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Abstract

Introduction—Immunotherapy has improved outcomes for patients with non-small cell lung 

cancer (NSCLC), yet durable clinical benefit (DCB) is experienced in only a fraction of 

patients. Here, we test the hypothesis that radiomic features from baseline pre-treatment 18F-FDG-

PET/CT scans can predict clinical outcomes of NSCLC patients treated with checkpoint blockade 

immunotherapy.

Methods—This study included 194 patients with histologically confirmed stage IIIB-IV NSCLC 

with pre-treatment PET/CT images. Radiomics features were extracted from PET, CT, and 

PET+CT fusion images based on minimum Kullback–Leibler Divergence (KLD) criteria. The 

radiomic features from 99 retrospective patients were used to train a multiparametric radiomics 

signature (mpRS) to predict DCB using an improved least absolute shrinkage and selection 

operator (LASSO) method, which was subsequently validated in both retrospective (N=47) 

and prospective test cohorts (N=48). Using these cohorts, the mpRS was also used to predict 

progression-free survival (PFS) and overall survival (OS) by training nomogram models using 

multivariable Cox regression analyses with additional clinical characteristics incorporated.
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Results—The mpRS could predict patients who will receive DCB, with areas under receiver 

operating characteristics curves (AUCs) of 0.86 (95%CI:0.79–0.94), 0.83 (95%CI:0.71–0.94), 

and 0.81 (95%CI:0.68–0.92) in the training, retrospective test, and prospective test cohorts, 

respectively. In the same three cohorts, respectively, nomogram models achieved C-indices of 

0.74 (95%CI:0.68–0.80), 0.74 (95%CI:0.66–0.82), and 0.77 (95%CI:0.69–0.84) to predict PFS, 

and C-indices of 0.83 (95%CI:0.77–0.88), 0.83 (95%CI:0.71–0.94) and 0.80 (95%CI:0.69–0.91) 

to predict OS.

Conclusion—PET/CT-based signature can be used prior to initiation of immunotherapy to 

identify NSCLC patients most likely to benefit from immunotherapy. As such, these data may be 

leveraged to improve more precise and individualized decision support in the treatment of patients 

with advanced NSCLC.
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INTRODUCTION

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related 

death in the world[1], with non-small cell lung cancer (NSCLC) being the most commonly 

diagnosed histologic subtype[2]. Over the past 30 years, the 5-year overall survival (OS) of 

patients with metastatic disease has remained at 5%[3]. More recently, checkpoint blockade 

antibodies targeting PD-(L)1 have revolutionized cancer treatment and improved long-term 

survival among some patients with advanced NSCLC[4–6]. However, current published 

evidence showed that PD-1/PD-L1 antibody monotherapies yield durable (>6mo.) clinical 

benefit (DCB) for only a subgroup of patients (15%~19.4% in phase I/II clinical trials[4, 7]). 

As such, robust biomarkers that are predictive of response immune-checkpoint blockades 

at baseline are needed to avoid immune-related-toxicities in patients unlikely to achieve 

durable clinical benefit.

Currently, PD-L1 status is the only approved diagnostic biomarker for immunotherapy; 

patients with positive PD-L1 status generally have higher objective response rates (ORR) 

[8, 9]. However, patients with PD-L1-negative tumors can still benefit from anti-PD-

(L)1 therapies[6, 10]. A recent study showed that a combination of pembrolizumab and 

chemotherapy achieved objective radiographic response rates, ORRs, of 22.9% to 61.4% 

regardless of PD-L1 status[11]. Additionally, intra-tumor heterogeneity of PD-L1 staining 

across biopsies is prevalent, leading to sampling bias[12]. There have been concerted efforts 

to utilize molecular characteristic biomarkers for prediction and, along these lines, total 

mutational burden (TMB) exhibited a sensitivity of 86% and a specificity of 75% in 

predicting DCB in response to PD-1 checkpoint blockade[13]. However, TMB by whole 

exome sequencing is not clinically approved in the immunotherapy setting and is similarly 

subject to sampling bias. Hence, we seek to identify alternative predictive biomarkers that do 

not suffer from these weaknesses.

Radiological images are routinely available in clinic. In particular 18F-FDG PET/CT 

imaging is widely used for the staging of patients with advanced NSCLC. These medical 
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images can be analyzed quantitatively with machine learning or “radiomics”, which is the 

process of converting medical images into high-dimensional mineable data. Prior studies 

have shown a strong correlation of radiomic signatures with genetics in NSCLC[14]. Recent 

advances in PET/CT radiomics have provided insights into precision medicine related to 

therapeutic response assessment[15, 16]. A Radiomics approach has multiple advantages, 

including: 1) being non-invasive and thus available for longitudinal sampling, 2) based on 

standard-of-care images and thus widely available, and 3) sampling the entire tumor and 

thus not subject to sampling bias[17].

The goal of this study was to determine if PET/CT radiomic features at baseline, alone 

or in combination with clinical factors, can predict subsequent immunotherapy response 

leading to DCB, as well as to predict PFS and OS in patients with advanced NSCLC and 

secondarily, whether the PET/CT radiomic feature could be as a prediction biomarker in real 

time. The workflow is presented in Fig.1.

PATIENTS AND METHODS

Patients

Inclusion criteria for this study included 1) patients with histologically-confirmed advanced 

stage (stage IIIB and IV) NSCLC who were treated with anti-PD-(L)1 immunotherapy, 2) 

PET/CT images were acquired during the interval (less than 6 months) of the last treatment 

(or diagnosis) and the start of immunotherapy, 3) no other treatment were provided during 

the interval and 4) follow-up time from initiation of immunotherapy treatment was greater 

than 6 months (Fig.2). Initially, 146 retrospective patients were enrolled who initiated 

therapy between June 2011 and December 2017. These patients were randomized into 

training (N=99) and test (N=47) cohorts, with the conditions that these two cohorts were not 

significantly different in terms of demographics, as well as FDG-PET avidity, as measured 

by the maximum standard uptake value (SUVmax). Using the same inclusion criteria, 

a prospective cohort was subsequently accrued, consisting of 48 patients who initiated 

immunotherapy between January 2018 and June 2019. This was used as an additional 

independent (prospective) test cohort.

The baseline clinical characteristics (age, sex, histology, smoke, chronic obstructive 

pulmonary disease (COPD) status, family history, ECOG scale, distant metastasis (M stage), 

brain metastasis and prior treatments), gene (EGFR, ALK and ROS1) mutation status were 

obtained from the medical records. The main endpoints of this study were: DCB (durable 

benefit), PFS, and OS. Clinically, immunotherapy response is frequently measured as DCB 

or NDB (no durable benefit) using binary cutoff of PFS at 6-months[18, 19]. PFS and OS, 

were defined as the time from the start date of immunotherapy to progression (or death), and 

patients free of progression (or alive) or lost to follow-up which were censored at the time of 

last confirmed contact. Response Evaluation Criteria in Solid Tumors (RECIST1.1)[20] was 

used to define progression.

This study was approved by the Institutional Review Board at the University of South 

Florida (USF), and was conducted in accordance with ethical standards of the 1964 Helsinki 
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Declaration and its later amendments. The requirement for informed consent was waived, as 

PHI was not revealed.

PET/CT imaging
18F-FDG PET/CT imaging was performed as standard diagnostic work-up before treatment 

with immunotherapy. Details of the retrospective PET/CT images obtained from 9 different 

scanner and the prospective PET/CT images obtained from 2 different scanners are shown 

in Supplemental Methods S1. Heterogeneity in scanner parameters was deliberately chosen 

to ensure generalizability of the derived predictive models. All PET images were converted 

into SUV units by normalizing the activity concentration to the dosage of 18F-FDG injected 

and the patient body weight after decay correction. Further, all the PET and CT images were 

resampled to 1×1×1mm3 voxels using 3-dimensional Lagrange Interpolating Polynomials.

Radiomic feature extraction

The primary lung tumors of PET and CT images were semi-automatically segmented 

with an improved level-set method based on gradient fields [19] were further reviewed 

and corrected by a radiologist with 16 years of experience (JQ) who was blinded to the 

outcome label. After spatial registration using a rigid transformation by maximizing the 

Dice Similarity Coefficients on the condition that the maximal axial cross sections of the 

nodules were aligned, KLD images were generated from the fused PET and CT images 

on a voxel-wise basis using Kullback–Leibler Divergence (KLD) criteria[21]. 790 features 

including PET features, CT features, and KLD features were then extracted from these 

segmented tumors and scaled into the range [0 1] with unity-based normalization, as shown 

in Supplemental Methods S2–S4. After dimensionality reduction according to the internal 

stability (Supplemental Methods S5), we investigated the radiomics expression patterns 

with unsupervised clustering to observe correlations among different features and different 

patients.

Statistical analyses

The Wilcoxon signed-rank test and Fisher’s exact test were used to test of differences for 

continuous variables and categorical variables, respectively. For PFS and OS comparisons, 

a log-rank test was used. To determine the association of the radiomics expression patterns 

with clinical characteristics, a χ2 test was used. P values less than 0.05 were regarded as 

significant. Statistical analyses were performed with R 3.5.2 and MATLAB R2019a (Natick, 

MA)

Feature selection and radiomics signature building

We improved the least absolute shrinkage and selection operator LASSO method[22] 

by performing analyses separately on Squamous Carcinomas or Adenocarcinoma 

(Supplemental Methods S6) to develop minimal feature sets for each that retained predictive 

information, which were then combined into a multiparametric radiomic signature (mpRS) 

weighted by their respective coefficients. To avoid overfitting, 100 times 5-fold cross 

validation was performed in the training cohort to generate a prioritized list of the most 

parsimonious sets of predictive features.
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Improved diagnostic validation of mpRS

To investigate the importance of the KLD features, digital phantom simulation experiments 

were performed. Two different digital phantoms were generated to have the same 

heterogeneity distribution (measured by Entropy and Inverse Difference calculated from 

3D co-occurrence matrix) and used to detect the different heterogeneity distribution of the 

KLD fusion images.

Additionally, three different radiomics signatures generated from PET features (PETRS), CT 

features (CTRS), and the linear combination of PET and CT features (PETCTRS) using the 

above method were used for the comparison with mpRS according to their discrimination 

performances measured by the areas under receiver operating characteristics curves (AUC), 

classification accuracy (ACC), sensitivity (SEN), and specificity (SPEC). Furthermore, the 

total net reclassification improvement (NRI) was used to investigate the added value of the 

KLD features to PET and CT features.

ANOVA analysis was performed to compare the distribution of the radiomics signatures 

among the different scanner types.

DCB prediction nomogram model building

Univariable logistical regression analysis was initially conducted to identify radiomics 

signatures, clinical factors, and common metrics (including the image-derived features of 

volume, SUVmax, and metabolic tumor volume*23+) that are associated with a DCB. 

Covariates that yielded a significant Wald’s Statistic from multivariable logistical regression 

analysis were used for developing the DCB prediction nomogram model.

The goodness-of-fit for the models were evaluated with Akaike Information Criteria (AIC) 

and the Hosmer-Lemeshow (HL) tests[24]. The AUC, ACC, SEN, and SPEC were also used 

to evaluate the discrimination performances of different models. To compare the clinical 

usefulness of the different models, a decision curve analysis was performed by quantifying 

the added benefits at different threshold probabilities[25].

PFS and OS estimation nomogram model building

The potential of the radiomics signature to predict PFS and OS was assessed and optimized 

in the training cohort and then validated in the two independent test cohorts by using 

Kaplan-Meier survival analysis. The patients were classified into high-risk or low-risk 

groups according to the radiomics score cutoff that maximized Youden’s index based on 

the training cohort.

Univariable Cox regression analyses were conducted using the radiomics signature, clinical 

factors, SUVmax, MTV (metabolic tumor volume), and volume. Statistically significant 

hazard ratios (HRs) were included in PFS and OS nomogram models using multivariable 

Cox regression analysis and a backward step-wise selection with AIC as the stopping rule. 

The C-index and AIC were used to evaluate the prediction ability of the models, and Z test 

was applied to determine whether the differences between different models were significant.
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Pilot study for longitudinal assessment of the radiomic signature

In order to validate the dynamic characteristic and investigate whether the radiomics 

signature could identify the patients receiving benefit over the ensuing six months, patients 

with follow-up PET/CT scans after the initiation of the immunotherapy were used to 

investigate the longitudinal trend of the radiomics signature. The patients who had DCB 

since the start of the immunotherapy but progressed within 6 month since the follow-up 

scan time were regarded as follow-up NDB, and the patients didn’t progress within 6 

months since the follow-up scan time were regarded as follow-up DCB. The AUC was 

calculated to evaluate the follow-up DCB and NDB discrimination performances of the 

radiomic signature, and the distribution of the radiomic signature across the baseline time 

and follow-up time were used to reveal the trend of the radiomic signature.

Finally, to assess the quality of this radiomics study, the radiomic quality score (RQS) was 

calculated according to Lambin et al.[26]

RESULTS

Clinical characteristics

The demographic and clinical characteristics of the three patient cohorts are presented in 

Table 1. Among the 146 retrospective patients, there were 88 men and 58 women and the 

overall mean age was 65.72 (±12.88), and the median PFS and OS were 7.52 and 10.38 

months. The retrospective training and test cohorts had identical distributions of SUVmax, 

and statistically insignificant differences in their clinical characteristics, PFS (p=0.62) and 

OS (p=0.42) (Supplemental Fig. S1). The 48 prospective patients curated from standard of 

care regimens had median PFS and OS of 6.78 and 9.95 months, respectively. Although 

slightly shorter compared to the retrospective cohorts, the PFS and OS were not significantly 

different in the prospective cohort. There were also no significant differences in histology, 

smoking history, sex, age, and mutation status. 22 patients had follow up PET/CT scans 

between 1 and 53 months of therapy, and these were used to investigate the longitudinal 

trend of the radiomics signature in a pilot study. Five of these patients had NDB since the 

start of the immunotherapy. For the remaining 17 patients who had DCB since the start of 

the immunotherapy, 6 of them progressed within 6 month since the follow-up scan time, 

while 11 patients did not progress and continued to experience clinical benefit within 6 

month since the follow-up scan time.

Feature extraction

Of the original 790 extracted features, 324 remained after filtering for internal stability. 

Unsupervised clustering revealed 3 clusters of patients with similar radiomic expression 

patterns (Fig.3a), which were significantly associated with histology (p=0.008, χ2 test) 

and response (p=0.028, χ2 test). The prospective patients further showed similar radiomic 

expression patterns and validated this association of these radiomic feature patterns with 

histology (p=0.041, χ2 test) and response (p=0.085, χ2 test) (Fig. 3b).
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Feature Selection and Radiomics Signature building

Pearson grouping was used to eliminate redundant features, resulting in 21 uncorrelated 

features (10 PET features, 4 CT features, and 7 KLD features). These were then used as 

inputs into the LASSO method. Through 5-fold cross validation on the training cohort 

(Supplemental Fig.S2), 8 features emerged as the best features to construct radiomics 

signature, and these are shown in Supplemental data S7. Representative radiomics signatures 

of two patients from baseline PET/CT scan and follow-up PET/CT scan are shown Fig.4.

Validation of the radiomics signature

Improved diagnostic validation of mpRS—From the simulated PET images (the first 

column) and simulated CT images (the second column) shown in Fig. S3, the two phantoms 

are classified as having the same heterogeneity and homogeneity distribution. However, 

from the fusion images (the third column), the two phantoms were classified as having 

different heterogeneity and homogeneity, which means the KLD features could identify the 

relative different positional relationship of the heterogeneity.

There were significant differences in the four radiomics signature scores between DCB 

and NDB patients in the training cohort (PETRS: p<0.001; CTRS: p=0.020; PETCTRS: 

p<0.001; mpRS: p<0.001). Except for the CTRS, the other three radiomics signatures 

had significant differences between DCB and NDB patients in the retrospective (PETRS: 

p=0.006; PETCTRS: p=0.003; mpRS: p<0.001) and prospective (PETRS: p=0.019; 

PETCTRS: p=0.009; mpRS: p<0.001) test cohorts. The mpRS achieved the highest AUCs 

of 0.86 (95%CI:0.79–0.93), 0.83 (95%CI:0.71–0.94), and 0.81 (95%CI:0.68–0.92) in the 

training, retrospective test, and prospective test cohorts, respectively (Supplemental Table 

S1 and Fig S4). Compared to PET+CT features, the inclusion of the KLD features 

yielded a total net reclassification improvement (NRI) of 0.50 (95%CI:0.11–0.88,p=0.011), 

0.55 (95%CI:−0.012–1.11,p=0.055), and 0.94 (95%CI:0.44–1.45,p<0.001) in the training, 

test, and prospective test cohorts, respectively, which showed significantly improved 

classification accuracy for response prediction. Therefore, only mpRS was used for the 

subsequent analyses.

Box plots and ANOVA analyses of each of the radiomic signatures are shown in 

Supplemental Fig.S5, which illustrates that these signatures are stable across 9 different 

equipment manufacturers (p>0.05), with mpRS being the most stable signature with the 

fewest outliers.

DCB prediction nomogram—Univariable logistical regression analysis on the training 

cohort identified mpRS, distant metastasis, and ECOG status as strong predictors for 

response, and these were also validated in the test cohorts (p<0.05, Supplemental Table 

S2). Through multivariable logistical regression analysis (Supplemental Table S3), ECOG 

scale and Distant Metastasis were predictive of a DCB response combined with the mpRS 

(Fig.5a), and adding these clinical variables generated a higher AUC of 0.89, 0.86 and 0.86 

in the training, retrospective test and prospective test cohorts, respectively (Supplemental 

Table S1 and Fig. S4). This model was well calibrated in all three cohorts (Fig.5c). The 

inclusion of ECOG scale and Distant Metastasis yielded a significant total NRI of 0.79 
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(95%CI: 0.47–1.01, p<0.001), 1.05 (95%CI: 0.55–1.54, p<.001), and 1.20 (95%CI: 0.75–

1.65, p<.001) in the training, retrospective test and prospective test cohorts, respectively.

The decision curves shown in Fig.5b indicate that the combined (clinical + radiomics) 

DCB nomogram model had the highest overall net benefit across the majority of the range 

of reasonable threshold probabilities in all the patients compared to radiomics or clinical 

signatures alone.

PFS and OS prediction nomogram—Through Kaplan-Meier survival analysis 

(cutoff=0.41), mpRS was able to significantly predict PFS and OS in training (p<0.001, 

p<0.001), retrospective test (p=0.001, p=0.002) and prospective test cohorts (p<0.001, 

p=0.002), respectively. Patients with higher radiomics scores had longer PFS and OS 

(Supplemental Fig.S6). According to univariable Cox regression analysis (Supplemental 

Tables S4 and S6), mpRS, histology, and ECOG scale were significantly associated with 

PFS and OS in the training and test cohorts. To investigate the prognostic value of the 

mpRS within the different subgroups of histology, stratified Kaplan-Meier survival analyses 

were also performed. As shown in Fig. 6, even though patients with adenocarcinoma (ADC) 

had better PFS than those with squamous cell carcinoma (SCC), the mpRS was predictive 

of PFS and OS for both histologies. Further multivariate Cox proportional hazards models 

(Supplemental Tables S5 and S7) including mpRS, histology and ECOG scale were built for 

PFS and OS estimation, which are expressed as nomograms shown in Fig. 5d and g. The 

calibration curves of the mpRS nomogram on training, retrospective test and prospective 

test cohorts are shown in Fig.5f and i for PFS and OS, respectively, which show excellent 

agreements between the nomogram predictions and actual observation. Additionally, the 

scatter plots of nomogram-predicted 6-month PFS and 1-year OS probability for individual 

patients versus the corresponding PFS and OS times are provided in Fig 5e and h. The 

Spearman’s rank correlation coefficients for individualized predictions were > 0.6 with 

p<0.001, suggesting a strong positive correlation.

The quantitative results of different models are shown in Table 2, which shows the combined 

(clinical+radiomic) nomograms yielded significantly strong prediction results (p<0.05) with 

C-indexes of 0.74 (95% CI: 0.68–0.80), 0.74 (95% CI: 0.66–0.82) and 0.77(95%CI: 0.69–

0.84) for PFS estimation, and C-indexes of 0.83 (95%CI:0.77–0.88), 0.83 (95%CI: 0.71–

0.94), and 0.80 (95%CI: 0.69–0.91) for OS estimation in the training, test and prospective 

test cohorts, respectively.

Pilot study for longitudinal assessment of the radiomic signature—A further 

analysis using subsequent follow-up scans, when available, showed the mpRS generated 

from the follow-up PET/CT images during treatment could also predict follow-up DCB 

with an AUC of 0.82 (95%CI:0.63–1.00). Further, it had a decreasing trend with time 

(Supplemental Fig S7), suggesting that the risk of progression increased with time.

Radiomic quality score

Radiomics is a rapidly maturing field and qualities of study designs and their results can 

bechallenging to evaluate. To address this, Lambin et al. developed a 36 point “Radiomics 

Quality Score” (RQS) metric[26]. The criteria are described in Supplemental Table S8, 

Mu et al. Page 8

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2021 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which shows that the current study had a RQS of 24. To put this in perspective, a recent 

meta-analysis[27] analyzed 77 radiomics publications and documented that the mean RQS 

across all studies was 9.4 + 5.6, indicating that the current study is in the upper 5 percentile 

of radiomics study designs.

A TRIPOD Checklist following reporting guidelines for prediction model development and 

validation (https://www.equator-network.org/reporting-guidelines/tripod-statement/) has also 

been provided in Supplemental Table S9, which further validated the integrity of the work.

DISCUSSION

In this work, we developed a radiomics signature to predict DCB in immunotherapy-

treated NSCLC patients, which was successfully validated in independent retrospective 

and prospective test cohorts. In addition, combining this signature with ECOG status and 

histology into a nomogram further facilitated the individualized prediction of PFS and OS 

prior to initiation of checkpoint blockade immunotherapy.

PET/CT radiomics studies typically extract image-derived quantitative features 

independently from PET or corresponding CT images *28–32+ and mutual information 

between PET and CT images have only assessed by qualitative metrics rather than 

quantitative descriptors [33–36]. By contrast, in this work, we constructed KLD features 

as quantitative descriptors of mutual information between co-registered PET and CT, and 

these significantly improved the prediction results. To illustrate the importance the KLD 

features, digital phantom simulation experiments were performed. Supplemental Fig. S3 

shows that found that different phantoms (a and b) could not be distinguished by PET or CT 

heterogeneity features. However, the KLD fusion images, which reflect the relative different 

positional relationship of the heterogeneity, could distinguish these phantoms.

When investigating the informative components of mpRS formula, we found multiple 

texture features (PET_SRLGE, KLD_SZE) were positively correlated, suggesting that the 

more heterogeneous tumors had a larger probability to have a DCB. This was a bit 

surprising, as prior studies have shown that more heterogeneous tumors with CT textures 

had worse response to radiation or chemotherapy[14]. A recent study showing the patients 

who had faster growing tumors before initiation of immunotherapy had better responses[37] 

may suggest that the more aggressive tumors that respond worse to conventional therapies 

are more susceptible to immune modulation. In terms of shape, those tumors with more 

convexity (smaller CHDensity) had a higher probability of a DCB. This could be explained 

by Saeed-vafa’s study[38] that PD-L1 cells are able to form a more rounded mass due 

to the ability of evading immune attack and coexistence with the vasculature, and high 

PD-L1 expression is associated with significantly longer PFS and longer OS[8, 9]. In 

terms of metabolic activity, tumors with a lower mean SUV and HU (KLDiv_mean) had a 

larger probability of having a DCB. This is expected, as more metabolically active tumors 

will produce more lactic acid [39] and lactic acid is a potent inhibitor of effector T cell 

function[40].
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Notably, only 4 CT features were remained after Pearson grouping and internal stability 

comparison, and the CT radiomics score constructed with these 4 features did not perform 

as well compared to mpRS, with an AUC of 0.69 and 0.64 in test and prospective test 

cohorts, respectively. These AUCs are smaller than those observed in a recent Annals 
of Oncology paper, which generated an AUC=0.79 in the NSCLC primary tumors with 

contrast enhanced computed tomography (CE-CT) scans[41]. This was also surprising, 

given our prior radiomic analyses of CT images to predict immunotherapy response[3]. 

A possible explanation for the low predictive power of CT in the current study is that 

the resolution of CT images in PET/CT is lower and non-contrast enhanced, compared 

to diagnostic CTs, and this also may lead to lower discrimination ability. Secondly, given 

no inter-scanner-correction was used for CT features, only a few CT features remained 

after filtering for internal stability. Additionally, other possible reasons that the 4 CT 

features were not selected in the mpRS formula were the KLD features had included the 

morphological information, and some studies had shown that the metabolic modifications 

on PET are more predictive than morphological modifications on CT especially in early 

response prediction[42, 11].

Moreover, as Moffitt Cancer Center is a referral hospital, many patients’ PET/CT images 

were acquired from different institutions, leading to large variability in acquisition and 

reconstruction methods. As we first filtered for internal stability, we selected for features that 

would be stable across different scanners. We contend that this is a strength of the current 

approach, as it allows for a more generalizable and transportable model (Supplemental Fig. 

S5).

SUVmax and MTV were shown effective in predicting efficacy and survival at 1 month after 

immunotherapy in some studies[42]. However, according to Supplemental Table S2, these 

factors were not significant factors in predicting DCB in our current study. On one hand, 

this may be because the time points were different (1 month vs 6 month), and SUVmax and 

MTV may play different roles at different time points. On the other hand, this may be due 

to the different cohorts. Those prior studies were single institution with rigorous acquisition 

protocols, whereas our study utilized data from multiple scanners, multiple institutions, 

acquired under standard of care. We have previously shown that reproducibility of SUVmax 

and SUVmean under standard of care multi-institutional PET+CT imaging is lower than that 

which can be achieved at a single institution under a research protocol[43].

The present study also possesses some limitations. First, PD-L1 status of most patients 

was unavailable in this dataset, and hence couldn’t be used for comparing with the mpRS. 

Second, given PET/CT is not commonly used in clinical follow up, and only 22 patients 

had follow up PET/CT scans that could be further analyzed. Their radiomics scores had a 

decreasing trend with time (Supplemental Fig. S7), suggesting that the risk of progression 

increases with time, which may be caused by the emergence of resistance. And the 

significant prediction results (AUC=0.82) showed the radiomics signature might be used 

as a prediction biomarker in real time to guide the following immunotherapy pending 

further prospective validation with larger cohorts. Third, in order to capture enough data for 

training, an interval time of 6 months in inclusion criterion was fairly broad. However, the 

median (average) interval time of these data was 1.73 (2.13) months for the retrospective 
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cohort, and most of the PET/CT images (76%) were acquired within 3 months. Through 

ANOVA analysis (Fig.S8), there was no significant difference of mpRS among different 

subgroups divided by interval time for DCB and NDB patients on both training and test 

cohorts. Additionally, the AUCs were decreased with the interval time larger than 3months 

and 2 months in the training and test cohorts, respectively, but the differences were not 

significant. One possible reason is the small number of patients with the interval time 

larger than 3 months. And another possible reason could be the mpRS was not significantly 

correlated with the volume of the tumor (Spearman’s rho = −0.20, p=0.06 for training 

cohort, Spearman’s rho=−0.17, p=0.27 for test cohort), which means the increased volume 

within the interval time may not lead to the significant variations of mpRS in predicting 

DCB. Given the subgroup patients with 0–1 month interval time has the largest AUC in both 

training and test cohorts, the interval time of all the patients in the prospective cohort was 

less than 1 month. Lastly, there were significant differences in Distant Metastasis between 

the retrospective and prospective cohorts, but this did not affect the final prediction of 

DCB due to the incorporation of Distant Metastasis into the DCB nomogram model. Given 

Distant Metastasis is not a significant factor for PFS and OS prediction, this difference also 

would not affect the PFS and OS prediction.

CONCLUSIONS

In conclusion, an effective and stable radiomics signature combing PET and KLD features 

were identified and may serve as a predictive biomarker for immunotherapy response. 

Furthermore, radiomics nomograms well demonstrated the incremental value of the 

radiomics signature for individualized DCB response, PFS and OS estimation, and have a 

potential to be used to guide individual pre and post immunotherapy pending further external 

validation with larger cohorts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Radiomics Workflow.
The workflow includes image selection (only images with slice thickness≤5 mm no artifacts, 

and the tumor in PET images has FDG uptake were included), registration and automatic 

delineation, imaging preprocessing and feature extraction, feature selection, model training 

and model validation.
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Fig 2. Inclusion and exclusion diagram.
The training cohort comprised clinical data and the corresponding imaging data of the 

retrospective patients were used to train the radiomics signature, the DCB, PFS and OS 

nomogram models, which were further validated using the test cohort of the retrospective 

patients and the prospective cohort enrolled according to the same inclusion and exclusion 

criterion.
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Fig 3. Expression patterns of Radiomic features.
(a) Unsupervised clustering of all the retrospective and prospective patients on the row 

direction and radiomics feature expression on the column direction, revealed clusters 

of patients with similar radiomics expression patterns. (b) Clinical patient parameters 

for showing significant association of the radiomics expression patterns with Histology 

(retrospective: p = 0.008, prospective: p = 0.041, χ2 test) and response (retrospective: p = 

0.029, prospective: p = 0.085, χ2 test)
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Fig 4. Radiomics signatures of NSCLC patients.
(a~b) The CT, PET, and fusion images for a patient with ADC NSCLC obtained 1 month 

before and 6 month after immunotherapy, which means the patient would have DCB since 

the start of immunotherapy and 6 month post immunotherapy; (c)~(d) The CT, PET, and 

fusion images for a patient with ADC NSCLC obtained 1 month before and 9 month after 

immunotherapy, which means the patient would have DCB since the start of immunotherapy, 

but would have NDB after 9 month immunotherapy. The corresponding clinical feature and 

radiomics scores are shown in the bottom of each image.
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Fig 5. Nomograms and the corresponding calibration curves.
(a) and (c) are the nomograms constructed with mpRS and clinical characteristics to estimate 

the probability of DCB, along with the assessment of the model calibration in the training 

cohort, retrospective test cohort and prospective cohort, respectively. (e.g. For a patient 

with MRS of 0.6, ECOG 1 at stage M0, his total point is 95 (MRS 0.6 corresponding to 

point 54, ECOG 1 corresponding to point 28, no distant metastasis corresponding to point 

13, 54+28+13=95), which corresponds to a DCB probability of 0.79). (b) is the decision 

curves for different radiomics signatures and DCB response prediction models on all the 
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patients. (d) and (f) are the nomograms constructed with mpRS and clinical characteristics 

to estimate the risk of progression, along with the assessment of the model calibration in 

the training cohort, retrospective test cohort and prospective cohort, respectively. (e.g. For a 

ADC patient with MRS of 0.6 and ECOG 1, his total point is 85 (MRS 0.6 corresponding to 

point 46, ECOG 1 corresponding to point 39, ADC corresponding to point 0, 46+39+0=85), 

which corresponds to a 6-month PFS probability of 0.71, 1-year PFS probability of 0.5, and 

2-year PFS probability of 0.42). (e) is the scatter plots of nomograms predicted 6-month 

PFS probability of individual patients versus PFS time of the corresponding patients. (g) and 

(i) are the nomograms constructed with mpRS and clinical characteristics to estimate the 

risk of death, along with the assessment of the model calibration in the training cohort, 

retrospective test cohort and prospective cohort, respectively. (e.g. For a ADC patient 

with MRS of 0.6 and ECOG 1, his total point is 89 (MRS 0.6 corresponding to point 

39, ECOG 1 corresponding to point 50, ADC corresponding to point 0, 39+50+0=89), 

which corresponds to a 6-month OS probability of 0.94, 1-year OS probability of 0.81, 

and 2-year OS probability of 0.59). (h) is the scatter plots of nomograms predicted 1-year 

OS probability of individual patients versus OS time of the corresponding patients. For 

(e) and (h), the red points represent the training cohort, the green points represent the test 

cohort, and the blue points represent the prospective cohort. The vertical dotted line and the 

horizontal dotted line mean the actual PFS and OS probability obtained with Kaplan-Meier 

estimate at the certain time point, and the horizontal dotted line means the 6 month and 1 

year time point. The pair of the vertical and horizontal dotted lines divided the graph into 

4 quadrants, the points in the lower left and top right quadrants correspond to the accurate 

prediction.
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Fig 6. Stratified Kaplan-Meier survival curves.
(a-c) are stratified Kaplan-Meier survival curves of PFS according to mpRS on training, 

retrospective test and prospective test cohorts within the different subgroups of histology. 

(d-f) are stratified Kaplan-Meier survival curves of OS according to mpRS on training, 

retrospective test and prospective test cohorts within the different subgroups of histology.
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Table 2.

Performance of different models in PFS and OS estimation

Category
Training cohort Test cohort Prospective cohort

C-Index (95%CI) AIC p C-index (95%CI) AIC p C-index (95%CI) AIC p

PFS estimation

mpRS 0.70 (0.64–0.76) 475.42 0.37
§ 0.67 (0.58–0.75) 231.03 0.81

§ 0.68 (0.59–0.78) 177.68 0.69
§

PFS nomogram 0.74 (0.68–0.80) 464.21 0.12
# 0.74 (0.66–0.82) 224.74 0.03

# 0.77 (0.69–0.84) 175.02 .051
#

clinical nomogram 0.66 (0.60–0.78) 479.93 .006
ǂ 0.68 (0.61–0.76) 226.61 0.01

ǂ 0.66 (0.57–0.76) 186.46 .027
ǂ

OS estimation

mpRS 0.74 (0.67–0.81) 291.99 0.92
§ 0.71 (0.56–0.85) 90.82 0.36

§ 0.76 (0.64–0.89) 78.46 0.38
§

OS nomogram 0.83 (0.77–0.88) 266.82 <.001
# 0.83 (0.71–0.94) 79.38 0.07

# 0.80 (0.69–0.91) 78.62 0.55
#

clinical nomogram 0.74 (0.67–0.82) 286.77 <.001
ǂ 0.79 (0.67–0.90) 79.40 0.16

ǂ 0.67 (0.53–0.81) 87.00 .020
ǂ

#
The C-index was compared between the mpRS and the mpRS nomogram

ǂ
The C-index was compared between the mpRS nomogram and clinical nomogram

§
The C-index was compared between the mpRS and clinical nomogram
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