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Abstract

Bacterial contamination of biomaterials is a common problem and a serious threat to human health
worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial
properties and can resist infection is a continual goal for biomedical applications. Silk fibroin
(SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the

most widely studied natural polymers for biomedical applications due to its unique mechanical
properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last
decade, many methods have been employed for the development of antibacterial SF-based
biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different
antibacterial agents and bio-inspired surface modifications. In this review, we first describe

the current understanding of the composition and structure-properties relationship of SF as a
leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods
implemented for the development of bactericidal SFBs, their mechanisms of action, and different
applications. We briefly address their fabrication methods, advantages, and limitations, and finally
discuss the emerging technologies and future trends in this research area.
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1. Introduction

Silk fibroin is a natural macromolecular protein that has a long history of use in the textile
industry and as a suture material in medicine [1]. Approved by the US Food and Drug
Administration (FDA) as a biomaterial in 1993, SF has since been the subject of extensive
research for different biomedical applications due to the unique combination of properties
that it offers [2]. A high level of biocompatibility, tunable biodegradation, outstanding
mechanical properties, processability into versatile material formats, and the presence of
many accessible functional groups for chemical modifications have all rendered SF an
extremely favorable material for development of various medical devices, drug delivery
platforms, and tissue engineering scaffolds [3-5].

Silk is synthesized by the epithelial cells in specialized silk glands of different silkworms
(mulberry and non-mulberry) and spiders [6]. The difference in silks obtained from various
origins is mainly in their amino acid sequences and crystalline structure, giving rise to
their distinct physical properties. While it is not feasible to obtain silk from spiders in

large quantities [7], domesticated mulberry Bombyx mori (B. mori) silkworms provide a
constant supply of silk that can be utilized in different fields [8]. Besides B. mori, silk
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derived from other varieties of silkworms such as non-mulberry Antheraea mylitta (Indian
Tasar silk), Antheraea assama (Indian Muga silk), Antheraea pernyi (Chinese Oak Tussah
silk), Antheraea yamamai (Japanese silk) and Philosamia ricini (Indian Eri silk) have also
recently found increasing interest due to their comparatively superior mechanical properties
and performance [9]. However, owing to the difficulties associated with their extraction and
processing, domesticated mulberry B. mori silkworms remain the primary source of silk for
textile and biomedical applications [10].

The B. mori silkworm cocoons are mainly composed of silk fibroin (SF) fibers covered

with an adhesive protein called sericin. Sericin is a hydrophilic polymer that holds the
fibroin fibers together like a glue and accounts for almost 30% of the cocoon’s weight

[11]. Though individually investigated for biomedical applications, the combination of SF
and sericin together in raw silk fibers has been rarely used due to the concerns raised
regarding their adverse immune reactions and inflammatory activities. This was reported to
be caused by the possible contamination from sericin and the wax like material present on
the silk fibers [12]. Therefore, for most applications, the SF fibers are purified from sericin
through a degumming process by boiling the cocoons in 0.02 M sodium carbonate solution
based on a previously established extraction procedure [13]. According to the extraction
protocol, the degummed SF fibers can be dissolved in 9.3 M lithium bromide solution and
dialyzed against deionized water to obtain aqueous SF solution that can be further processed
into many different material formats such as films, hydrogels, micro/nanoparticles, and
micro/nanofibers. Other SF extraction methods based on proteolytic enzymes [14, 15], acid
treatments [16], and low-pressure argon plasma [17] have also been reported. However,
these methods have been less commonly utilized due their high cost and harsh effects on the
structure and properties of SF fibers, respectively [18].

The B. mori SF is composed of a heavy (~350 kDa) and a light (~25 kDa) polypeptide

chain (connected with a disulfide bond) along with the P25 glycoprotein in a molar ratio of
6:6:1 [19]. The heavy chain consists of repetitive hydrophobic domains, mainly composed
of glycine, alanine, and serine amino acid sequences, and random hydrophilic domains
consisting of acidic or charged amino acids such as glutamic acid, aspartic acid, arginine,
and lysine [20]. The hydrophobic domains in SF can adopt a B-sheet conformation to form
water insoluble crystalline regions that are responsible for the excellent mechanical strength
of SF. These crystalline structures are interspersed between hydrophilic amorphous regions
with a-helical conformation that provide SF with elasticity and toughness [21]. A schematic
of the structure of silk fibroin is represented in Figure 1.

The superior mechanical properties of silk related to its molecular structure and packing,
along with its high biocompatibility and tunable biodegradation have made SF distinctly
unique among other natural and synthetic polymers [22]. The transformation of a-helical
conformations into B-sheet crystalline structures in SF can be induced by different physical
and chemical treatments /n vitro to produce highly stable hydrogels and 3D scaffolds

[23]. SF in an aqueous state or when dissolved in organic solvents (e.g., formic acid,
hexafluoro-2-propanol) can also be used to fabricate films, nanofibers, and other type

of biomaterials for different biomedical applications (Figure 2) [24, 25]. In addition, the
presence of both hydrophilic and hydrophobic domains in the SF structure endows it with
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a self-assembling ability in the aqueous environment, enabling the synthesis of SF micro/
nanospheres using water-based approaches [26]. SF-based micro/nanospheres have been
widely investigated in the past for delivery of various drugs and therapeutic agents [27-29].

Despite the many outstanding properties of SF that qualifies it for a wide range of
applications either alone or in combination with other biomaterials, a major limitation
with SF biomaterials is the lack of inherent antibacterial activity. Bacterial infection is a
great concern for indwelling medical devices and implantable biomaterials. Despite the
standard sterilization treatments such as dry/wet heat or ionizing radiation, the surface of
these materials can still be colonized by bacteria due to the possible contamination from
the operating room environment, the patient’s own skin, or other distal infections in the
body [30, 31]. Biomaterial’s contamination can give rise to difficult to treat infections that
endanger the patient’s life and put a burden on both the patient and healthcare budget by
increasing the healing time and requiring a revision surgery to remove the infected implant
[32]. In fact, biomaterial associated infections are one of the major reasons for failure of
implants and medical devices. Health care-associated infections (HAIs) annually cost up to
$33 billion and pose a severe threat to society [33]. Therefore, intensive efforts have been
devoted to developing biomaterials that possess antibacterial activity and can resist such
infections.

Due to the wide-ranging application of SF-based biomaterials (SFBs), over the last

decade, many researchers have investigated different strategies to confer these materials
with antibacterial properties. Various methods such as combination, modification, and
functionalization with different antibacterial agents or alteration of the surface architecture
have been implemented to prevent bacterial colonization on the surface of SFBs and improve
their performance. In this review, for the first time we go through each of these methods,
their advantages and drawbacks, and give an overview of the recent advances and future
trend in this research area.

2. SFinteraction with bacteria

While the antibacterial applications of SFBs have been extensively explored in the past
decade, the study of SF as a support material for bacterial adherence, growth, and biofilm
formation is a newly emerged area of research that has found application in the fields of
bioelectronics and bioanalytical sciences [34]. The as-spun silk fibers in the cocoons of
silkworm larvae have been shown to provide a good substrate for the growth of various
bacterial species and biofilm formation. The formed biofilm will in turn act as a primary
defense barrier protecting the cocoon from environmental stresses. The Pseudomonas
cepacia bacteria present in soil have also been found to feed on the carbon and nitrogen
that they obtain by hydrolyzing the degummed silk via their fibrinase enzyme [35]. In a
study by Tabei et al. SF films containing 0.5% glycerol as a plasticizer were demonstrated
to have great ability to collect and retain a high density of various bacterial strains on

their surface after a short period of exposure [36]. The attachment of bacteria to polymeric
surfaces is governed by several factors such as surface hydrophobicity, surface charge, and
surface chemical composition. While the mechanism of interaction of SF with bacteria
and its supporting effect on biofilm formation has not yet been completely elucidated,
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SF moderate wettability has been identified as one of the primary influential factors in

the attachment of cells to its surface [37]. The initial bacterial adherence to a surface
(docking stage) is determined by nonspecific cell-surface interactions such as van der Waals,
electrostatic, and hydrophobic attractive or repulsive forces. The loosely attached bacteria

to the surface then start to secret an extracellular polymeric substance (EPS) that allows

for a stronger adhesion between bacteria and the surface (locking stage). SF protein with
suitable hydrophobicity and excellent bioabsorbability has been demonstrated as an effective
substrate for docking and immobilization of various bacterial species. Though favorable for
some applications such as biofuels and microbial sensors [36], the supporting effect of SF

in bacterial growth and proliferation is highly undesirable and must be avoided for medical
devices and biomaterials related applications. In the next sections, we review on the different
methods employed in the last decade to overcome the bacterial colonization of SFBs.

3. Antibacterial approaches for silk-fibroin based biomaterials

3.1 Antibiotics

Antibiotics are one of the most commonly used agents to be combined with SF-based
biomaterials (SFBs) for prevention and treatment of bacterial infections. While systemic
administration of antibiotics often results in poor tissue penetration and low bioavailability,
and can cause adverse side effects, their localized delivery through implantable biomaterials
and scaffolds offers several advantages. These advantages include tunable release directly
at the site of infection and achieving a higher dosage with reduced side effects [38]. The
release of antibiotics from SFBs can be controlled by tailoring their chemical and structural
design as well as their biodegradation rate [39]. Since the bacteriostatic activity of such
materials is dependent upon the release of an antibiotic from a silk fibroin-based substrate,
most studies have implemented a zone of inhibition (ZOl) or disc diffusion test to evaluate
the antibacterial responses (Table 1). ZOlI test is a quick and rather inexpensive method

that is used to determine the antibacterial activity of a material, in relation to a target
microorganism, by measuring the size of the bacterial inhibition zone formed around the test
material due to an antibacterial agent being released or leached out from it.

Depending on their type, antibiotics induce bacterial cell death through different approaches.
For instance, aminoglycoside antibiotics (i. e. gentamicin) and tetracyclines are inhibitors

of protein biosynthesis, quinolones such as levofloxacin and ciprofloxacin impede DNA
replication, while glycopeptides (i. e. vancomycin) and B-lactam (i. e. amoxicillin)
antibiotics interfere with normal bacterial cell wall synthesis [40]. In a study by Lan et

al. vancomycin loaded gelatin microsphere were prepared and embedded in freeze-dried SF
scaffolds for wound healing applications. According to a ZOl assay, the fabricated scaffolds
were able to inhibit the gram-positive Staphylococcus aureus (S. aureus) while did not show
any antibacterial activity against gram negative £scherichia coli (E. coli) bacteria after 24

h. This is because gram negative bacteria possess an outer membrane that makes them

more resistant against f-lactam and glycopeptide antibiotics like vancomycin that act on the
bacterial cell wall [41]. Therefore, for any application the choice of antibiotic is of primary
importance and should be made based upon their mechanism of action and the type of target
bacterial cells that they are going to counteract [42].
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So far, many different antibiotic-loaded SFBs have been developed for versatile biomedical
applications such as wound healing, bone tissue engineering, treatment of osteomyelitis, and
development of sutures, ear tubes, and orthopedic implants (Table 1). Various physical and
chemical methods have been implemented for fabrication of these antibiotic eluting SFBs.
Antibiotics can be physically blended in SF aqueous/organic solutions prior to casting,
electrospinning, and freeze-drying to obtain antibiotic loaded SF films [43, 44], electrospun
fibers [45], or cryogels [41, 46, 47], respectively. In addition to physical approaches, the
chemical surface modification of SFBs using plasma treatment has also been reported to be
a viable method for conjugation of antibiotics to the surface of SFBs [48, 49]. Choudhury et
al. developed amoxicillin trihydrate (AMOX) impregnated SF sutures using oxygen plasma
treatment. According to their study, the oxygen plasma treatment of (Antheraea assama)

silk fibroin (AASF) yarn resulted in the formation of a rougher morphology and oxygen
containing functional groups on the surface, leading to an improved hydrophilicity and
drug-impregnation efficiency by 16.7%. The oxygen plasma treated AASF/AMOX yarns
(AASF/O,/AMOX) had a sustained release of AMOX for up to 336 h and showed a clear
ZOl against S. aureus (54.7 mm) and £. coli (19.3 mm) after 24 h /n vitro. In addition, the
in vivo analyses revealed the effectiveness of AASF/O,/AMOX in mitigating the infection
and reducing the healing time in an S. aureus-infected mouse wound model after 14 d. Other
fabrication methods such as electrophoretic deposition of antibiotic loaded SF on the surface
of metallic implants [50, 51], fabrication of layer by layer/coacervate antibiotic loaded
coatings on SFBs (e. g. sutures) [52], and synthesis of composite SFBs using antibiotic
loaded nanofillers [53] have also been described in the literature. In a recent study by Wu

et al.[53], tetracycline hydrochloride (TCH) was first loaded into the lumen of halloysite
nanotubes (HNTSs) and then electrospun with SF aqueous solution to create antibacterial

SF fibers. Compared to directly loading the TCH into SF fibers, the use of HNTs as an
intermediary drug carrier resulted in a significantly more controlled release of TCH from
SF fibers and therefore a longer lasting antibacterial effects against S. aureusand E. coli
bacteria /n vitro (Table 1).

Despite the ease of use, large availability, and low cost of antibiotics, the emergence of
antibiotic-resistant bacteria over the past decades has hindered the application of antibiotic
eluting SFBs. Biofilm formation on the surface of biomaterials and implants leads to
development of resistant cells by providing an extracellular polymeric matrix composed of
lipopolysaccharides, lipids, and proteins around the bacteria which protects them against the
host immune system and antibiotics [54]. To eradicate the bacteria in biofilm and eliminate
infection, remarkably higher drug doses and longer treatment periods are required compared
to their free-living planktonic counterparts. This in turn prolongs and increases the patient’s
exposure to the drug, resulting in an enhanced risk of unwanted side effects [55].

Considering the inefficacy of the antibiotics in treatment of biofilm related infections,
alternative approaches are essential to overcome the issues associated with bacterial
resistance. In this regard, a fundamental understanding of antibiotics bactericidal
mechanisms and drug-target interactions will be very helpful for development of new
formulations and improvement of the old ones to increase their efficacy toward different
types of bacteria.
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Inorganic nanoparticles

Various inorganic nanomaterials with antibacterial properties such as metal (e. g. Ag,

Au, Cu, Ca) and metal oxide nanoparticles (e. g. ZnO, TiO,, Ca05,), transition metal
dichalcogenide monolayers (e.g. MoSe,), and graphene oxide (GO) nanosheets have

been combined with SFBs for different biomedical applications (Table 2). Compared

to antibiotics, it is more difficult for bacterial cells to develop resistance toward these
nanomaterials due to their multiple mechanisms of action. The principal mechanism that
inorganic nanomaterials employ to kill the invading bacteria is the generation of reactive
oxygen species (ROS) [60]. ROS produced at low levels can be neutralized by bacterial
cells antioxidant defense mechanisms. However, high concentrations of ROS can overcome
these defense systems, causing oxidative damage to critical intracellular components such as
enzymes, proteins, DNA, and lipids [61]. In addition to ROS generation, other bactericidal
mechanisms of inorganic nanomaterials include disrupting the cell wall, damaging the
chromosomes and DNA, and dysregulating the metabolic activity of the microorganisms
[62].

Inorganic nanoparticles are typically synthesized using physiochemical approaches which
are often costly and require the use of toxic substances and harsh conditions. Therefore,
recently increasing attention has been given to simple and green methods of nanoparticles
synthesis using biomaterials that are eco-friendlier and more biocompatible [63, 64]. SF
is one of such materials that has been used frequently as a biocompatible reducing and
stabilizing agent for /n situ fabrication of various inorganic nanomaterials such as Ag NPs
[65-67], Au NPs [68, 69], and CuBTC metal-organic framework (MOF) particles [70].
Being a protein, SF is mainly composed of repeated sequences of glycine, alanine, and
serine amino acids with nearly 10% tyrosine residues evenly distributed throughout the
protein sequence [71]. The ionization of tyrosine phenolic moiety at basic pH values and
consequent electron transfer to the metal ions is recognized as the main mechanism of
reduction by SF [72, 73]. Other reduction mechanisms such as chelation of metal ions and
electron donation by unprotonated carboxylic groups at high pH [70] and reduction through
the methanolic -OH groups in serine amino acids have also been reported by previous
studies [74].

Moreover, the presence of hydrophilic—hydrophobic segments in the SF structure has been
shown to facilitate its binding with inorganic NPs such as graphene and transition metal
dichalcogenides (TMD) [75]. In a study by Huang et al. [76], carboxyl-modified silk fibroin
(CMSF) was used as the exfoliating agent for preparation of MoSe, TMD nanosheets. The
strong binding and interaction of CMSF carboxyl groups with the TMD atoms resulted

in the formation of exfoliated MoSe, nanosheets with high efficiency and long-term
dispersion stability. The MoSe,—CMSF nanosheets exhibited good biocompatibility and
high peroxidase-like catalytic activity toward the decomposition of H,O, into «OH radicals
therefore requiring the use of ~1000 times lower H,O, dose for /in vitro antibacterial
effectiveness against gram-negative £. coli and gram-positive Bacillus subtilis (B. subtilis)
bacteria compared to the traditional medical therapy. At physiologically relevant levels of
H,0,, MoSe,-based films were also shown to effectively promote the wound healing and
prevent infections /n vivo using Kunming mice with infected skin wounds as models.
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In addition to /n situ fabrication methods, antibacterial SFB composites containing
inorganic nanomaterials can also be made ex situ by first synthesizing the nanoparticles
and then incorporating them into the SFB substrate [77, 78]. Embedding inorganic
nanoparticles in SFBs not only endow them with antibacterial activity and improve their
mechanical properties but also prevents excessive NPs leaching, resulting in prolonged
antibacterial longevity, reduced cytotoxicity, and enhanced overall biocompatibility [77,
79]. Antibacterial SFB nanocomposites incorporated with ex situ synthesized GO [80],
Zn0 [81-83], TiO, [84, 85], and CaO, NPs [86, 87] have been previously developed and
evaluated for diverse biomedical applications such as wound healing, bone regeneration, and
urethral tissue engineering (Table 2). Dhas et al. fabricated AgNPs impregnated B. mori
silk fibers using two different /n situ and ex situ approaches [77]. The results of their study
demonstrated that /n situ prepared fibers had larger ZOl and a higher reduction efficiency
after 24 h against both S. aureusand P, aeruginosa bacteria compared to ex situ fabricated
fibers.

Despite their versatile biomedical applications and broad-spectrum antibacterial activity,
the inorganic nanomaterials/SFBs composites have not yet found their way into clinical
practice due to the unforeseen risks associated with their safety and stability in long-term
use. Owing to their small size, nanoparticles can cross biological barriers, penetrate tissues,
and interact with cells and intracellular organelles leading to membrane disintegration,
DNA modification, mitochondrial apoptosis, and cell death. In addition, depending on
their physiochemical properties such as shape, charge, and wettability nanoparticles might
agglomerate and accumulate in tissues and organs inducing immune responses [88,

89]. Therefore, further research is essential to fully evaluate and identify the effect of
nanoparticles size, shape, charge, and chemical composition on their toxicological properties
and develop novel, green methods of synthesis to obviate the use of hazardous chemicals
and enhance their biocompatibility.

3.3 Inherently antibacterial polymers and peptides

Polymers and peptides with inherent antibacterial properties have been widely used as
additives for SF to develop antibacterial SFBs that can resist infection and function properly
when used /n vivo (Table 3). Owing to its biocompatibility, biodegradability, and nontoxic
origins, chitosan is the most studied antibacterial polymer in combination with SF for
different biomedical applications such as wound healing, development of blood contacting
devices, and tissue engineering [104]. Chitosan is a linear cationic polysaccharide produced
by basic deacetylation of chitin, originally extracted from the shells of crustaceans and
insects. The bactericidal activity of chitosan is believed to be mainly associated with the
protonation of amino groups at low pH values (<pKax6.5) and their consequent electrostatic
interaction with negatively charged bacterial cell membranes [105]. This interaction causes
damages in the bacterial cell wall, impairs vital bacterial functions, and ultimately results in
cell death. At higher pH values, where chitosan has a lower charge density, other bactericidal
mechanisms such as hydrophobic interactions and chelation effects predominate [1086,

107]. Other polymers with inherent bactericidal activity such as polyethylenimine (PEI),
polypropylene (PP), and Poly (hexamethylene biguanide) hydrochloride (PHMB) have also
been combined with SF for development of antibacterial wound dressings, scaffolds, and
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sutures (Table 3). Electrospun SF/PEI nanofibers were shown to have a strong inhibitory
effect against gram positive S. aureus and gram negative £ aeruginosa bacteria after 5h
and did not show any /n vitro cytotoxicity against L929 fibroblast cells [108]. In a study

by Gogoi et al. PP was grafted onto multifilament yarns (d=~100 pm) of a non-mulberry
Antheraea assama silk fibroin (AASF) through a plasma graft polymerization process to
develop antibacterial sutures [109]. AASF yarn was first sterilized using Ar plasma and PP
was grafted onto its surface using Ar/propylene plasma discharge. The resulting AASF/PP
sutures showed a ZOl of 35£0.01 mm against gram negative E. coli bacteria after 24 h in
vitro and remarkably improved the wound healing process when tested /n vivo on rabbits,
with complete healing after 16 days compared to 25 days for only Ar plasma treated AASF
sutures. In another study, PHMB/SF porous sponges were fabricated through electrostatic
interactions and freeze-drying method and were shown to have antibacterial activity against
S. aureusand E. colibacteria at PHMB/SF ratios of higher than 2/100 when tested /n vitro
by a 24 h disc diffusion assay [110].

In addition to polymers, in the last decade, there has been an increasing interest

into antimicrobial peptides (AMPs) as effective antimicrobial therapeutics. AMPs are

a diverse class of small molecular weight proteins with broad spectrum antibacterial
activity that constitute the first line of defense in the innate immune system of different
organisms [111]. AMPs are mainly composed of cationic and hydrophilic regions and can
acquire amphipathic a-helical conformations that facilitate their penetration through the
phospholipid bilayer membrane of the bacteria leading to inhibition of vital biological
processes and cell death [112]. In fact, the cationic nature of AMPs is attributed to

the presence of positively charged amino acids such as lysine and arginine in their
structure allowing them to target the negatively charged membranes of bacteria causing
perforation and cell lysis as well. Due to their disrupting effects on the bacterial cell

wall and alteration of membrane permeability, AMPs are good candidates to be used

in conjunction with other antibacterial agents to yield a more efficacious bactericidal
activity [113]. In addition to the discussed mechanisms of action, AMPs can also exert
their antibacterial effect by modulating and activating the host immune system [114].
Compared to conventional antibiotic treatments, AMPs offer many advantages including
higher efficacy, environmental friendliness, and lower possibility of developing bacterial
resistance due to their mainly physiomechanical membrane-targeted mechanism of action
[115]. In addition, given the neutral zwitterionic composition of eukaryotic cell membranes,
AMPs demonstrate minimized mammalian cell toxicity and a highly selective bactericidal
activity [116].

There have been several efforts to fabricate antibacterial SFBs using both naturally occurring
and synthetic AMPs (Table 3). Physical fabrication methods reported so far include dip-
coating of SF sutures in AMP solution [117] and electrospinning of SF/AMP solutions [118]
for development of antibacterial nanofibrous wound dressings. However, to overcome the
rapid leaching of the antimicrobial agent associated with the physical methods of synthesis,
chemical conjugation approaches have been proposed. Covalent attachment of AMPs to
SFBs has been mainly carried out through carbodiimide chemistry. The chemical grafting of
AMPs such as cecropin B [119], Cys-KR12 [120], and L-Cysteine [121] onto different SF
substrates via EDC-NHS coupling have been reported for fabrication of antibacterial wound
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dressings and implantable biomaterials that have shown strong antibacterial activity toward
both gram positive and gram negative bacteria and had no demonstrated cytotoxicity (further
details can be found in Table 3). Other chemical methods such as enzymatic oxidation of
SF with tyrosinase and consequent grafting of e-polylysine has also been demonstrated

by Wang et al with about ~1.97 log reduction in S. aureus bacteria after 18 h, however
cytotoxicity assays were not performed to further evaluate the biocompatibility of these
materials [122]. In addition to physical and chemical methods of synthesis, Gomes et al.
employed a bioengineering approach in which they designed and cloned three fusion AMPs
(human neutrophil defensin 2, human neutrophil defensins 4, and hepcidin) to modify the
spider silk [123]. The genetically engineered spider silk demonstrated antibacterial activity
against £. coliand S. aureus according to a 24 h radial diffusion assay. Nevertheless, some
of the major limitations regarding the development of recombinant SF proteins include the
poor yield and the challenging scale-up process [124].

Quaternary ammonium compounds (QACS) are another type of polymeric substances with
potent antimicrobial properties that have been previously used to develop antibacterial silk
sutures [125]. QACs are cationic surfactants with a nitrogen atom, covalently bonded to
four aryl/alkyl chains. Similar to the other antimicrobial polymers and peptides, QACs act
on bacteria through electrostatic interactions with the membrane. The lipophilic structure of
the alkyl chains enables the QAC permeation through the bacterial membrane where it will
disrupt structural proteins and enzymes leading to cell death [126]. The length of the alkyl
chains as well as the charge density are determining factors in the bactericidal effectiveness
of the QACs [127]. Silk sutures coated with a 25% solution of K21 quaternary ammonium
compound demonstrated a long lasting ZOI against Porphyromonas gingivalis (P. gingivalis)
and Enterococcus Faecalis (E. faecalis) after 12 days in culture.

While the development of antibacterial SFBs using bactericidal polymers and peptides
offers great promise /n vitro, there remains several pitfalls that need to be addressed

before their clinical translation. For instance, the emergence of resistant bacteria, although
slower compared to antibiotic treatments, have been reported after long term use of AMPs.
There are also great concerns regarding the bacteria developing resistance toward host-
defense peptides after exposure to high doses of therapeutic AMPs [128]. The mechanisms
underlying the evolution of bacterial resistance toward AMPs are described in a review by
Sierra et al [113]. Aside from the issues related to bacterial resistance, AMPs face other
limitations as well, such as high production costs, short half-life, and lack of stability /n
vivo due to degradation by proteases [129]. In addition, the adverse long-term effects of
AMPs are not yet fully known, given that they can induce immunogenicity and demonstrate
hemolytic activity according to previous studies [130]. The use of delivery systems such as
SFBs has been proposed as a viable solution to overcome some of the mentioned limitations
associated with AMPs. However, to further enable their practical clinical applications,
active research into designing new AMPs with modified properties (e. g. reduced toxicity,
prolonged stability, and enhanced efficacy) and rigorous /n vivo studies using suitable
animal models are required.
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3.4 Plant extracts

Plants extracts have been used for medicinal purposes [147] since ancient times and in the
last decade, they have gained attention as natural antioxidants and antibacterial agents to be
used in combination with polymers such as SFBs for various biomedical applications (Table
4). Thus far, herbal extracts such as olive leaf, thymol, Nigella sativa, Baicalein, Pistacia
terebinthus, Pistacia lentiscus, and Hypericum empetrifolium, as well as manuka honey
have been combined with SFBs mostly through electrospinning method for wound dressing
applications. The antibacterial and antioxidant properties of these plant extracts are believed
to be mainly attributed to the presence of abundant phenolic compounds in their structure
such as phenolic acids, tannins, flavonoids, carvacrol, and thymoquinone [148, 149]. In an
attempt to determine the correlation between the phenolic content and antibacterial activity,
Shan. et al studied 46 different herbal extracts by measuring their total phenolic content and
evaluating their bacterial inhibition efficiency [150]. They found that the bactericidal activity
of an herbal extract is directly influenced by its phenolic content and plant extracts with
higher levels of phenolic compounds exhibited stronger antibacterial activity.

Phenolic compounds are important secondary metabolites and a part of defense mechanisms
in plants which have potent antioxidant and antibacterial activity. Depending on their

type and molecular structure, plant-derived phenolics exhibit different mechanisms of
antibacterial action such as interfering with integral proteins and enzymes resulting in the
alteration of cytoplasmic membrane, dysfunction in the metabolic activity, impairing of the
genetic material, and affecting the electron and nutrient transfer in bacterial cells [150, 151].
Additionally, many phenolic containing herbal extracts have been reported to have anti-
quorum sensing and biofilm suppressing activities as well [152]. In a study by Chan et al.,
baicalein (BAI), a Chinese herbal extract, was blended with SF to electrospin antibacterial
SF fibers for wound dressing applications. Polyvinylpyrrolidone (PVP) was added to the
mixture to further control the release of BAI from the dressings. The SF/PVVP/BAI mats were
tested against S. aureus which is one of the most common bacteria found in the mucous
membranes and soft tissue infections in humans and 88.2-98.9% of bacteria reduction was
observed after 24 h contact with the mats. The SF/PVP/BAI mats were also able to reduce
infection and improve the healing rate when tested /n vivoin a S. aureus infected mouse
wound model.

Due to their different modes of action compared to antibiotics, herbal phenolic compounds
offer promising potential for treatment of the antibiotic resistant bacteria. However, a major
setback regarding the use of plant extracts as antibacterial agents is the lack of established
protocols and set criteria for evaluation of their antibacterial effect resulting in contradictory
results. Moreover, the high diversity of phenolic compounds and their different antibacterial
effects against various bacterial strains also add up to the complication [153]. Therefore,
there is a need for more defined and standard methods of investigation to make direct
comparison between the results of different studies possible.

3.5 Bioinspired approaches

Biofilm formation on the surface of indwelling medical devices and implants is a major
problem leading to implant failure, significant morbidity and even mortality among the
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patients. The biofilm starts to form when bacteria adhere to a surface and produce

an extracellular polymeric substance which secures their attachment and growth [164].
Therefore, there have been many efforts to provide the surface of biomedical materials with
antibiofouling properties. In this regard, nature provides an infinite source of inspiration
for researchers and scientists to design surfaces that can repel bacteria and inhibit their
colonization. Several examples of natural antibiofouling surfaces can be found in animals’
skin (e.g. shark, gecko), insect wings (e.g. cicada, butterfly), and plant leaves (e.g. lotus,
rice) that have evolved unique topographical and chemical features to resist bacterial
contamination [165]. The presence of hierarchical micro/nanoscopic patterns on the surface
of these living organisms endow them with low adhesion and superhydrophobic and self-
cleaning properties. Micro/nano-patterned surfaces minimize the attachment of bacteria by
offering a significantly smaller contact area and an intrinsically low surface energy. They
can also kill the bacteria upon contact by physically rupturing or deforming their cell wall
membrane [166].

Inspired by the intricate architecture of natural antifouling surfaces and with recent advances
in micro/nano-fabrication techniques, many researchers have attempted to replicate these
naturally occurring topographies with the hope of reproducing their behavior on the surface
of biomedical devices and implants [167]. Considering that this field is still in its infancy,
there are only a few number of studies regarding the fabrication of micro/nano patterned
SFBs for antifouling biomedical applications (Table 5). In a study by Mehrjou et al.,
homogeneous nanocones were fabricated on the surface of SF films by oxygen plasma
etching for orthopedic implant application [168]. The plasma etching process resulted in

the formation of new hydroxyl bonds on the surface of the nanopatterned films therefore
increasing the surface energy by around 176%. The hydrophilic nanopatterned SF films
could reduce the adhesion of both Gram-negative (£. coli) and Gram-positive (S. aureus)
bacteria by more than 90%, while increased the proliferation of osteoblast cells by 30%. In
another study by Tullii et al. [169] nanostripes and microwells with different diameters were
fabricated on the surface of SF films employing a soft lithography approach. The results

of their study demonstrated that the patterned SF films were able to reduce the number

of adhered E. coliby 66% compared to flat SF films and at the same time supported the
adhesion and proliferation of mammalian cells (HEK-293).

Novel bioinspired development of antifouling micro/nano patterned surfaces provides an
alternative drug-free route for prevention of biomaterials associated infections. In contrary to
the conventional chemistry-based approaches which require the continuous low-dose release
of antibacterial agents leading to the emergence of resistant bacteria, the bioinspired micro/
nano scale surface topographies promise a long-term solution, killing the bacteria through

a mechanical mechanism [170]. However, this also poses a limitation on the use of micro/
nano-patterned surfaces for antibacterial purposes as the bactericidal effect is only achieved
if the bacteria come into direct contact with the surface. Moreover, there are concerns
regarding the mechanical stability of these patterns for long-term /in vivo applications.
Physical defects in the fabricated micro/nano-structures might cause complications such as
localized platelet accumulation, biofilm formation, and unwanted cytotoxic effects [171]. It
is also important to note that the size, shape, spacing and type of the micro/nano-patterns

as well as the type of invading bacteria dictates the bactericidal response [172]. Therefore,
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finding a particular surface pattern that is effective against all types of bacteria remains a
major scientific challenge. In addition to the bactericidal activity, the cytocompatibility of
the micro/nano-patterns should also be considered carefully. Cytotoxic responses have been
reported in the past for mico/nano scale surface structures with high aspect ratio [173].
Therefore, utmost importance must be given to investigating the stability and potential short
and long-term effects of these surfaces in future studies.

In addition to surface-mediated bactericidal mechanisms, many living organisms produce
antibacterial molecules as part of their defense system against pathogens. One of

such natural products is nitric oxide (NO), a free-radical gas molecule with manifold
physiological functions [174]. NO is produced endogenously from L-arginine by nitric
oxide synthase enzymes in the 10712-1076 M range. At lower nanomolar concentration
(10712-1079 M), NO is produced by endothelial (NOS) and neuronal (NNOS) nitric

oxide synthases to regulate vasodilation, angiogenesis, and neurotransmission and at higher
micromolar concentrations (1079-10~8 M), it is produced by inducible nitric oxide synthase
(iNOS) in macrophages as a potent antimicrobial agent to eradicate foreign pathogens [175].

NO possesses a broad-spectrum antimicrobial activity, acting upon bacteria, viruses, and
fungi through multiple different mechanisms [176]. Owing to its small size and lipophilic
nature, NO can easily diffuse through the bacterial cell membranes where it can cause
detrimental effects on different bacterial cell components and functions. Being a free radical,
NO readily reacts with oxygen and superoxides to generate reactive nitrogen and oxygen
byproducts that can impose oxidative and nitrosative damage on bacterial membrane lipids,
proteins, metabolic enzymes, and DNA leading to their inhibition or death [177]. The
multi-mechanistic antibacterial activity of NO makes it extremely difficult for bacteria to
develop resistance, therefore, offering a promising alternative to conventional antibiotics
[178, 179].

In the recent years, many researchers have attempted to mimic the endogenous production
of NO by developing materials that can deliver NO exogenously for different biomedical
applications such as blood contacting medical devices [180-182], urinary catheters [183],
endotracheal tubes [184], tissue engineering scaffolds [185, 186], and wound dressings
[187, 188]. To overcome the limitations associated with direct delivery of NO including

its gaseous state, high reactivity, and short half-life, various NO donor molecules

(organic nitrates and nitrites, N-diazeniumdiolates, and S-nitrosothiols (RSNOs)) have been
developed and incorporated into organic and inorganic substrates [189]. Incorporation of
the NO donors in a substrate offers many advantages such as improving the NO release
kinetics, allowing for a more sustained and tunable NO delivery, and minimizing the
potential cytotoxic effects, therefore enabling the development of versatile biocompatible
materials with potent antibacterial activity [190]. In addition, exogenous delivery of NO at
concentrations as low as 450 pM has been shown to effectively disperse antibiotic resistant
biofilms into a planktonic state by increasing the intracellular phosphodiesterase activity of
the biofilm, leading to an elevated rate of cyclic di-GMP degradation, ultimately resulting in
the disintegration of the biofilm [191].
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Natural polymers such as SF offer an interesting platform for NO delivery due to their
biocompatible degradation products, reduced immune response, large availability, and lower
cost compared to synthetic delivery platforms [192]. Our group has recently demonstrated
the fabrication of NO releasing SF NPs through an antisolvent/self-assembling approach
[193]. SNitroso-A-acetylpenicillamine (SNAP), a synthetic tertiary RSNO, was loaded into
SF NPs by adding SNAP/ethanol solution to an aqueous SF solution and freeze-thawing the
mixture. The prepared SNAP-SF NPs could release a total of 1.31 + 0.02 x 10710 mol mg™1
NO over a 24 h period and showed a concentration-dependent antibacterial activity against
methicillin-resistant Staphylococcus aureus (MRSA) and E£. coli; inhibiting more than 99.9%
of the bacteria at a concentration of 10 mg/mL. This study was the first to demonstrate

the implementation of NO as an antibacterial additive for SF and therefore can open up

new avenues for more exploration in this area and development of novel NO releasing
antibacterial SFBs in the future.

3.6 Combination approaches

The multi-drug resistant bacteria, emerged by the widespread use of antibiotics and

other antimicrobial agents, pose a severe threat to public health worldwide. One effective
approach to combat this type of bacteria is the combinational use of different antibacterial
agents [195]. Combination therapies using antibacterial agents with multiple targets of
action can reduce the chances of development of resistance, decrease the use of excess

drug doses and occurrence of adverse side effects, and often results in synergistically higher
antibacterial activity [196].

Thus far, development of antibacterial SFBs using chitosan along with other antibacterial
agents such as penicillin [197], ZnO nanoparticles [198], and water crude longan seed
extract [199] have been reported in the literature. These studies are all in agreement that a
higher bactericidal efficacy can be obtained by using a combination of chitosan with another
antibacterial agent as additives for SFBs (Table 6). Moreover, in a study by Zhou et al. Ag
NPs in combination with gentamicin were used to fabricate antibacterial SF based coatings
for Ti implants [200]. The results of the study showed a significantly higher bactericidal
activity by synergistic combination of gentamicin and Ag NPs at concentrations far below
their minimum inhibitory concentration. The prepared coatings were able to reduce the
bacterial adhesion on the surface of Ti implants by 95%. In another study by Vieira et

al. Ag NPs were reduced by SF in a basic condition to make conductive SF/Ag NPs

gels [201]. By applying an electric current to the gels, 50% higher ROS generation were
obtained compared to control. The SF gels made with 50% AgNOs had a conductivity of
1.5 S cm~1 and were able to inhibit 80% of £. coliin 1 min with electric current being
applied. The fabrication of electrospun SF based nanofibers containing a combination of
S-Nitrosoglutathione (GSNO) NO donor molecules and type I collagen peptides (CP) has
also been reported as an antibacterial wound dressing for treatment of ischemic chronic
wounds [202]. According to a 24 h disk diffusion assay the fibers containing CP alone
showed only moderate antibacterial activity against £. co/iand £ aeruginosa and low
activity against S. aureus, while addition of GSNO significantly increased the corresponding
zones of inhibition and antibacterial activity against these bacteria.
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Overall, the combination approaches offer an interesting alternative to inefficient
monotherapy methods and can reduce the risks associated with the emergence of
antibacterial resistance. With a multitude of antibacterial agents available and different
material formats that SF can acquire, there is an opportunity to design a plethora of

novel antibacterial SFBs. However, the exact molecular mechanisms of all antibacterial
components and their cross interactions should be carefully considered before fabrication
to obtain a highly synergistic bactericidal efficiency and prevent any undesired side effects,
respectively.

4. Antibacterial SFBs in clinical trial

As an FDA approved material, SF has been the subject of considerable interest for
development of cosmetics, biomedical products, and clothing. Many of these products such
as silk masks, gels, sutures, wound dressings (Fibroheal™ Ag), tissue scaffolds (FibroFix™,
SilkVoice®), and textiles (DermaSilk®) have already been commercialized and can be found
on the market while several others are awaiting to pass clinical trials [206, 207]. The review
paper by Holland et al. on biomedical uses of SF, presents a detailed overview of the
previously passed and currently ongoing clinical trials of silk-based biomedical materials
[208]. Owing to their low inflammatory responses, flexibility, oxygen permeability, tunable
degradation, and good mechanical properties, SFBs are majorly used as scaffolds for

tissue engineering and wound healing applications. Several examples of SF-based scaffolds,
wound dressings, and surgical meshes (HQ® Matrix Soft Tissue Mesh) exist that their
safety and efficacy have been tested through clinical trials and are soon to be commercially
available [207]. In a recent study, a bi-layered wound dressing was fabricated by mixing SF,
gelatin and sericin solutions and casting them on a silk fabric. The top-layer was crosslinked
using glutaraldehyde and after several washing with glycine and deionized water, it was
freeze-dried and gamma-sterilized. The final product was compared to the commercial
Bactigras and showed satisfactory results in preclinical and the randomized clinical trials for
safe and effective full-thickness skin wound healing [209]. The results of the preclinical
evaluation of a three-layered SF-based nerve conduit (SilkBridge™), developed by an
electrospinning method, was published recently [210]. When tested in a model of rat median
nerve injury, the SilkBridge™ conduit demonstrated great ability to repair the function and
recover the morphology of the median nerve similar to the results obtained by the reference
autograft nerve reconstruction method. The SilkBridge™ nerve conduits are currently
undergoing clinical studies to evaluate their safety and efficacy for the healing of digital
nerve defects in humans (ClinicalTrials.gov identifier: NCT03673449). With the increasing
number of SFBs becoming clinically available, combination of antibacterial agents into
these materials can be a great strategy to further improve their abilities and broaden their
range of applications. Despite a large body of research regarding antibacterial SFBs in the
recent years and their promising applications, these materials have scarcely found their way
into clinical applications. However, due to the rapidly growing nature of this field and the
myriad of potential applications of antibacterial SFBs, their emergence in clinical settings is
highly anticipated in the years to come.
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5. Conclusions and future trends

Silk fibroin (SF) is a natural polymer that has been dominantly used for different biomedical
applications owing to its unique combination of properties including super biocompatibility,
excellent mechanical properties, controllable biodegradation, and versatile material formats.
Many SF-based biomaterials (SFBs) have been developed so far that are used as tissue
engineering scaffolds, wound dressings, sutures, and medical device coatings. Regarding
the lack of inherent antibacterial activity of SF and with bacterial infection being the
principal cause of biomaterials failure, there have been many attempts to endow SFBs with
antibacterial properties and span their range of application. The water-based processing of
SF, along with the presence of multiple functional groups (e.g. hydroxyl, carboxylic acid,
and amine) in its structure have enabled the physical loading or chemical functionalization
of SFBs with different antibacterial agents such as antibiotics, antibacterial polymers/
peptides, and phenolic plant extracts. In addition, the electron donating ability of SF at
basic pH has made it a potent reducing and stabilizing agents for green synthesis of several
bactericidal inorganic nanoparticles such as Ag NPs and Au NPs, facilitating the fabrication
of antibacterial SF-based nanocomposites. However, despite a large body of studies in this
area, development of bacterial resistance, low stability, high cost, and potential cytotoxic
effects mark some of the major limitations associated with the use of these antibacterial
agents.

Recently, increasing interest have been directed toward designing bactericidal surface
patterns on SF substrates inspired by natural surfaces such as insect wings, animals’

skin, and plant leaves, that can repel or kill the bacteria upon contact. These bioinspired
approaches advantageously eliminate the use of toxic chemicals and have proved effective
in reducing the surface fouling and mitigating bacterial infections. Although promising,
this field is still in the early stage of its growth and further studies are required to

assess the long-term efficacy of these patterns /in vivo and find an optimized range of
design parameters for maximal bactericidal action and minimal cytotoxic effects. Another
recently emerging bioinspired technique to provide SFBs with antibacterial activity is the
use of nitric oxide donor molecules. NO donors have been previously incorporated into
various synthetic polymers for development of antibacterial medical devices and coatings
and have recently found their way into natural polymers as well. Due to the versatile
physiological roles of NO beside its antibacterial action, this method is highly promising
for development of antibacterial SF-based platforms with therapeutic activity for different
biomedical applications.

Considering the different bactericidal mechanisms offered by various methods, one powerful
approach is to use a combination of these methods to design SFBs with strong synergistic
bactericidal activity. However, most approaches lack adequate characterization information
with unknown long-term effects and are not yet ready for clinical translation. Therefore,
thorough /n vivo studies, establishment of standard verification test protocols and criteria,
and full understanding of the bactericidal mechanisms of each approach are areas that need
to be worked on in future.
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. An overview of silk fibroin structure-properties relationship as a leading-edge
biomaterial.
. A comprehensive summary of different approaches for development of

antibacterial silk fibroin-based biomaterials, their fabrication methods, and
biomedical applications.

. Addressing the advantages and drawbacks of each antibacterial approach and
identifying the emerging trend for future research.
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Figure 1.

A schematic representation of the B. mori silk fibroin structure
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Figure 2.
Silk fibroin properties, different formats, and biomedical applications
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3. Antibacterial approaches for silk-fibroin based biomaterials
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Figure 3.
Different antibacterial approaches for silk fibroin based biomaterials
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1) Physical approaches Ill) Genetical modification
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Figure 4.
Different methods of developing antibacterial silk fibroin based biomaterials
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