Table 2.
Model | Values, mean (SD) | |||||
|
ACCa | Senb | Spec | PPVd | NPVe | AUROCf |
LRg | 0.75 (0) | 0.624 (0.005) | 0.828h (0.004) | 0.686 (0.005) | 0.786 (0.005) | 0.824 (0.002) |
SVMi | 0.75 (0) | 0.624 (0.005) | 0.828 (0.004) | 0.686 (0.005) | 0.784 (0.005) | 0.824 (0.002) |
RFj | 0.77 (0) | 0.696 (0.005) | 0.818 (0.004) | 0.696 (0.005) | 0.818 (0.004) | 0.85 (0.002) |
MLPk | 0.758 (0.004) | 0.642 (0.017) | 0.822 (0.007) | 0.686 (0.005) | 0.792 (0.007) | 0.831 (0.005) |
XGBl | 0.782 (0.004) | 0.716 (0.005) | 0.824 (0.005) | 0.71 (0) | 0.828 (0.004) | 0.865 (0.002) |
aACC: accuracy.
bSen: sensitivity.
cSpe: specificity.
dPPV: positive predictive value.
eNPV: negative predictive value.
fAUROC: area under the receiver operating characteristic.
gLR: logistic regression.
hThe italicized values refer to the highest score of each metric.
iSVM: support vector machine.
jRF: random forest.
kMLP: multilayer perceptron.
lXGB: extreme gradient boosting.