Skip to main content
. 2020 Dec 10;2:100008. doi: 10.1016/j.crphar.2020.100008

Table 2.

Potential of cardamonin in the prevention and treatment of chronic diseases.

Chronic Diseases In vitro/In vivo In silico/Ex vivo Model Mechanism References
Cancers
Breast Cancer In vitro SUM190, MCF-7, Cama-1 ↓Colony forming ability, CSCs, ALDH1, Sox 2, ↓c-myc, OCT4, ↓SMYD3, IL-6, IL-8, MCP-1, NF-κB, IκB, STAT3 NANOG, EZH2, SETDB1 Jia et al. (2016)
In vivo SUM190 xenograft ↓Tumor growth, CSCs, ALDH1, Sox 2, OCT4, ↓NANOG Jia et al. (2016)
In vitro MCF-7, MDA-MB-231,BT-549 ↓Cell proliferation ↓Colony formation, ↑apoptosis, G2/M phase arrest, ↑Bax/Bcl-2, ↓β-catenine ↑E-cadherin, ↓N-cadherin, snail, slug, vimentin, ↓Wnt/β-catenin, cyclin D1, c-Myc, VEGF, CDK-4, ↓Akt-GSK3β Shrivastava et al. (2017)
In vivo 4T1 induced tumor ↓Tumor growth Shrivastava et al. (2017)
In vitro MDA-MB-231, MCF-7 ↓Cell proliferation, Bcl-2, GSH, ↑caspase-3, Bax, PARP, ROS, Apoptosis, ↑Foxo3a, p21, p27, Bim, p-JNK, G2/M phase arrest Kong et al. (2019)
In vivo MDA-MB-231 xenograft ↓Tumor growth, cyclin D1, Bim, ↑caspase-3, p-JNK, FOXO3a, p21, p27 Kong et al.(2019)
In vitro MDA-MB-231 MCF-7, BT-549 ↓Cell viability, ↑Apoptosis, Bax, caspase 3, ↓Bcl-2, ↓HIF-1α, PDHK1, LDHA, ↑OXPHOS, ↑ROS, ↓Nrf2, HO-1, NQO-1, mTOR/p70S6K Jin et al. (2019)
In vivo MDA-MB-231 xenograft ↓Tumor growth, Bcl-2/Bax, ↓HIF-1α, LDHA, p-PI3K, p-AKT, p-mTOR, p-P70S6K, angiogenesis;, ↑caspase-3, Jin et al. (2019)
CRC In vitro HCT-8 ↓Cell viability Jin et al. (2019)
In vitro SW480, LS1748, SW480, DLD-1, HCT116 ↓Wnt/β-catenin, cyclin D1, c-myc, ↑G2/M phase arrest, cell viability Park et al. (2013)
In vitro HT-29 ↓Cell proliferation, clonogenicity, migrationA Memon et al. (2014)
In vitro HCT116 ↓Cell proliferation, ↑G2/M phase arrest, autophagy, ↑p53/JNK Kim et al. (2015)
In vitro HCT15, HCT116 SW480, SW620 ↓Cell proliferation; ↑Apoptosis, S phase arrest, ROS, MD, Bax, p-JNK, p-p38 James et al. (2017)
In vivo AOM induced CRC ↓Tumor incidence, multiplicity, ↓NF-κB, p65, Ki-67, β-catenin James et al. (2017)
In vitro HCT-116 ↓Cell viability, ↑apoptosis, caspase-3/9, Bax, ↓c-myc, Oct4, cyclin E, NF-κB, TSP50 Lu et al. (2018)
In vitro HT-29, SW-460 ↓Cell viability, IL-1β, TNF-α, STAT1, STAT3, STAT5 Hou et al. (2019)
In vivo DSS ​+ ​AOM induced CACC ↓IL-1β, TNF-α, p-JAK2, p-STAT1 ↓p-STAT3, p-STAT5 Hou et al. (2019)
Fibrosarcoma In vitro HT-1080 ↓Tgase-2, ↓MMP-2, ↓NF- κB, ↓MMP-9, ↓cell migration & invasion Park et al., (2013)
Gastric Cancer In vitro MGC803 ↓Cell viability Jin et al. (2019)
In vitro BGC-823, BGC-823/5-FU ↓Cell viability, ↑apoptosis, G2/M phase arrest, ↓CD44, ALDH1, OCT4, C-myc, β-catenin/TCF4 ↓cyclinD1, P-glycoprotein, Wnt Hou et al. (2020)
In vivo BGC-823/5-FU xenograft ↓Tumor weight, volume Hou et al. (2020)
In vitro AGS ↓Cell viability, ↑apoptosis, Bax, caspase-3, ↓Bcl-2 ↓colony formation, CDK1, Cyclin B1, CDC25 ↑p21, ↓cell migration, invasion, ↑E-cadherin, ↓snail, ↓α-SMA, STAT3, vimentin, Wang et al. (2019a)
HCC In vitro HepG2 ↓Cell viability, ↑G1 phase arrest, apoptosis, ↑caspase-3/7, −8, −9, Fas, TRAIL, H1F, FADD, ↑DR4, DR5, CD95, cyt c, p-p53, ↓ HSP-60, -27, −70, ↓XIAP, catalase, clusterin, survivin, TNF-α, NF-κB, ↑ROS Badroon et al. (2020)
Leukemia In vitro WEHI-3 ↑ROS, Ca2+, caspase-3, -8 and -9, Bax, cyt c, AIF, Endo G, GRP78, caspase-12, Fas, Fas-Ligand, FADD, DAP, TMBIM4, ATG5; ↓Bcl-2, DDIT3, DDIT4, BAG6, BRAT1 Liao et al. (2019)
In vivo WEHI-3 xenograft ↑CD19, ↓Mac-3, CD3, CD11b, ↑phagocytosis of macrophages, cytotoxicity of NK cells, ↑survival rate Liao et al. (2020)
Lung Cancer In vitro A549, NCI-H1299, NCI-H460, NCI-H1688, NCI-H446, primary cell line 1,2 ↓Cell viabilityB He et al. (2014)
In vitro A549, NCI-H460 ↑Apoptosis, ↑caspase-3, PARP, ↓IKKβ, NF-κBB
In vitro LLC ↓Cell viability, invasion, migration, ↑E-cadherin ↓p-mTOR, p-S6K1, Snai1 Niu et al., (2015)
In vivo LLC transplant ↓Tumor growth, lung metastasis Niu et al., (2015)
In vitro A549, H460, H292, H1299, H1975 ↓Cell viability, EMT, ZEB1, Bcl-2 PI3K/Akt/mTOR, ↓Colony formation, N-cadherin, cyclin D1/CDK4, migration, invasion, ↑E-cadherin, G2/M phase arrest, apoptosis, caspase-3, Bax Zhou et al. (2019)
In vivo H460 xenograft ↓Tumor growth, Ki-67, PI3K/Akt/mTOR Zhou et al. (2019)
In vitro A549 ↓Cell migration, G2/M phase arrest, ↑apoptosis, ↑caspase-3/7, ↑caspase-9, ↑PARP cleavage, ↓Mcl-1, ↓p-mTOR, ↓p-4EBP1C Break et al., (2018)
Melanoma In vitro A375 ↓Cell viability, invasion, ↑apoptosis, caspase-3, ↑PARP Berning et al. (2019)
Myeloma In vitro RPMI 8226, U266, ARH-77, RPMI 8226 ↓Cell proliferation ↑ Apoptosis, caspase-3, PARP, ↓Bcl-2, Bcl-xL, ↓ survivin, XIAP, cIAP-1, cIAP-2, NF-κB/p65, ↓IKK, IKKβ, p-IκBα, ICAM-1, COX-2, VEGF Qin et al. (2012)
NPC In vitro HK1 ↓Cell migration, G2/M phase arrest, ↑apoptosis, ↑caspase-3/7, ↑caspase-9, ↑PARP cleavage, ↓Mcl-1, ↓p-mTOR, ↓p-4EBP1C Break et al., (2018)
Ovarian Cancer In vitro SKOV3 ↓Cell viability, VEGF, HIF-1α, HIF-2α, ↓p-mTOR, p-S6K1 Xue et al., (2016)
In vitro SKOV3 ↓p-Raptor, mTORC1, p-S6K1, Lamp2 Shi et al. (2018a)
In vitro SKOV3 ↓Glycolysis, HK, LDH, ↑autophagy, LC3-II, ↑LAMP1, ↓p-S6K1, p-mTOR, HK2, ↑p-AMPK Shi et al. (2018b)
In vitro SKOV3 ↓Cell viability, ↑autophagy, ↑LC3-II, ↑apoptosis, ↑caspase-3, PARP, ↓Raptor, mTOR, S6K1 Shi et al. (2018c)
In vitro SKOV3, A2780 SKOV3 ↓Cell viability, colony formation ↑G2/M phase arrest, ↓XIAP, survivin, Bcl-2, ↓mTOR, p70S6K Niu et al. (2018)
In vitro SKOV3 ↓Cell viability, S6 kinase 1, TNF-α, IL-6, NF-κB Chen et al. (2018b)
PC In vitro DU145, LNCaP ↓STAT3, JAK2, ↓cell proliferation, ↑apoptosis ↑caspase-3, -8, -9, PARP, ↓Bcl-xl, Bcl-2, Survivin, ↓ XIAP, VEGF, COX2, MMP9, Cyclin D1, CDK4, ↓Cyclin E, CDK2, ↓migration, invasion, ↑metastasis Zhang et al. (2017)
In silico ↓STAT3, SH2 domain Zhang et al. (2017)
In vitro PC-3 ↓Cell growth, ↑apoptosis, ↓NF-κB1 Pascoal et al., (2014)
CVD In vivo Mesenteric arteries ↑CDR; ↓PIC, SCE, TCR Wang et al., (2001)
In vivo Rat tail artery myocytes ↑ KCa1.1, ↓ICa(L), IBa(L), Cav1.2 Fusi et al. (2010)
In vivo DOX-induced cardiotoxicity ↑Nrf2, HO1, NAD(P), (NQO1), GCLM, SOD, GSH, CAT, ↓MDA, ROS, Caspase-3, NF-κB Qi et al. (2020)
In vitro H2C9 ↓4E-BP1, S6, mTOR-Raptor You et al. (2018)
In vivo LPS treated C57 mice ↓Contractile defects, apoptosis, oxidative stress, ↓LPS induced Nrf2 signaling, inflammation, NK-κB Tan et al. (2020)
Diabetes In vivo FEIR SD rats ↑ISI, ↓VSMC, VT, mTOR, HOMA-IR ↓4E-BP1, p-P70S6K1 Liao et al., (2010)
Gastritis In vitro EtOH/HCl induced gastric ulcer ↑LOOH, oxidative stress, SOD ↓ GSH de Oliveria Cabral et al. (2017)
HI In vitro weight hanging method ↑NO, eNOS expression; ↓iNOS, ↓NF-κB, TNF-α, ↓Bcl-2, Atef et al. (2017)
ID In vitro RAW264.7 ↓TNF-α, IL-6, IL-1β, NF-κB, NO, PGE2, iNOS,COX-2 mRNAs, IL-1β mRNA, ROS Kim et al. (2010)
In vitro HT-29, LS174T, RAW264.7 ↓NF-κB, LPS, MAPK Ren et al. (2015)
In vivo DSS induced colitis ↓iNOS, COX-2, MCP-1, TNF-α, IL-6, IL-15, NF-κB, MAPK, TLR4 Ren et al. (2015)
In vitro BMDMs, PBMCs ↓caspase-1, IL-1β, NLRP3 Wang et al. (2019b)
In vivo LPS induced septic shock ↓ NLRP3, caspase-1, IL-1β Wang et al. (2019b)
Arthritis In vitro CFA Induced Cells ↓TNF-α, IL-1β, IL-6 Voon et al., (2017)
Pathological Pain/Nociceptive In vitro MG63, RAW264.7 ↑IκB; ↓Tgase-2, COX-2, p65,NF-κB Park et al. (2014)
In vivo CIC ↓WR, COX-2, Tgase-2 Park et al. (2014)
In silico HEK293 ↓TRPA1 Wang et al. (2016)
In vivo ACIAWR Model FIPL Model, Hot Plate Test GIPL Model ↓capsaicin-induced nociception Ping et al. (2018)
Ulcerative colitis In vivo acetic acid induced ↓MPO, iNOS, NF-κB, TNFα, MDA, COX-2, caspase-3 Ali et al. (2017)
Nephrotoxicity In vivo cis induced nephrotoxicity ↓caspase-3, ↓Bax/Bcl-2, NOX-1, IL-1β, TNF-α, NF-κB, iNOS, MCP-1, ICAM El-Naga (2014)
Neuropathic Pain In vitro PCI2 ↑Nrf2, HO-1, NQO1, Trx1, TrxR1, GCLC, GCLM; ↓LDH, caspase-3, ROS Peng et al. (2017)
Sjögren's Syndrome ex vivo BMCI-pSS ↓TNF-a, IL-6, NO, iNOS, NF-қB Benchabane et al. (2018)

Notations.

ADimethyl cardamonin or 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC).

BCardamonin analogs 4,4′-dihydroxylchalcone (DHC) and 4,4′-dihydroxy2′-methoxychalcone (DHMC).

CCardamonin analog Compound 19.

Abbreviations: AAI Model ​= ​acetic acid-induced model; AE ​= ​Antihyperalgesic Effects; ALDH1 ​= ​aldehyde dehydrogenase 1; AP ​= ​activator prostratin; AOM ​= ​Azoxymethane; ATG5 ​= ​Autophagy related 5; AWR Model ​= ​abdominal writhing response model; BAG6 ​= ​BCL2-Associated Athanogene 6; BCL2L13 ​= ​BCL2-like 13 (apoptosis facilitator); BMCI-PSS ​= ​blood mononuclear cells isolated from pSS patients; BMDMs ​= ​bone-marrow-derived macrophages; BRAT1 ​= ​BRCA1-associated ATM activator 1; CA= Cold Allodynia; CAT ​= ​catalase; Cca ​= ​Cell Cycle Arrest; CCA ​= ​cardiac contractile abnormality; CCC ​= ​cancer cell migration; CCF ​= ​cancer cell colony formation; CCI ​= ​chronic constriction injury; CCP ​= ​cell cycle progression; CDK 4 ​= ​cyclin dependent kinase 4; CDR=Concentration dependent relaxation; CFA ​= ​complete Freund's adjuvant; CIC= Carrageenan-induced cells; CIS=Cisplatin; c-JNK ​= ​c-Jun N-terminal kinase; COX-2 ​= ​cyclooxygenase-2; CRC= Colorectal Cancer, CVD= Cardiovascular Diseases; cyt-C ​= ​cytochrome; DAP ​= ​Death Aassociated Protein; DDIT3 ​= ​DNA-Damage Inducible Transcript; DDIT4 ​= ​DNA-Damage-inducible Transcript 4; DSS ​= ​dextran sulfate sodium; DMC ​= ​dimethyl cardamonin; FEIR ​= ​fructose-enriched insulin resistant; FIPL Model ​= ​Formalin-Induced Paw Licking Model; FOXO3a ​= ​Forkhead box O3; 5-FU ​= ​5-fluorouracil; G2/M CCA ​= ​G2 phase cell cycle arrest; GCLM ​= ​glutamate-cysteine ligase modifier subunit; GIPL model ​= ​glutamate-induced paw licking model; GSH ​= ​glutathione; HCC= Hepatocellular Carcinoma; HO1 ​= ​heme oxygenase-1; HI=Hepatic ischemia;; HOMA-HSP=High shock proteins; IR: ​= ​homeostasis model assessment for insulin resistance; ID=Inflammatory Diseases; IL ​= ​interlukin; iNOS ​= ​inducible nitric oxide synthase; ISI=Insulin Sensitivity Index; JNKs ​= ​Jun N-terminal kinases; LAPE ​= ​lactic acid production and efflux; LOOH ​= ​lipidhydroperoxide, LIDCS ​= ​LPS-induced defect in cardiomyocyte shortening; LPS ​= ​lipopolysaccharide; MA ​= ​Mechanical Allodynia; MAPK ​= ​mitogen-activated protein kinase; MCD ​= ​Myocardial Contractile Dysfunction; MCP-1 ​= ​monocyte chemoattractant protein 1; MD ​= ​mitochondrial depolarization; MDA ​= ​malondialdehyde; MMP ​= ​matrix metalloproteinases; MOP ​= ​mitochondrial oxidative Phosphorylation; MPO ​= ​Myeloperoxidase; NAC=N-acetyl-cysteine; NC=Nuclear Condensation; NF-κB ​= ​Nuclear Factor kappa B; NO=Nitric Oxide; NLRP3 ​= ​NOD-LRR- and pyrin domain containing protein 3; NPC= Nasopharyngial carcinoma; NQO1 ​= ​NAD(P)H:quinone oxidoreductase 1; Nrf2 ​= ​nuclear factor erythroid-2 related factor 2; NT ​= ​nuclear translocation; OBTF 4 ​= ​octamer-binding transcription factor4; OS= Oxidative Stress; TSP50 ​= ​testes-specific protease 50;; p-Akt ​= ​phosphorylated-Akt; p-4EBP1 ​= ​phosphorylated 4E binding protein 1; PBMCs ​= ​human peripheral blood mononuclear cells; PC=Prostate Cancer; PGE2 ​= ​prostaglandin E2; PIC ​= ​phenylephrine induced contraction; PKB ​= ​protein kinase B; p-mTOR ​= ​phosphorylated-mTOR; pSS ​= ​Primary Sj€ogren's syndrome; PVT1 ​= ​Plasmacytoma Varient Translocation 1; ROS ​= ​Reactive Oxygen Species; SCE=Sustained Contraction by Endothelin I; SOD ​= ​superoxide dismutase; Tgase-2 ​= ​.transglutaminase-2; S6K1 ​= ​S6 kinase 1 ​TH ​= ​Thermal Hyperalgesia; TMBIM4 ​= ​transmembrane BAX inhibitor motif containing 4; TNF-α ​= ​tumor necrosis factor-α;; TLR4 ​= ​toll-like receptor 4 signaling; TRPA1 ​= ​transient receptor potential ankyrin 1; TxB2 ​= ​thromboxane B2; UC=Ulcerative Colitis; VEGF= Vascular Endothelial Growth Factor; VSMC ​= ​vascular smooth muscle cells; VT ​= ​vascular thickening; WR=Writhing Response.