Skip to main content
. 2021 Nov 17;9(11):e32662. doi: 10.2196/32662

Table 2.

Comparison of the 5 machine learning–based models by metric.

Model Values, mean (SD)

ACCa Senb Spec PPVd NPVe AUROCf
LRg 0.75 (0) 0.624 (0.005) 0.828h (0.004) 0.686 (0.005) 0.786 (0.005) 0.824 (0.002)
SVMi 0.75 (0) 0.624 (0.005) 0.828 (0.004) 0.686 (0.005) 0.784 (0.005) 0.824 (0.002)
RFj 0.77 (0) 0.696 (0.005) 0.818 (0.004) 0.696 (0.005) 0.818 (0.004) 0.85 (0.002)
MLPk 0.758 (0.004) 0.642 (0.017) 0.822 (0.007) 0.686 (0.005) 0.792 (0.007) 0.831 (0.005)
XGBl 0.782 (0.004) 0.716 (0.005) 0.824 (0.005) 0.71 (0) 0.828 (0.004) 0.865 (0.002)

aACC: accuracy.

bSen: sensitivity.

cSpe: specificity.

dPPV: positive predictive value.

eNPV: negative predictive value.

fAUROC: area under the receiver operating characteristic.

gLR: logistic regression.

hThe italicized values refer to the highest score of each metric.

iSVM: support vector machine.

jRF: random forest.

kMLP: multilayer perceptron.

lXGB: extreme gradient boosting.