to handle 

the excess liver nitrogen load to fuel gluconeogenesis (17). Forced Arg2 expression in 

hepatocytes improved insulin resistance, heat generation and hepatic insulin sensitivity in 

genetic and diet-induced obese models. These actions depended upon an inverse relationship 

with the hepatocyte regulator of G-protein signaling (RGS) protein, RGS16, although more 

detailed mechanisms of this axis remain to be fully explored. Elucidating new pathways that 

hepatocyte glucose restriction activates will continue to offer novel leverage points for new 

metabolic therapies.

FUTURE DIRECTIONS AND CONCLUSIONS

The metabolic efficacy of IF and CR are widely recognized across basic scientific, medical, 

and popular domains (1, 16, 22), but the mechanisms and full breadth of utility for 

therapeutic hepatocyte glucose transport restriction are only beginning to be elucidated. 

In addition to unbiased screening approaches, we can look to the paradigm process 

of fasting itself to point us to mechanisms under carbohydrate control. On this basis, 

hepatocyte glucose transport restriction and its effects on other core fasting-regulated 

processes remain prime opportunities for future investigation (Figure 2). This includes, in 
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particular, hepatocyte glucose-specific withdrawal and its effects on NAD+ metabolism and 

circadian rhythm (1, 22, 125–127). Lastly, it should be recognized first that the observations 

regarding effects hepatocyte glucose restriction might not merely represent a subset of 

the generalized fasting response. Rather, there are likely to be pathways unique to glucose-

specific restriction that are key leverage points for therapy. Secondly, glucose restriction 

might share pathways with other adaptive processes, such as cold thermogenesis (128–131). 

Notably, if hepatocyte glucose restriction incites a distinct adaptive response, this opens 

the exciting possibility that this pathway can be utilized additively or synergistically with 

other distinct leverage points in fasting-like signaling. Certainly, in the face of the ongoing 

epidemics of obesity, diabetes and NAFLD, the future certainly has never looked sweeter.
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AldoB aldolase B
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AMPK AMP-activated protein kinase

Arg2 arginase 2

ChREBP carbohydrate response element binding protein

CR caloric restriction

FOXO forkhead box transcriptiion factor O

GCK glucokinase

GCKRP glucokinase regulatory protein

GLUT glucose transporter

IF intermittent fasting

KHK ketohexokinase

MPC mitochondrial pyruvate carrier

mTOR mechanistic target of rapamycin

NAD+ nicotinamide adenine dinucleotide

NAFLD non-alcoholic fatty liver disease

PGC1α peroxisome proliferator antigen receptor gamma coactivator 1α

PPAR peroxisome proliferator antigen receptor
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RGS regulator of G-protein signaling 16

SIRT1 sirtuin1

TFEB transcription factor EB
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Figure 1. 
Post-prandial glucose and fructose fates inside the hepatocyte. In the fed state, glucose and 

fructose are transported into the hepatocyte via the glucose transporter, and then catabolized 

to glucose-6-phosphate or fructose-1-phosphate, by glucokinase and ketohexokinase 

respectively. Left, Glucose-6-phosphate is catabolized via glycolysis to pyruvate. Glucose-6-

phosphate also induces de novo lipogenic gene transcription by activating the transcription 

factor, Carbohydrate response element binding protein. Glucokinase regulatory protein 

regulates glucose catabolism overall by suppressing glucokinase activity. Right, The 

ketohexokinase reaction generates fructose-1-phosphate, from which aldolase B initiates 

fructolytic conversion toward pyruvate, triacylglycerol, and ultimately VLDL synthesis. 

Pyruvate from glycolysis and fructolysis is catabolized to lactate, or it is transported via 

the mitochondrial pyruvate carrier to undergo oxidative metabolism in the mitochondrion. 

ATP production inhibits a key fasting regulator kinase, AMP-activated protein kinase. The 

ketohexokinase reaction also generates ADP, which is further catabolized to AMP. This 

provides substrate, which is shunted toward uric acid production via AMP deaminase. Dark 

grey enzymes are selective to the glucose-metabolic pathway. Light blue-colored enzymes 

represent fructose-selective catabolic pathways. Dark blue-colored enzymatic pathways 

represent common points of intervention in carbohydrate metabolism. Abbreviations: 

AldoB, aldolase B; AMPK, AMP-activated protein kinase; ChREBP, carbohydrate response 

element binding protein; CR, caloric restriction; FOXO, forkhead box transcriptiion factor 

O; G6P, glucose-6-phosphate; F1P, fructose-1-phosphate; GCK, glucokinase; GCKRP, 

glucokinase regulatory protein; GLUT, glucose transporter; KHK, ketohexokinase; MPC, 

mitochondrial pyruvate carrier; PPAR, peroxisome proliferator antigen receptor; TAG, 

triacylglycerol; TCA cycle, tricarboxylic acid cycle; VLDL, very low density lipoprotein.
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Figure 2. 
Some of the key signaling pathways that are activated upon hepatocyte glucose withdrawal, 

or GLUT blockade. Fasting, and treatment with glucose transporter inhibitors reduce 

hepatocyte ATP production, and activate key fasting-mimetic signaling pathways, which 

are metabolically protective to the host. These pathways include induction of autophagy 

to recycle aging or damaged organelles and proteins to be used as fuel, inhibition of 

mechanistic target of rapamycin (mTOR) and carbohydrate response element binding 

protein, and activation of AMP-activated protein kinase. These serve as key proximal fasted-

state intracellular sensors. Downstream fasting-like signals upon suppressed carbohydrate 

entry include peroxisome proliferator antigen receptors α and γ, arachidonate lipoxygenase 

3, peroxisome proliferator antigen receptor gamma coactivator 1α;, arginase 2 and sirtuin 

1, transcription factor EB, and release of fibroblast growth factor 21 and ketones into the 

peripheral circulation. The full mechanisms by carbohydrate withdrawal activates these 

signals, and the full consequences of their activation, however, remain subjects of continued 

investigation. Dashed arrows: secreted factor. Abbreviations: ALOXE3, arachidonate 

lipoxygenase 3; AMPK, AMP-activated protein kinase; Arg2, arginase 2; ChREBP, 

carbohydrate response element binding protein; FGF21, fibroblast growth factor 21; GLUT, 

glucose transporter; mTOR, mechanistic target of rapamycin; NAD+, nicotinamide adenine 

dinucleotide; PGC1α, peroxisome proliferator antigen receptor gamma coactivator 1α; 
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PPARα, peroxisome proliferator antigen receptor; RGS16, regulator of G-protein signaling 

16; SIRT1, sirtuin1; TFEB, transcription factor EB.
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TABLE 1.

Summary of outcomes upon targeting glucose intermediary metabolism. Outcomes described (if reported in 

the cited study) are: glucose homeostasis, lipid homeostasis, and other important readouts.

Study 
Ref. Target Targeting Method Disease Model Outcome Measures

(targeted relative to untargeted control)

69 GLUT2 Liver-specific KO Fast (24h)-refeed 
versus fast alone

• Decreased hepatic glucose uptake. no change 
in hepatic glucose output. Progressive glucose 
intolerance and impaired glucose-stimulated insulin 
secretion.

• Reduced cholesterol biosynthesis-related hepatic 
gene expression. Increased hepatic VLDL secretion, 
decreased fasting-induced steatosis.

• Normal thermogenesis in LG2KO mice.

7 GLUTs 
(non-

specific)

Trehalose 60% fructose diet 
(10 days)

• Reduced plasma and hepatic TG and cholesterol, 
reduced hepatic de novo lipogenic gene expression.

• Increased hepatic autophagy.

9 GLUTs 
(non-

specific)

Lactotrehalose 60% fructose diet 
(10 days)

• Reduced hepatic steatosis, de novo lipogenic gene 
expression markers.

• Increased thermogenesis, increased plasma FGF21.

11 GLUT8 GLUT8 Antisense 
oligonucleotide

Ad libitum fed 
vs. 12–24h 
fasting

• Increased relative heat generation in ad libitum-fed 
and fasted mice treated with GLUT8 ASO.

11 GLUT8 Whole-body KO Ad libitum fed 
vs. 12–24h 
fasting

• Increased heat generation in ad libitum-fed- and 
fasted GLUT8 KO mice. PPARα-dependent increases 
in serum β−hydroxybutyrate and FGF21 in fasted 
GLUT8 KO mice.

44 GLUT8 Whole-body KO 60% fructose diet 
(24wk)

• Reduced hepatic steatosis in GLUT8 KO mice. 
Decreased fructose-induced de novo lipogenic gene 
expression. Decreased TAG synthesis and fat 
oxidation in isolated hepatocytes.

70 GLUT8 Whole-body KO 60% fructose diet 
(24wk)

• Improved glucose tolerance and insulin sensitivity in 
HFrD-fed GLUT8 KO.

• Decreased plasma TG.

• Increased heat generation in chow- and HFrD-fed 
GLUT8KO mice.

72 GCK Hepatocyte-specific 
overexpression

Chow vs. 42% 
High-fat diet 
(12wk)

• Mild hyperglycemia, glucose intolerance. Decreased 
liver glycogen in chow-fed GCK transgenic 
mice. Exacerbated HFD-induced hyperglycemia and 
hyperinsulinemia, steatosis and insulin resistance.

• Increased liver TG accumulation in chow-fed 
transgenic mice. Exacerbated high-fat diet-induced 
hepatic steatosis in transgenic mice.

74 GCK Hepatocyte-specific 
KO

No perturbation • Impaired glucose tolerance. Deceased hepatic 
glycogen content in GCK LKO mice.

73 GCK Hepatocyte-specific 
haploinsufficiency

• Decreased hepatic glycogen content in GCK 
heterozygous mice.

• Lower PEPCK mRNA in GCK heterozygous mice.
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79 GCKR-
GCK 

interaction

Small molecule 
inhibitors: 
AMG-1694 
AMG-3969

ob/ob, db/db, or 
60% fat diet 
(12wk)

• Lower blood glucose in AMG-3969-treated obese 
mice vs. congenic controls. Switch to glucose 
oxidative metabolism in AMG-3969 and AMG-2694-
treated mice by indirect calorimetry.

6 KHK Liver-specific KHK 
siRNA

60% high-fat diet 
+ 30% glucose 
water or fructose 
water (10wk)

• Improved glucose tolerance after KHK knockdown in 
HFD+H2O, HFD+glucose and HFD+fructose mice.

• Decreased hepatic steatosis in KHK knockdown mice 
on HFD+H2O, HFD+glucose, and HFD+fructose.

80 KHK-A/C
KHK-A

Whole-body KHK 
deletion
Whole-body KHK-A 
deletion

AldoB KO ± 
Fructose water 
AldoB KO ± 
Fructose water

• KHK deletion corrected fructose-induced 
hypoglycemia.

• KHK deletion reduced fructose-induced hepatic 
inflammation, fibrosis.

• KHK deletion, but not KHK-A deletion, 
reduced acute fructose-induced hyperuricemia and 
transaminase elevation.

81 KHK-A/C
KHK-A

Whole-body KHK-
A/C deletion
Whole-body KHK-A 
deletion

15–30% fructose 
water (25wk)

• KHK-A/C deletion blocked fructose-induced 
hyperglycemia, hyperinsulinemia. KHK-A-specific 
deletion exacerbated these outcomes.

• KHK-A/C deletion blocked fructose-induced hepatic 
steatosis, de novo lipogenic gene expression, weight 
gain, and epididymal fat accumulation. KHK-A-
specific deletion exacerbated these outcomes.

• KHK-A/C deletion reversed fructose-induced 
suppression of plasma β-hydroxybutyrate.

86 MPC1 Germline MPC1 LKO 60% high-fat diet 
(10–22wk)

• No change in basal glucose and insulin tolerance 
in chow-fed conditions. Improved glucose tolerance 
without changes in insulin tolerance in germline HFD-
fed MPC1 LKO mice.

• Nocturnal switch toward greater fat oxidation by 
indirect calorimetry in MPC1 LKO mice.

86 MPC1 Acute AAV8-Cre-
mediated MPC1 
deletion

• Improved glucose and insulin tolerance in HFD-fed 
acute liver MPC1 KO mice. Lower fasting glucose 
and insulin in acute liver MPC1 KO mice

87 MPC1/2 MSDC-0602 ob/ob or 60% 
high-fat diet (10–
12wk)

• Lower fasting insulin, improved fasting glucose 
and glucose and insulin tolerance in MSDC-0602-
treated ob/ob mice. Higher (e.g. improved) glucose 
infusion rate and higher peripheral glucose uptake in 
MSDC-0602-treated HFD-fed mice.

• Decreased plasma TG, cholesterol, and NEFA in 
MSDC-0602-treated ob/ob mice. Decreased liver TG, 
TG synthesis and de novo lipogenic gene expression 
in HFD-fed mice treated with MSDC-0602.

• Increased plasma adiponectin in MSDC-0602-treated 
ob/ob mice.

90 MPC1/2 MSDC-0602 HTF-C (16wk) • Reduced diet-induced weight gain, transaminase 
elevations in MSDC-0602-treated mice.

• Reduced liver TG, NAS and fibrosis scores in 
MSDC-0602-treated mice.

• Reduced stellate cell activation marker gene 
expression in MSDC-0602-treated, HTF-C-fed mice. 
Reduced exosome-mediated stellate cell activation 
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gene markers in stellate cells incubated with 
MSDC-0602-treated cell-derived exosomes.

90 MPC2 MPC2 LKO HTF-C (16wk) • No reduction in liver TG in MPC2 LKO mice fed 
HTF-C. Lower diet-induced plasma tranasminases, 
fibrosis score, fibrosis gene activation

• Lower stellate cell activation marker gene expression. 
Reduced exosome-mediated stellate cell activation 
marker genes in cell treated with MPC2 LKO-derived 
exosomes.
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