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Abstract

Rationale: Primary graft dysfunction (PGD) is a severe form of
acute lung injury, leading to increased early morbidity and mortality
after lung transplant. Obesity is a major health problem, and recipient
obesity is one of the most significant risk factors for developing PGD.

Objectives: We hypothesized that T-regulatory cells (Tregs) are able
to dampen early ischemia–reperfusion events and thereby decrease the
risk of PGD, whereas that action is impaired in obese recipients.

Methods: We evaluated Tregs, T cells, and inflammatorymarkers,
plus clinical data, in 79 lung transplant recipients and 41 liver or kidney
transplant recipients and studied two groups of mice on a high-fat diet
(HFD), which did (“inflammatory”HFD) or did not (“healthy”HFD)
develop low-grade inflammation with decreased Treg function.

Measurements and Main Results: We identified increased
levels of IL-18 as a previously unrecognized mechanism that

impairs Tregs’ suppressive function in obese individuals. IL-18
decreases levels of FOXP3, the key Treg transcription factor,
decreases FOXP3 di- and oligomerization, and increases the
ubiquitination and proteasomal degradation of FOXP3.
IL-18–treated Tregs or Tregs from obese mice fail to control
PGD, whereas IL-18 inhibition ameliorates lung inflammation.
The IL-18–driven impairment in Tregs’ suppressive function
before transplant was associated with an increased risk and
severity of PGD in clinical lung transplant recipients.

Conclusions: Obesity-related IL-18 induces Treg dysfunction
that may contribute to the pathogenesis of PGD. Evaluation of
Tregs’ suppressive function together with evaluation of IL-18
levels may serve as a screening tool to identify obese individuals
with an increased risk of PGD before transplant.
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Obesity is a major public health challenge
that can involve low-grade chronic
inflammation (1). The inflammation is
believed to be associated with activation of
the NLRP1 and NLRP3 inflammasomes in
adipose tissues, followed by increased
production of the cytokines IL-1b and IL-18
(1). IL-18 is an immunoregulatory cytokine
with both pro- and antiinflammatory effects
and can be produced by many cell types (2).
Increased levels of IL-18 are associated with
obesity, but IL-18 is currently considered as
a negative regulator of inflammasome
activation, fat mass accumulation, and
development of obesity-induced metabolic
syndrome (1, 3).

Lung primary graft dysfunction (PGD)
is a severe acute lung injury, affecting
15–30% of lung recipients (4). It occurs
within 72 hours of lung transplant and is
associated with significant early and late
post-transplant morbidity and mortality
(4–7). The pathogenesis of PGD includes the
initial effects of ischemia–reperfusion injury,
followed by hyperactivation of innate and
then adaptive immunity (5–7). PGD is
associated with increased NLRP3
inflammasome activation by HMGB1 and

other damage-associatedmolecular pattern
moieties; increased levels of IL-1b and
CXCL1, IL-6, IL-8, IL-17, IFNg, and TNFa;
and neutrophil and monocyte infiltration
and activation with release of reactive
oxygen species, catalytic proteases, and
enzymes, which further promote tissue
damage and inflammation (5–10). In clinical
studies, a recipient’s obesity was identified as
one of the most significant risk factors for
developing lung PGD (6, 7, 11, 12).

In the current study, we showed that
mice with obesity-related T-regulatory cell
(Treg) dysfunction differed from obese mice
with normal Treg function in that they had
increased levels of IL-18. IL-18 impaired
Tregs’ suppressive function, whereas
defective Treg control, in turn, may be
responsible for the development of low-grade
obesity-related inflammation. In the
transplant setting, IL-18–dysregulated
obesity may be an important and previously
unrecognized factor that significantly reduces
the ability of Tregs to promote allograft
survival, starting with early post-transplant
events such as PGD and also affecting long-
term outcomes. Some of the results of these
studies have been previously reported in the
form of abstracts (13–15).

Methods

Donors
Peripheral bloodmononuclear cells
(PBMCs) were obtained through the
University of Pennsylvania Human
Immunology Core. All donors signed an
informed consent form.

Transplant Recipients
Lung transplant subjects were enrolled from
the prospective, multicenter Lung Transplant
Outcomes Group cohort study
(clinicaltrials.gov identifier NCT 00457847).
Patients undergoing combined organ
transplant were excluded, and all other
patients undergoing lung transplant aged
>13 years were included. PGDwas defined
as described in Reference 16.We analyzed
137 samples from 79 patients (mean6 SEM
age, 57.246 1.2 yr; 52% male).

Pediatric liver transplant recipients are
described in Reference 17.

Adult Liver and Kidney
Transplant Patients
Tregs were isolated from four kidney and six
liver allograft recipients before transplant

and at 3 months and 1 year after transplant.
Patients were 52.66 2.8 years old, and eight
were male.

Each study center institutional review
board approved corresponding studies.

More details for all patient cohorts are
reported in SUPPLEMENTAL METHODS in the
online supplement.

Mice
We purchased C57BL/6 mice from The
Jackson Laboratory and the Charles River
Laboratory. RAG12/2 mice were purchased
at The Jackson Laboratory (stock number
002216). From 4 weeks of age, control mice
received normal chow (25% of kilocalories
from fat; LabDiet 5015, Animal Specialties
and Provisions) or a high-fat diet (HFD)
(60% kilocalories from fat; D12492 formula,
Research Diets, Inc.). Mice with decreased
Treg function on an HFDwere included in
the “inflammatory”HFD (iHFD) group,
whereas mice with unimpaired Treg function
were included in the “healthy”HFD (hHFD)
group (see Figure E1E in the online
supplement).

The murine PGDmodel is described in
Reference 18.

Murine lung transplant procedures are
described in Reference 19.

All animal studies used protocols were
approved by the Institutional Animal Care
and Use Committees of the Children’s
Hospital of Philadelphia. More details are
reported in the SUPPLEMENTAL METHODS.

Flow cytometry was performed as
described in Reference 20.

Treg isolation and evaluation of Tregs’
suppressive function were performed as
described in Reference 21.

ELISA and Luminex
Plasma samples of lung transplant patients
were evaluated by using a custom Luminex
Screening Human Assay (catalog number
LXSAH-10, R&D Systems), an IL-18
Platinum ELISA (catalog number BMS267/2,
eBioscience, Inc.), and an IL-18 binding
peptide (IL-18BP) ELISA (catalog number
EHIL18BP, Invitrogen); mouse sera were
evaluated by using a Luminex assay (catalog
number LX10004029301, R&D Systems), a
RayBiotechMouse Leptin ELISA Kit (catalog
number ELM-Leptin-1), and aMouse IL-18
ELISA Kit (catalog number EKC37154,
Biomatik), according to manufacturer’s
instructions.

qRT-PCR was performed as described
in Reference 20.

At a Glance Commentary

Scientific Knowledge on the
Subject: Obesity is a major health
problem, and transplant recipient
obesity is one of the most significant
risk factors for developing lung
primary graft dysfunction (PGD).

What This Study Adds to the Field:
By usingmurine models and clinical
samples from lung, kidney, or liver
allograft recipients, we found that
obesity-related IL-18may be the key
factor that impairs the suppressive
function of T-regulatory cells (Tregs) in
obese individuals. Defective Treg
control, in turn, may be responsible for
the development of low-grade, obesity-
related inflammation in affected
individuals. The IL-18–driven
impairment in Tregs’ suppressive
function before transplant was associated
with an increased risk and severity of
PGD in clinical lung transplant
recipients and inmurine models
of PGD.
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Figure 1. T-regulatory cell (Treg) function is impaired in obese patients, but high-fat diet (HFD) feeding in mice resulted in two different Treg
phenotypes. (A and B) The pretransplant (pre-Tx) suppressive function of Tregs is impaired in overweight or obese patients. (A) CFSE plots for CD41

responders and (B) statistics of Treg function adjusted for FOXP31 Treg purity after isolation (n=57). The percentages of FOXP31 expression in Tregs
in A were 50.6% (normal weight) and 52.6% (obese). Data on Treg function before adjustment for FOXP31 purity are shown at Figure E1D and Table
E10 in the online supplement, and details on the evaluation and standardization of suppression assays are provided in the SUPPLEMENTARY METHODS. (C)
Tregs’ suppressive function, combined for CD41 and CD81 responders, was inversely correlated with the area of SAT as measured before Tx in lung
Tx recipients (n=14). (D) The pre-Tx suppressive function of Tregs negatively correlates with patient body mass index (BMI) values in adult liver (n=7)
and kidney (n=3) recipients; data for Treg controlling divisions of CD41 and CD81 responders are combined together (n=20). (E) The post-Tx
suppressive function of Tregs negatively correlates with patient BMI-for-age values in pediatric liver allograft recipients with stable allograft function
(n=24). (F) Representative plots (left) and statistics (middle, n=50) showing the pre-Tx number of FOXP31 Tregs in PBMCs and the levels of FOXP3
in Tregs (right, n=33) in lung Tx recipients are shown. Clinical and demographic characteristics, inflammatory markers in the plasma, and the flow
cytometry characteristics of T cells and Tregs of lung Tx recipients are presented in detail in Tables E3–E5. (G–I) The suppressive function of Tregs
isolated from control (Ctrl), “inflammatory” HFD (iHFD), and “healthy” HFD (hHFD) mice were compared by using in vitro suppressive assays. (G and
H) Representative and (I) quantitative data are shown (iHFD mice vs. Ctrl mice, n=22; hHFD mice vs. ctrl mice, n=16). (J) Histology of visceral fat and
livers (hematoxylin and eosin staining; scale bars, 100 mm); arrows indicate an accumulation of inflammatory cells that is also known as a “crown,”
which was observed at least once per slide in iHFD fat samples. Sixty samples in total were evaluated and included iHFD Ctrl (n=12), iHFD fat
(n=29), hHFD Ctrl (n=9), and hHFD fat (n=10) samples. (K) Results from flow cytometry of the spleens and lymph nodes of Ctrl, iHFD, and hHFD
mice; the percentage of Foxp31 Tregs among CD41 cells (left, n=36); and the levels of Foxp3 in Tregs (right, n=26; as determined by using a Dako
CyAn flow cytometer) are shown. More data are presented in Figures E1I–E1L. Because male and female mice in both the iHFD group and the hHFD
group only differed in terms of weight, all presented data show both sexes combined, unless otherwise specified. ANOVA with Sidak’s multiple
comparisons test was used in B, Spearman’s test was used in C, Pearson’s test was used in D and E; a Mann-Whitney U test (middle) and an unpaired
t test (right) were used in F, a one-sample t test with n=1 (Ctrl) hypothetical value was used in I, and ANOVA with Tukey’s multiple comparison test
(left) and a Wilcoxon signed rank test (right) were used in K. AUC=area under the curve; CFSE=carboxyfluorescein succinimidyl ester;
Comp=compensatory; ECD=extracellular domain; FITC= fluorescein isothiocyanate; FL= fluorescence; MOF=median of FL; PBMC=peripheral
blood mononuclear cell; SAT=subcutaneous adipose tissue; Teff=T-effector cell.
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A TaqMan protein assay (Thermo
Fisher Scientific) was performed according to
manufacturer’s protocol, except for
modifications as detailed in the SUPPLEMENTAL

METHODS. Freshly isolated healthy donor
Tregs were stimulated for 3 hours with CD3/
28 microbeads (Dynabeads; Thermo Fisher),
6200 ng/ml IL-18 (R&D Systems), and in

the presence of 3mMproteasome inhibitor
PS341 (Selleck Chemicals) when indicated.

TUBE Assay
AK48 Linkage–Specific UbiTest–Magnetic
TUBE Elution Kit (catalog number
UM414M, LifeSensors Inc.) was used to
assess ubiquitination of FOXP3. HEK-Blue

IL-18 cells (catalog number hkb-hmil18,
InvivoGen) were transfected with FOXP3
and HA-tagged ubiquitin6 Stub1 and
analyzed as described in Reference 22.

Statistics
Treg function was calculated by using the
area under the curve method as described in
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Figure 1. (Continued).
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Reference 21 and was then adjusted for the
FOXP3 purity of isolated Tregs as detailed in
Reference 20.We applied parametric tests if
data were normally distributed and
nonparametric tests if not, and all tests are
described in the figure legends. Data are
shown as the mean6 SEM. A two-tailed P
value of,0.05 was considered to indicate
statistical significance.

For all methods, more details are
reported in the SUPPLEMENTAL METHODS.

Results

Treg Function Is Impaired in Obese
Patients, but HFD Feeding in Mice
Resulted in Two Different
Treg Phenotypes
We found that overweight or obese patients
who were listed for lung transplant
(described in the SUPPLEMENTAL METHODS and
in Table E1) had impaired Treg function in
comparison with normal-weight patients

(Figure 1A). To ensure an absence of artifacts
due to differences in the FOXP31 purity of
CD41CD251, MACS-isolated (Miltenyi
Biotec) human Tregs, we evaluated FOXP31

expression in isolated Tregs and then
adjusted for Tregs’ suppressive function
according to their FOXP31 purity
(SUPPLEMENTARYMETHODS and Figures
E1A–E1D). Obese patients demonstrated
significant impairment in the suppressive
function of Tregs before (Figure E1D) as well
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as after (Figure 1B) adjustment for FOXP31

purity. Patient obesity, evaluated as the area
of subcutaneous adipose tissue (12),
demonstrated an inverse correlation with
Treg function (Figure 1C). We also
examined Treg function in adult and
pediatric liver and kidney allograft recipients
and found similar results, indicating that
obesity negatively impacts Treg function
before (Figure 1D) but also after (Figure 1E)
transplant across various solid-organ
transplant populations.

Overweight or obese and normal-
weight patients showed no differences in
clinical or demographic data, the levels of
inflammatory markers in plasma, or the
activation or maturation characteristics of
Tregs and T cells as assessed by flow
cytometry, with the exception of increased
leptin levels being noted in overweight or
obese patients (Tables E3–E5). Their
numbers of Tregs and amounts of FOXP3
protein per cell were also comparable (Figure
1F). Therefore, significant impairment in
Tregs’ suppressive function as determined
in vitro does not correspond with evident
inflammatory abnormalities in vivo, at least
for the tested parameters.

To further study the effects of obesity on
Treg function, we induced obesity by feeding
an HFD to C57BL/6 mice. Surprisingly,
although somemice reproduced the
phenotype with dysfunctional Tregs while
receiving an HFD (Figures 1G and 1I), as in
our clinical samples, others had no decline in
or even had enhancement of the suppressive
function of Tregs while receiving an HFD
(Figures 1H and 1I). We categorized mice
into iHFD and hHFD groups, corresponding
to the effects of the HFD on their Treg
function (Figure E1E). iHFD and hHFD
mice gained weight equally, had no
differences in glucose tolerance, had
upregulated leptin levels in sera, and had no
differences in Treg or conventional T-cell
numbers or in FOXP3 protein expression in
Tregs (Figures 1K and E1F–E1L). Histologic
evaluation of visceral fat showed adipocyte
enlargement, which was more pronounced
in iHFDmice, and was accompanied by
crown-like structures (Figure 1J). The livers
of hHFD and iHFDmice showed steatosis in
comparison with those of control mice,
which was more marked in the iHFDmice
than in the hHFDmice (Figure 1J).
Therefore, iHFDmice, but not hHFDmice,
have impaired Treg function andmore
pronounced histologic abnormalities in fat
and liver tissues.

Murine Models of Obesity Indicate
that IL-18 Contributes to Impaired
Treg Function
We evaluated the sera of mice for the set of
19 cytokines and chemokines (Figures 2A
and E2A). Half of them tended to be
increased in overweight or obese mice, with
more pronounced differences being shown
in the iHFD group than in the hHFD group,
and 37% of cytokines and chemokines
showed no clear changes and were present at
levels within a normal range. However, most
tested markers had expression levels much
lower than the levels present in acute LPS-
induced inflammation, suggesting that iHFD
mice had low-grade, nonapparent systemic
inflammation.

In visceral fat, IL-18 was the only
cytokine whose expression significantly
differed in the visceral fat of iHFD versus
hHFDmice, being upregulated only in iHFD
fat samples (Figure 2B). IL-18 was also
upregulated in the livers and sera of iHFD
mice but was not upregulated in hHFDmice
(Figures 2C and 2D). In addition, iHFDmice
had upregulation of other inflammatory
cytokines in their livers (Figure 2C).
Therefore, IL-18 was identified as potential
candidate factor to explain the differences
between obesity that affected Treg function
(iHFD) and obesity with preserved Treg
function (hHFD). IL-18 levels were increased
in overweight or obese transplant recipients
before and after transplant (Figures 2E, 2F,
and E2B). Preincubation of human (Figures
2G and 2H) or murine (Figures 2G and 2I)
Tregs with IL-18 significantly impaired their
suppressive function.

Mechanism of IL-18–mediated Effects
The levels of IL-18Ra were significantly
higher in Tregs than in other lymphocytes
(Figures 3A–3C). Incubation of Tregs with
IL-18 gradually increased phosphorylation of
IRAK4, one of the central elements in the
signal transduction of IL-1/IL-18 receptors
(Figures 3C and 3D), suggesting that Tregs
have an active IL-18R–MyD88 pathway that
is activated by IL-18.

To study the biological effects of IL-18
on primary unmanipulated human Tregs, we
employed a recently developed TaqMan
protein assay that enables assessment of
protein while using very small cell counts
(23). We have observed increased
TRAF6–STUB1 complexes, decreased
TRAF6–FOXP3 complexes, and a trend
toward increased STUB1–FOXP3 complexes
in Tregs after exposure to IL18 (Figure 3E).

We evaluated FOXP3 post-translational
modifications in freshly isolated human
Tregs to establish a normal range, as there
are no published data in this regard. In
healthy donor Tregs,�50% of FOXP3
protein was present as dimers and/or
oligomers,�25% of total FOXP3 was
ubiquitinated, and�80% of total FOXP3 was
acetylated (Figure 3F). Exposure of Tregs to
IL-18 led to a significant decrease in the total
FOXP3 protein level (to a median of 69% of
initial levels) and a twofold reduction of
FOXP3 dimerization and/or oligomerization
(Figure 3G). Such assembly of FOXP3 into
higher-order structures is critical for Treg
function (24). Regarding post-translational
modifications, we observed a substantial
increase in FOXP3 ubiquitination but did
not observe a substantial increase in FOXP3
acetylation (Figures 3H and 3I). The UbiTest
assay (25) confirmed that in the presence of
IL-18, FOXP3 ubiquitination was
significantly increased, with substantial
increase of K48-linked ubiquitination being
shown, and showed that STUB1may be
involved in that process (Figures 3J and
E3A).

IL-18 led to increased mRNA
expression of the proinflammatory cytokines
IL-1b and IL-6 and upregulated expression
of TLR4 (Figure 3K) in Tregs. TLR4may
increase Treg sensitivity to proinflammatory
TLR4 ligand signals, which further declines
Treg function and stability (26). Conversely,
there were no significant changes in the Treg
mRNA expression of other cytokines (IL-2,
IL-10, IL-17a, IFN-b, TNF-a), in Treg-
associated markers (CTLA-4, TGFb, GARP,
GITR), or in “Treg-locking” transcription
factors (IRF4, SATB1, EOS, LEF1) that we
previously shown to be associated with the
enhanced suppressive capability of human
intratumoral Tregs (20) (Figures E3B–E3F).
On the basis of our results, we suggest a
mechanism of IL-18 effects on Tregs
(Figure 3C).

In conjunction with increased FOXP3
ubiquitination and disrupted di- and
oligomerization of FOXP3, the stability of
FOXP3 expression under stimulatory
conditions was significantly altered. Thus,
Tregs from iHFDmice lost Foxp3 expression
during the 3 days of in vitro stimulation,
whereas Tregs from control and hHFDmice
maintained their Foxp3 expression better
(Figures 4A–4C). Correspondingly, human
CD41 cells from overweight or obese
individuals were unable to upregulate
FOXP3 expression with CD3/CD28
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Figure 2. Identification of IL-18 related to obesity and effects of IL-18 on T-regulatory cells (Tregs). (A) Eighteen sera samples pooled from 21
mice of both sexes were evaluated for 19 cytokines and chemokines by using a Luminex assay. Six sera samples were pooled from eight
young, 6- to 9-week-old WT mice of both sexes and served to provide the mean and interquartile range for the “normal” range of tested
markers. Normal-range data are shown in the graphs as shaded green areas with green dotted lines. One sample of pooled sera from three
female mice at 2 hours after LPS injection (i.p., 1 mg/kg LPS) served as the level indicating a high-inflammation condition (model of sepsis),
which is shown in the graphs as orange dashed lines. More data are presented in Figure E2A in the online supplement. (B and C) Quantitative
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Figure 2. (Continued). PCR (qPCR) of the visceral fat (B) and livers (C) of “inflammatory” high-fat diet (iHFD) and “healthy” high-fat diet (hHFD)
mice, presented as heatmaps of fold differences of the corresponding mRNA expression over the control (Ctrl) diet samples in each group;
notable differences are highlighted with an asterisk. Then the fold differences for iHFD and hHFD mice were compared with each other by using
multiple t tests with Holm-Sidak correction, and the resulting test values are shown to the right of the heatmaps. Significant differences are
marked by bold type. The number of samples evaluated for each marker (median [interquartile range]) are as follows: 18 (6.25–21.5) iHFD fat
samples, 28.5 (5.5–52.75) hHFD fat samples, 15.5 (7–16) iHFD liver samples, and 11 (9.5–11.75) hHFD liver samples. (D) IL-18 levels in 51
pooled sera samples from 54 mice were evaluated by using an ELISA. (E) Pre-Tx IL-18 was measured by using qPCR analysis of peripheral
blood mononuclear cells (PBMCs) from lung Tx recipients (n=24). (F) IL-18 mRNA was evaluated by using qPCR analysis of the CD4-depleted
PBMCs of children with stable liver allografts (n=16). (G–I) Effects of IL-18 on Tregs’ suppressive function in humans (in G [left] and H) and
mice (in G [right] and I). Tregs were treated with 50 ng/ml IL-18 for 2 hours, washed two times, and used for the suppression assay.
Representative examples in H and I with corresponding statistics in G are shown. In G, n=12 in six experiments, with data for CD41 and CD81

responders combined (left), and n=8 in five experiments with n=5 Ctrls (right). Kruskal-Wallis and Dunn’s tests were used in A and D, multiple
t tests with Holm-Sidak correction were used in B and C, a Mann-Whitney U test was used in E and F, and a Wilcoxon matched-pair test was
used in G. AUC=area under the curve; CFSE=carboxyfluorescein succinimidyl ester; FITC= fluorescein isothiocyanate; FL= fluorescence;
ns=not significant; Teff = T-effector cell; Tx= transplant; WT=wild type.
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Figure 3. Mechanism of IL-18 effects on T-regulatory cells (Tregs). (A and B) Representative example (A) and corresponding statistics (B) for
flow cytometry evaluation of IL-18Ra (CD218a) expression in human CD41FOXP31 Tregs (red), CD41FOXP32 Teffs (blue), and CD42

lymphocytes (gray). (n=12). (C) The proposed mechanism of IL-18 effects, which is explained in detail at the end of the figure legend. (D)
Donor peripheral blood mononuclear cells were incubated for 0–120 minutes with 200 ng/ml IL-18, and pIRAK4 expression was evaluated by
using flow cytometry in CD41FOXP31 Tregs. Representative data of three experiments are shown. (E) Tregs were stimulated for 3 hours with
CD3/28 microbeads6200 ng/ml IL-18 and were evaluated by using a TaqMan protein assay; data are shown for three donors in four
experiments. (F) TaqMan protein assay evaluation of freshly isolated healthy donor Tregs. The FOXP3 di- or oligomer forms, ubiquitinated
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stimulation, whereas human CD41 cells
from normal-weight individuals significantly
upregulated FOXP3 (Figures 4D and 4E).
The addition of an IL-18 inhibitor (IL-18BP)
(1) restored the ability of CD41 cells to
upregulate FOXP3 (Figure 4F).

Overweight or obese individuals
maintain FOXP3mRNA level upregulation
(Figure 4G). In conjunction with the
unaffected levels of FOXP31 protein per
Treg cell and the equal numbers of Tregs
(Figure 1F), the upregulation of FOXP3
mRNA in the PBMCs of overweight or obese
individuals suggests a need for constant
enhanced production of FOXP3 protein in
Tregs due to its decreased stability.
Correspondingly, in overweight or obese
patients, blood levels of IL-18BP positively
correlated with the number of Tregs among
CD41 cells and with FOXP3 protein levels
per Treg (Figures 4H and 4I), whereas Tregs’
suppressive function, in turn, correlates with
FOXP3 protein levels (Figure 4J).

Hence, in the presence of IL-18, levels of
FOXP3 protein and FOXP3 di- and
oligomerization declined, whereas FOXP3
ubiquitination (total and K48-linked) rose.
These events increase proteasomal
degradation of FOXP3, allow derepression of
genes normally suppressed in Tregs, and
compromise FOXP3 stability in stimulatory
or inflammatory conditions to the detriment
of Tregs’ suppressive function.

Postoperative Events and PGD
We evaluated Tregs’ suppressive function 3
months after transplant in available samples
and found that it tended to decrease at 3
months after transplant in normal-weight
patients but that it did not decrease in obese
patients (Figure E4A). Similar trends were

observed in liver and kidney recipients. Thus,
it seems that in the first weeks after
transplant, when maximal doses of
immunosuppressive therapy are employed,
the effects of obesity on Tregs were masked
by the still more inhibitory effects of high-
calcineurin inhibitors (17) and by acute early
post-transplant events (Figure 4K). However,
at 1 year after transplant, as soon as Treg
function was restored, overweight or obese
patients demonstrated the same differences
in Treg function as they did before transplant
(Figure 4K), suggesting that the negative
effects of obesity on Treg function were not
ameliorated by post-transplant
immunosuppressive therapy.

By using flow cytometry evaluation, we
observed a trend toward increased Treg
numbers at 3 months after transplant, which
may reflect attempts of Tregs to control early
alloreactive responses. Of note, this trend
existed only in normal-weight patients (not
in obese/overweight patients) (Figure 4I,
left). We also found that overweight or obese
lung recipients (but not normal-weight lung
recipients) had substantial peaks of Ki-67
expression early after transplant (Figures 4I,
E4B, and E4C). Those peaks may reflect the
inability of their Tregs to properly control
post-transplant activation of immune cells.
Because Tregs’ suppressive function in vitro
demonstrated a strong negative correlation
with ex vivoKi-67 expression (Figure 4M),
we suggest that Ki-67 may serve as a marker
that can be used to indirectly evaluate the
in vivo suppressive function of Tregs.

In our cohort of lung allograft
recipients, 42.9% of patients developed grade
3 PGD. Patients who did (PGD present) or
did not (PGD absent) develop PGD had no
significant differences in their clinical or

demographic data and had no differences in
medications for their comorbidities, with the
exception of statin therapy (Tables E6 and
E7). Within statin users, only 21.1% (4
patients) developed PGD, whereas 50% (14
patients) developed PGD in the statin-free
group (Pearson chi-square P=0.045). Use of
statins is an important factor for decreasing
the risk of PGD (27), and statin therapy has
an impact onmetabolic and immune
processes (28). However, in our cohort, there
were only seven patients with normal weight
who received statin therapy, and only one of
them developed PGD, so we were unable to
perform further stratification of patients
receiving statins.

We found that patients with PGD had
significant impairment to Tregs’ suppressive
function before transplant (Figure 4N). No
other tested parameters differed before
transplant between patients with PGD and
patients without PGD (Tables E8 and E9).
To combine the severity and longevity data
of PGD into one score, we summed patients’
daily PGD scores fromDay 0 to Day 3 after
transplant to generate a total PGD score for
each transplant recipient. Ki-67 expression in
PBMCs positively correlated with PGD
scores (Figure 4O), whereas Tregs’
suppressive function negatively correlated
with PGD scores (Figure 4P). Notably, the
inverse correlations of Tregs’ suppressive
function with PGD scores were much
stronger when patients were evaluated
separately according to their statin status
(r=20.401, P=0.034 for statins users;
r=20.373, P=0.03 for statin-free patients;
Pearson test). Collectively, our data suggest
that the impaired suppressive function of
Tregs, evaluated ex vivo (Treg suppression
assay) and in vivo (Ki-67 expression), may be

Figure 3. (Continued). FOXP3, and acetylated FOXP3 calculated as the percentage of total FOXP3 protein levels in the same Tregs are shown.
(G–I) Tregs were stimulated for 3 hours with CD3/28 microbeads6 200 ng/ml IL-18 (in G–I) and 63 mM proteasome inhibitor PS341 (in G). (G)
FOXP3 ubiquitination in presence of IL-18. (H) Total level of FOXP3 protein and FOXP3 di- and oligomer forms in the presence of IL-18. (I)
FOXP3 acetylation in the presence of IL-18. In F–I, five donors were evaluated in 10 experiments. (J) 293T cells were transfected with Foxp3
and HA-tagged ubiquitin, treated with 200 ng/ml IL-18 for 2 hours plus the proteasome inhibitor bortezomib, and subjected to TUBB pull-downs;
ubiquitinated substrates were eluted and treated with nonspecific DUB (deubiquitinase) or K48 linkage–specific DUB (K48); and proteins were
analyzed by using Western blotting. One experiment out of three is shown. (K) Quantitative PCR analysis of healthy donor Tregs, stimulated as
shown in E; more data are presented in Figure E3 in the online supplement (donor Treg experiments, n=4; quantitative PCR experiments,
n=17). (C) Proposed mechanism of IL-18 effects. Purple arrows connect our experimental data to corresponding events in the mechanism.
Upon binding of IL-18 to IL-18R (event in A), a signaling cascade is initiated. IL-18R recruits MyD88, followed by IRAK4 phosphorylation (shown
as p in the diagram) and activation (event in D) (2). This Myddosome complex recruits and activates TRAF6. We suggest that TRAF6 forms a
complex with STUB1 and activates its ligase E3 function toward FOXP3 protein (event in E). STUB1 increases K48-linked polyubiquitination of
FOXP3, which is known to facilitate proteasomal degradation of FOXP3 (event in G) (26), which then leads to a decline of the total FOXP3 protein
level (event in H). As a result of K48-linked polyubiquitination, the dimerization and oligomerization of FOXP3 protein significantly decreases (event
in H). In turn, TRAF6, which was associated with FOXP3 complex and provided stabilizing K-63–linked polyubiquitination (50), releases from
complexes with FOXP3 (event in E). ANOVA with Tukey’s multiple comparison test was used in B, a one-sample t test with n=1 (control)
hypothetical value was used in E and G–I, and a Wilcoxon test was used in K. Comp=compensatory; FL= fluorescence; Teff=T-effector cell.
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Figure 4. T-regulatory cell (Treg) stability, post-transplant (post-Tx) events, and primary graft dysfunction (PGD) in clinical settings. (A–C)
Twenty-four samples from 56 mice were stimulated for 3 days with soluble CD3 antibodies (1 mg/ml), and Foxp3 expression was evaluated by
using flow cytometry before and after stimulation. (A) Representative plots and (B and C) corresponding statistics are shown. (D and E)
Peripheral blood mononuclear cells (PBMCs) from healthy donors (n=5) and pre-Tx PBMCs from lung Tx recipients (n=17) were stimulated
overnight with CD3 microbeads, and FOXP3 expression was evaluated by using flow cytometry. (D) Representative plots and (E) corresponding
statistics are shown. (F) Donor PBMCs were incubated for 2 hours with 200 ng/ml IL-186 IL-18 binding peptide (IL-18BP), washed, and
stimulated overnight with CD3 microbeads (3.6 beads/cell), and FOXP3 expression was evaluated on the next day by using flow cytometry
(n=12 donors and n=7 experiments). (G) FOXP3 mRNA expression was evaluated in pre-Tx PBMCs from lung Tx recipients (n=17).(H–J) Pre-
Tx plasma from obese/overweight lung Tx recipients was evaluated by using an ELISA for levels of IL-18BP. FOXP3 protein expression levels in
Tregs (CD41FOXP31) and T-effector cells (Teffs) (CD41FOXP32) were evaluated by using flow cytometry. Then the FOXP3 median of
fluorescence (MOF) ratios in Tregs were divided into FOXP3 MOF ratios in Teffs to eliminate the effects of absolute MOF units; MOF was
evaluated in different experiments by using different flow cytometers. The resulting FOXP3 MOF ratios reflect the differences in FOXP3 protein
levels in Tregs over those of the corresponding negative controls (Teffs). (H) Correlations between levels of IL-18BP and Treg numbers among
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related to a higher risk and more
pronounced severity of PGD, whereas
pretransplant use of statins was associated
with a reduced risk of PGD.

IL-18 Impairs the Protective Function
of Tregs in a Murine Model of PGD
Tregs are well established as suppressors of
immune and inflammatory responses, with
most attention being given to their control of
adaptive immunity. However, the
contribution of Tregs to the prevention of
PGD has not been explored experimentally.
We developed a lung ischemia–reperfusion
injury model in Rag12/2 mice. These mice
lack mature T cells or B cells, such that any
Treg effects must involve direct interactions
with innate immune cells and/or
nonimmune components such as the lung
epithelium and endothelium.We found that
just 0.5 million Tregs, injected the night
before operation, were able to dramatically
decrease inflammation associated with
ischemia–reperfusion, as shown by the
significantly reduced mRNA levels of
cytokines in ischemic lungs (Figures 5A, 5B,
E4D, and E4E) and by the markedly reduced
histologic injury (Figures 5E, 5F, and E4J). In
contrast, IL-18–pretreated Tregs lost their

ability to control lung ischemia–reperfusion
injury in RAG12/2 mice (Figures 5C–5F,
E4F, E4G, and E4J). Therefore, Tregs can
directly limit innate immunity–driven
inflammation in an in vivo PGDmodel and
do not require mediation by T or B cells, but
this protective capacity is lost upon Treg
exposure to IL-18. To maximize the
translational value of our study, we
performed a series of experiments with lungs
that underwent 24 hours of cold ischemia
and were then transplanted into three types
of recipients: iHFD normal-weight control
mice, iHFD obese mice, and iHFD obese
mice treated with IL-18BP (Figure 5G).
Obese mice that did not receive IL-18BP
treatment showed significantly enhanced
inflammation, whereas obese mice that
received IL-18BP treatment showed
alleviation of the most negative effects of
their obesity (Figures 5H–5J and E4H–E4J).

Discussion

This study identified IL-18 as the most
promising target to explain the differences
between obesity affecting Treg function
(iHFD) and obesity with preserved Treg

function (hHFD). Although the vast majority
of HFDmodels and clinical data describe
low-grade local and systemic inflammation
caused by obesity (29–31), none of them
identified defects in Tregs due to increased
levels of IL-18. There are reports of decreased
(32, 33), increased (34), or unaltered (35)
Treg numbers, and one study (36) reported
that there were detrimental effects of
hyperlipidemia on Treg function in HFD
mice.

Prior studies have suggested
contradictory effects of IL-18 on Tregs. Thus,
IL-18 was reported to enhance Treg function
(37, 38). Conversely, another study reported
a significant decrease in the number of
human engrafted Tregs and reported
aggravated graft-versus-host disease in mice
treated with human IL-18 in vivo but found
no effects of IL-18 on human Tregs’
suppressive function in vitro (39). However,
in the latter study, the authors studied Tregs
expanded in vitro but did not study freshly
isolated Tregs. Lastly, IL-18– and
IL-18R–deficient mice, infected with
Helicobacter pylori, were reported to have
defects in the number and function of Tregs
(40). This report contrasted with another
study showing that IL-18–deficient mice had
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Figure 4. (Continued). CD41 cells (n=15). (I) Correlations between levels of IL-18BP and levels of FOXP3 in Tregs (n=27). (J) Correlations
between levels of FOXP3 in Tregs and their suppressive function, combined for CD41 and CD81 responders (n=40). (K) Tregs were isolated
from four kidney and six liver allograft recipients before Tx, 3 months after Tx, and 1 year after Tx. Data for CD41 and CD81 responders in Treg
suppression assays are combined. Patients were grouped according to their pre-Tx body mass index. (L) PBMC samples taken from lung Tx
recipients before Tx, 1 week after Tx, and 3 months after Tx were evaluated by using flow cytometry. Data of the same individuals are
connected with black lines, whereas bars represent mean values in the corresponding group. The number of Tregs, the Ki-67 expression in
PBMCs, and the Ki-67 expression in CD42CD82 non-T cells are shown. The median number (interquartile range) of samples evaluated for each
marker in each group is as follows: FOXP31 cells among CD41 cells, 8.5 (5–14.75); Ki-67 expression, 6 (2.75–7). More follow-up data are
presented in Figure E4B and E4C in the online supplement. (M) Before Tx in lung Tx recipients, Tregs’ suppressive function negatively
correlates with the expression of Ki-67 in PBMCs (n=49). (N) Tregs’ suppressive function was evaluated before Tx in lung Tx recipients (n=62).
(O) Ki-67 expression on PBMCs of the same patients as shown in M correlated with their PGD score, n=19. (P) Tregs’ suppressive function
from M was inversely correlated with the total PGD score (n=60). Data for CD41 and CD81 responders are combined in M, N, and P. Clinical
and demographic characteristics, inflammatory markers in the plasma, and flow cytometry characteristics of T cells and Tregs from lung Tx
recipients are presented in detail in Tables E3–E9. Two-way ANOVA with Sidak’s test was used in B and K; Kruskal-Wallis and Dunn’s tests
were used in C and E; a one-sample t test with n=1 (control) hypothetical value was used in F; a Mann-Whitney U test was used in G and N;
Spearman’s test was used in H, J, O, and P; and Pearson’s test was used in I and M. AUC=area under the curve; hHFD= “healthy” high-fat
diet; iHFD= “inflammatory” high-fat diet; ns=not significant. *P , 0.05, **P , 0.01, and ***P , 0.001 as indicated in respective panels.
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Figure 5. Two murine models of primary graft dysfunction. (A, B, E, and F) RAG12/2 mice (n=12) received PBS or 0.53106 T-regulatory cells
(Tregs) intravenously; 18 hours later, lung ischemia–reperfusion was performed, which consisted of 1 hour of left lung ischemia and 2 hours of
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normal Treg numbers and function (41).
Hence, to our knowledge, we are the first to
evaluate the direct effects of IL-18 on
freshly isolated human and murine Tregs
and to extend those data in vivo by showing
that although IL-18 impaired the ability of
Tregs to control lung inflammation in a
murine model of PGD, the use of an IL-18
inhibitor, IL-18BP, ameliorated
inflammation in the transplanted lungs of
obese recipients.

The basis for the systemic increase of
IL-18 levels in iHFDmice and in obese
transplant patients is currently unknown but
may be related to activation of
inflammasome pathways. Transplant
patients demonstrating “IL-
18–accompanied” inflammatory obesity in
the current study had end-stage disease of
the kidney, liver, or lung, all of which are
known to result in ongoing inflammasome
activation (42). Therefore, we can suggest
that those individuals are prone to

developing systemic increased IL-18 levels,
which may be further provoked by obesity,
and as a result, their Tregs may be much less
able to control naive immune activation
early after transplant.

In line with our data, elevated serum
IL-18 levels correlated with hepatocyte injury
and systemic inflammation in obese children
(43). Another recent study found that
tetracycline inhibits inflammasome–caspase-
1 signaling in patients with acute respiratory
distress syndrome, which led to decreased
production of IL-1b and IL-18 and
significantly diminished lung injury
and inflammation (44). The long-term effects
of obesity on allograft survival with regard to
IL-18 and Treg function deserve further
studies, but current data report inferior
patient and graft survival as being linked to
obesity (45, 46), and our own data from
pediatric and adult recipients confirms that.

Inflammasome activation, IL-18, and
activation of innate immunity are important

for ischemia–reperfusion injury and early
post-transplant outcomes (8–10, 47). The
major role of adaptive immunity, regulated
by Tregs, in long-term allograft acceptance
and function is well known (48). Conversely,
the role of Tregs in controlling activation of
innate immunity and lung injury is only
beginning to be recognized (49). The current
study introduces two previously
unrecognized but important players: the role
of IL-18 in obesity, with detrimental effects
of IL-18 on Tregs being shown, and an
important role of Tregs in the direct control
of early inflammation driven by lung
ischemia–reperfusion in a PGDmodel.
These findings may have relevance to the
pretransplant evaluation of patients listed as
candidates for lung transplant and to
identifying those at increased risk of
developing PGD.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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