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Abstract

Bacterial contamination of biomaterials is a common problem and a serious threat to human health 

worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial 

properties and can resist infection is a continual goal for biomedical applications. Silk fibroin 

(SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the 

most widely studied natural polymers for biomedical applications due to its unique mechanical 

properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last 

decade, many methods have been employed for the development of antibacterial SF-based 

biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different 

antibacterial agents and bio-inspired surface modifications. In this review, we first describe 

the current understanding of the composition and structure-properties relationship of SF as a 

leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods 

implemented for the development of bactericidal SFBs, their mechanisms of action, and different 

applications. We briefly address their fabrication methods, advantages, and limitations, and finally 

discuss the emerging technologies and future trends in this research area.
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1. Introduction

Silk fibroin is a natural macromolecular protein that has a long history of use in the textile 

industry and as a suture material in medicine [1]. Approved by the US Food and Drug 

Administration (FDA) as a biomaterial in 1993, SF has since been the subject of extensive 

research for different biomedical applications due to the unique combination of properties 

that it offers [2]. A high level of biocompatibility, tunable biodegradation, outstanding 

mechanical properties, processability into versatile material formats, and the presence of 

many accessible functional groups for chemical modifications have all rendered SF an 

extremely favorable material for development of various medical devices, drug delivery 

platforms, and tissue engineering scaffolds [3–5].

Silk is synthesized by the epithelial cells in specialized silk glands of different silkworms 

(mulberry and non-mulberry) and spiders [6]. The difference in silks obtained from various 

origins is mainly in their amino acid sequences and crystalline structure, giving rise to 

their distinct physical properties. While it is not feasible to obtain silk from spiders in 

large quantities [7], domesticated mulberry Bombyx mori (B. mori) silkworms provide a 

constant supply of silk that can be utilized in different fields [8]. Besides B. mori, silk 
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derived from other varieties of silkworms such as non-mulberry Antheraea mylitta (Indian 

Tasar silk), Antheraea assama (Indian Muga silk), Antheraea pernyi (Chinese Oak Tussah 

silk), Antheraea yamamai (Japanese silk) and Philosamia ricini (Indian Eri silk) have also 

recently found increasing interest due to their comparatively superior mechanical properties 

and performance [9]. However, owing to the difficulties associated with their extraction and 

processing, domesticated mulberry B. mori silkworms remain the primary source of silk for 

textile and biomedical applications [10].

The B. mori silkworm cocoons are mainly composed of silk fibroin (SF) fibers covered 

with an adhesive protein called sericin. Sericin is a hydrophilic polymer that holds the 

fibroin fibers together like a glue and accounts for almost 30% of the cocoon’s weight 

[11]. Though individually investigated for biomedical applications, the combination of SF 

and sericin together in raw silk fibers has been rarely used due to the concerns raised 

regarding their adverse immune reactions and inflammatory activities. This was reported to 

be caused by the possible contamination from sericin and the wax like material present on 

the silk fibers [12]. Therefore, for most applications, the SF fibers are purified from sericin 

through a degumming process by boiling the cocoons in 0.02 M sodium carbonate solution 

based on a previously established extraction procedure [13]. According to the extraction 

protocol, the degummed SF fibers can be dissolved in 9.3 M lithium bromide solution and 

dialyzed against deionized water to obtain aqueous SF solution that can be further processed 

into many different material formats such as films, hydrogels, micro/nanoparticles, and 

micro/nanofibers. Other SF extraction methods based on proteolytic enzymes [14, 15], acid 

treatments [16], and low-pressure argon plasma [17] have also been reported. However, 

these methods have been less commonly utilized due their high cost and harsh effects on the 

structure and properties of SF fibers, respectively [18].

The B. mori SF is composed of a heavy (~350 kDa) and a light (~25 kDa) polypeptide 

chain (connected with a disulfide bond) along with the P25 glycoprotein in a molar ratio of 

6:6:1 [19]. The heavy chain consists of repetitive hydrophobic domains, mainly composed 

of glycine, alanine, and serine amino acid sequences, and random hydrophilic domains 

consisting of acidic or charged amino acids such as glutamic acid, aspartic acid, arginine, 

and lysine [20]. The hydrophobic domains in SF can adopt a β-sheet conformation to form 

water insoluble crystalline regions that are responsible for the excellent mechanical strength 

of SF. These crystalline structures are interspersed between hydrophilic amorphous regions 

with α-helical conformation that provide SF with elasticity and toughness [21]. A schematic 

of the structure of silk fibroin is represented in Figure 1.

The superior mechanical properties of silk related to its molecular structure and packing, 

along with its high biocompatibility and tunable biodegradation have made SF distinctly 

unique among other natural and synthetic polymers [22]. The transformation of α-helical 

conformations into β-sheet crystalline structures in SF can be induced by different physical 

and chemical treatments in vitro to produce highly stable hydrogels and 3D scaffolds 

[23]. SF in an aqueous state or when dissolved in organic solvents (e.g., formic acid, 

hexafluoro-2-propanol) can also be used to fabricate films, nanofibers, and other type 

of biomaterials for different biomedical applications (Figure 2) [24, 25]. In addition, the 

presence of both hydrophilic and hydrophobic domains in the SF structure endows it with 
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a self-assembling ability in the aqueous environment, enabling the synthesis of SF micro/

nanospheres using water-based approaches [26]. SF-based micro/nanospheres have been 

widely investigated in the past for delivery of various drugs and therapeutic agents [27–29].

Despite the many outstanding properties of SF that qualifies it for a wide range of 

applications either alone or in combination with other biomaterials, a major limitation 

with SF biomaterials is the lack of inherent antibacterial activity. Bacterial infection is a 

great concern for indwelling medical devices and implantable biomaterials. Despite the 

standard sterilization treatments such as dry/wet heat or ionizing radiation, the surface of 

these materials can still be colonized by bacteria due to the possible contamination from 

the operating room environment, the patient’s own skin, or other distal infections in the 

body [30, 31]. Biomaterial’s contamination can give rise to difficult to treat infections that 

endanger the patient’s life and put a burden on both the patient and healthcare budget by 

increasing the healing time and requiring a revision surgery to remove the infected implant 

[32]. In fact, biomaterial associated infections are one of the major reasons for failure of 

implants and medical devices. Health care-associated infections (HAIs) annually cost up to 

$33 billion and pose a severe threat to society [33]. Therefore, intensive efforts have been 

devoted to developing biomaterials that possess antibacterial activity and can resist such 

infections.

Due to the wide-ranging application of SF-based biomaterials (SFBs), over the last 

decade, many researchers have investigated different strategies to confer these materials 

with antibacterial properties. Various methods such as combination, modification, and 

functionalization with different antibacterial agents or alteration of the surface architecture 

have been implemented to prevent bacterial colonization on the surface of SFBs and improve 

their performance. In this review, for the first time we go through each of these methods, 

their advantages and drawbacks, and give an overview of the recent advances and future 

trend in this research area.

2. SF interaction with bacteria

While the antibacterial applications of SFBs have been extensively explored in the past 

decade, the study of SF as a support material for bacterial adherence, growth, and biofilm 

formation is a newly emerged area of research that has found application in the fields of 

bioelectronics and bioanalytical sciences [34]. The as-spun silk fibers in the cocoons of 

silkworm larvae have been shown to provide a good substrate for the growth of various 

bacterial species and biofilm formation. The formed biofilm will in turn act as a primary 

defense barrier protecting the cocoon from environmental stresses. The Pseudomonas 
cepacia bacteria present in soil have also been found to feed on the carbon and nitrogen 

that they obtain by hydrolyzing the degummed silk via their fibrinase enzyme [35]. In a 

study by Tabei et al. SF films containing 0.5% glycerol as a plasticizer were demonstrated 

to have great ability to collect and retain a high density of various bacterial strains on 

their surface after a short period of exposure [36]. The attachment of bacteria to polymeric 

surfaces is governed by several factors such as surface hydrophobicity, surface charge, and 

surface chemical composition. While the mechanism of interaction of SF with bacteria 

and its supporting effect on biofilm formation has not yet been completely elucidated, 
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SF moderate wettability has been identified as one of the primary influential factors in 

the attachment of cells to its surface [37]. The initial bacterial adherence to a surface 

(docking stage) is determined by nonspecific cell-surface interactions such as van der Waals, 

electrostatic, and hydrophobic attractive or repulsive forces. The loosely attached bacteria 

to the surface then start to secret an extracellular polymeric substance (EPS) that allows 

for a stronger adhesion between bacteria and the surface (locking stage). SF protein with 

suitable hydrophobicity and excellent bioabsorbability has been demonstrated as an effective 

substrate for docking and immobilization of various bacterial species. Though favorable for 

some applications such as biofuels and microbial sensors [36], the supporting effect of SF 

in bacterial growth and proliferation is highly undesirable and must be avoided for medical 

devices and biomaterials related applications. In the next sections, we review on the different 

methods employed in the last decade to overcome the bacterial colonization of SFBs.

3. Antibacterial approaches for silk-fibroin based biomaterials

3.1 Antibiotics

Antibiotics are one of the most commonly used agents to be combined with SF-based 

biomaterials (SFBs) for prevention and treatment of bacterial infections. While systemic 

administration of antibiotics often results in poor tissue penetration and low bioavailability, 

and can cause adverse side effects, their localized delivery through implantable biomaterials 

and scaffolds offers several advantages. These advantages include tunable release directly 

at the site of infection and achieving a higher dosage with reduced side effects [38]. The 

release of antibiotics from SFBs can be controlled by tailoring their chemical and structural 

design as well as their biodegradation rate [39]. Since the bacteriostatic activity of such 

materials is dependent upon the release of an antibiotic from a silk fibroin-based substrate, 

most studies have implemented a zone of inhibition (ZOI) or disc diffusion test to evaluate 

the antibacterial responses (Table 1). ZOI test is a quick and rather inexpensive method 

that is used to determine the antibacterial activity of a material, in relation to a target 

microorganism, by measuring the size of the bacterial inhibition zone formed around the test 

material due to an antibacterial agent being released or leached out from it.

Depending on their type, antibiotics induce bacterial cell death through different approaches. 

For instance, aminoglycoside antibiotics (i. e. gentamicin) and tetracyclines are inhibitors 

of protein biosynthesis, quinolones such as levofloxacin and ciprofloxacin impede DNA 

replication, while glycopeptides (i. e. vancomycin) and β-lactam (i. e. amoxicillin) 

antibiotics interfere with normal bacterial cell wall synthesis [40]. In a study by Lan et 

al. vancomycin loaded gelatin microsphere were prepared and embedded in freeze-dried SF 

scaffolds for wound healing applications. According to a ZOI assay, the fabricated scaffolds 

were able to inhibit the gram-positive Staphylococcus aureus (S. aureus) while did not show 

any antibacterial activity against gram negative Escherichia coli (E. coli) bacteria after 24 

h. This is because gram negative bacteria possess an outer membrane that makes them 

more resistant against β-lactam and glycopeptide antibiotics like vancomycin that act on the 

bacterial cell wall [41]. Therefore, for any application the choice of antibiotic is of primary 

importance and should be made based upon their mechanism of action and the type of target 

bacterial cells that they are going to counteract [42].
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So far, many different antibiotic-loaded SFBs have been developed for versatile biomedical 

applications such as wound healing, bone tissue engineering, treatment of osteomyelitis, and 

development of sutures, ear tubes, and orthopedic implants (Table 1). Various physical and 

chemical methods have been implemented for fabrication of these antibiotic eluting SFBs. 

Antibiotics can be physically blended in SF aqueous/organic solutions prior to casting, 

electrospinning, and freeze-drying to obtain antibiotic loaded SF films [43, 44], electrospun 

fibers [45], or cryogels [41, 46, 47], respectively. In addition to physical approaches, the 

chemical surface modification of SFBs using plasma treatment has also been reported to be 

a viable method for conjugation of antibiotics to the surface of SFBs [48, 49]. Choudhury et 

al. developed amoxicillin trihydrate (AMOX) impregnated SF sutures using oxygen plasma 

treatment. According to their study, the oxygen plasma treatment of (Antheraea assama) 

silk fibroin (AASF) yarn resulted in the formation of a rougher morphology and oxygen 

containing functional groups on the surface, leading to an improved hydrophilicity and 

drug-impregnation efficiency by 16.7%. The oxygen plasma treated AASF/AMOX yarns 

(AASF/O2/AMOX) had a sustained release of AMOX for up to 336 h and showed a clear 

ZOI against S. aureus (54.7 mm) and E. coli (19.3 mm) after 24 h in vitro. In addition, the 

in vivo analyses revealed the effectiveness of AASF/O2/AMOX in mitigating the infection 

and reducing the healing time in an S. aureus-infected mouse wound model after 14 d. Other 

fabrication methods such as electrophoretic deposition of antibiotic loaded SF on the surface 

of metallic implants [50, 51], fabrication of layer by layer/coacervate antibiotic loaded 

coatings on SFBs (e. g. sutures) [52], and synthesis of composite SFBs using antibiotic 

loaded nanofillers [53] have also been described in the literature. In a recent study by Wu 

et al.[53], tetracycline hydrochloride (TCH) was first loaded into the lumen of halloysite 

nanotubes (HNTs) and then electrospun with SF aqueous solution to create antibacterial 

SF fibers. Compared to directly loading the TCH into SF fibers, the use of HNTs as an 

intermediary drug carrier resulted in a significantly more controlled release of TCH from 

SF fibers and therefore a longer lasting antibacterial effects against S. aureus and E. coli 
bacteria in vitro (Table 1).

Despite the ease of use, large availability, and low cost of antibiotics, the emergence of 

antibiotic-resistant bacteria over the past decades has hindered the application of antibiotic 

eluting SFBs. Biofilm formation on the surface of biomaterials and implants leads to 

development of resistant cells by providing an extracellular polymeric matrix composed of 

lipopolysaccharides, lipids, and proteins around the bacteria which protects them against the 

host immune system and antibiotics [54]. To eradicate the bacteria in biofilm and eliminate 

infection, remarkably higher drug doses and longer treatment periods are required compared 

to their free-living planktonic counterparts. This in turn prolongs and increases the patient’s 

exposure to the drug, resulting in an enhanced risk of unwanted side effects [55].

Considering the inefficacy of the antibiotics in treatment of biofilm related infections, 

alternative approaches are essential to overcome the issues associated with bacterial 

resistance. In this regard, a fundamental understanding of antibiotics bactericidal 

mechanisms and drug-target interactions will be very helpful for development of new 

formulations and improvement of the old ones to increase their efficacy toward different 

types of bacteria.
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3.2 Inorganic nanoparticles

Various inorganic nanomaterials with antibacterial properties such as metal (e. g. Ag, 

Au, Cu, Ca) and metal oxide nanoparticles (e. g. ZnO, TiO2, CaO2), transition metal 

dichalcogenide monolayers (e.g. MoSe2), and graphene oxide (GO) nanosheets have 

been combined with SFBs for different biomedical applications (Table 2). Compared 

to antibiotics, it is more difficult for bacterial cells to develop resistance toward these 

nanomaterials due to their multiple mechanisms of action. The principal mechanism that 

inorganic nanomaterials employ to kill the invading bacteria is the generation of reactive 

oxygen species (ROS) [60]. ROS produced at low levels can be neutralized by bacterial 

cells antioxidant defense mechanisms. However, high concentrations of ROS can overcome 

these defense systems, causing oxidative damage to critical intracellular components such as 

enzymes, proteins, DNA, and lipids [61]. In addition to ROS generation, other bactericidal 

mechanisms of inorganic nanomaterials include disrupting the cell wall, damaging the 

chromosomes and DNA, and dysregulating the metabolic activity of the microorganisms 

[62].

Inorganic nanoparticles are typically synthesized using physiochemical approaches which 

are often costly and require the use of toxic substances and harsh conditions. Therefore, 

recently increasing attention has been given to simple and green methods of nanoparticles 

synthesis using biomaterials that are eco-friendlier and more biocompatible [63, 64]. SF 

is one of such materials that has been used frequently as a biocompatible reducing and 

stabilizing agent for in situ fabrication of various inorganic nanomaterials such as Ag NPs 

[65–67], Au NPs [68, 69], and CuBTC metal–organic framework (MOF) particles [70]. 

Being a protein, SF is mainly composed of repeated sequences of glycine, alanine, and 

serine amino acids with nearly 10% tyrosine residues evenly distributed throughout the 

protein sequence [71]. The ionization of tyrosine phenolic moiety at basic pH values and 

consequent electron transfer to the metal ions is recognized as the main mechanism of 

reduction by SF [72, 73]. Other reduction mechanisms such as chelation of metal ions and 

electron donation by unprotonated carboxylic groups at high pH [70] and reduction through 

the methanolic -OH groups in serine amino acids have also been reported by previous 

studies [74].

Moreover, the presence of hydrophilic–hydrophobic segments in the SF structure has been 

shown to facilitate its binding with inorganic NPs such as graphene and transition metal 

dichalcogenides (TMD) [75]. In a study by Huang et al. [76], carboxyl-modified silk fibroin 

(CMSF) was used as the exfoliating agent for preparation of MoSe2 TMD nanosheets. The 

strong binding and interaction of CMSF carboxyl groups with the TMD atoms resulted 

in the formation of exfoliated MoSe2 nanosheets with high efficiency and long-term 

dispersion stability. The MoSe2–CMSF nanosheets exhibited good biocompatibility and 

high peroxidase-like catalytic activity toward the decomposition of H2O2 into •OH radicals 

therefore requiring the use of ~1000 times lower H2O2 dose for in vitro antibacterial 

effectiveness against gram-negative E. coli and gram-positive Bacillus subtilis (B. subtilis) 

bacteria compared to the traditional medical therapy. At physiologically relevant levels of 

H2O2, MoSe2-based films were also shown to effectively promote the wound healing and 

prevent infections in vivo using Kunming mice with infected skin wounds as models.
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In addition to in situ fabrication methods, antibacterial SFB composites containing 

inorganic nanomaterials can also be made ex situ by first synthesizing the nanoparticles 

and then incorporating them into the SFB substrate [77, 78]. Embedding inorganic 

nanoparticles in SFBs not only endow them with antibacterial activity and improve their 

mechanical properties but also prevents excessive NPs leaching, resulting in prolonged 

antibacterial longevity, reduced cytotoxicity, and enhanced overall biocompatibility [77, 

79]. Antibacterial SFB nanocomposites incorporated with ex situ synthesized GO [80], 

ZnO [81–83], TiO2 [84, 85], and CaO2 NPs [86, 87] have been previously developed and 

evaluated for diverse biomedical applications such as wound healing, bone regeneration, and 

urethral tissue engineering (Table 2). Dhas et al. fabricated AgNPs impregnated B. mori 

silk fibers using two different in situ and ex situ approaches [77]. The results of their study 

demonstrated that in situ prepared fibers had larger ZOI and a higher reduction efficiency 

after 24 h against both S. aureus and P. aeruginosa bacteria compared to ex situ fabricated 

fibers.

Despite their versatile biomedical applications and broad-spectrum antibacterial activity, 

the inorganic nanomaterials/SFBs composites have not yet found their way into clinical 

practice due to the unforeseen risks associated with their safety and stability in long-term 

use. Owing to their small size, nanoparticles can cross biological barriers, penetrate tissues, 

and interact with cells and intracellular organelles leading to membrane disintegration, 

DNA modification, mitochondrial apoptosis, and cell death. In addition, depending on 

their physiochemical properties such as shape, charge, and wettability nanoparticles might 

agglomerate and accumulate in tissues and organs inducing immune responses [88, 

89]. Therefore, further research is essential to fully evaluate and identify the effect of 

nanoparticles size, shape, charge, and chemical composition on their toxicological properties 

and develop novel, green methods of synthesis to obviate the use of hazardous chemicals 

and enhance their biocompatibility.

3.3 Inherently antibacterial polymers and peptides

Polymers and peptides with inherent antibacterial properties have been widely used as 

additives for SF to develop antibacterial SFBs that can resist infection and function properly 

when used in vivo (Table 3). Owing to its biocompatibility, biodegradability, and nontoxic 

origins, chitosan is the most studied antibacterial polymer in combination with SF for 

different biomedical applications such as wound healing, development of blood contacting 

devices, and tissue engineering [104]. Chitosan is a linear cationic polysaccharide produced 

by basic deacetylation of chitin, originally extracted from the shells of crustaceans and 

insects. The bactericidal activity of chitosan is believed to be mainly associated with the 

protonation of amino groups at low pH values (<pKa≈6.5) and their consequent electrostatic 

interaction with negatively charged bacterial cell membranes [105]. This interaction causes 

damages in the bacterial cell wall, impairs vital bacterial functions, and ultimately results in 

cell death. At higher pH values, where chitosan has a lower charge density, other bactericidal 

mechanisms such as hydrophobic interactions and chelation effects predominate [106, 

107]. Other polymers with inherent bactericidal activity such as polyethylenimine (PEI), 

polypropylene (PP), and Poly (hexamethylene biguanide) hydrochloride (PHMB) have also 

been combined with SF for development of antibacterial wound dressings, scaffolds, and 
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sutures (Table 3). Electrospun SF/PEI nanofibers were shown to have a strong inhibitory 

effect against gram positive S. aureus and gram negative P. aeruginosa bacteria after 5h 

and did not show any in vitro cytotoxicity against L929 fibroblast cells [108]. In a study 

by Gogoi et al. PP was grafted onto multifilament yarns (d=∼100 μm) of a non-mulberry 

Antheraea assama silk fibroin (AASF) through a plasma graft polymerization process to 

develop antibacterial sutures [109]. AASF yarn was first sterilized using Ar plasma and PP 

was grafted onto its surface using Ar/propylene plasma discharge. The resulting AASF/PP 

sutures showed a ZOI of 35±0.01 mm against gram negative E. coli bacteria after 24 h in 
vitro and remarkably improved the wound healing process when tested in vivo on rabbits, 

with complete healing after 16 days compared to 25 days for only Ar plasma treated AASF 

sutures. In another study, PHMB/SF porous sponges were fabricated through electrostatic 

interactions and freeze-drying method and were shown to have antibacterial activity against 

S. aureus and E. coli bacteria at PHMB/SF ratios of higher than 2/100 when tested in vitro 
by a 24 h disc diffusion assay [110].

In addition to polymers, in the last decade, there has been an increasing interest 

into antimicrobial peptides (AMPs) as effective antimicrobial therapeutics. AMPs are 

a diverse class of small molecular weight proteins with broad spectrum antibacterial 

activity that constitute the first line of defense in the innate immune system of different 

organisms [111]. AMPs are mainly composed of cationic and hydrophilic regions and can 

acquire amphipathic α-helical conformations that facilitate their penetration through the 

phospholipid bilayer membrane of the bacteria leading to inhibition of vital biological 

processes and cell death [112]. In fact, the cationic nature of AMPs is attributed to 

the presence of positively charged amino acids such as lysine and arginine in their 

structure allowing them to target the negatively charged membranes of bacteria causing 

perforation and cell lysis as well. Due to their disrupting effects on the bacterial cell 

wall and alteration of membrane permeability, AMPs are good candidates to be used 

in conjunction with other antibacterial agents to yield a more efficacious bactericidal 

activity [113]. In addition to the discussed mechanisms of action, AMPs can also exert 

their antibacterial effect by modulating and activating the host immune system [114]. 

Compared to conventional antibiotic treatments, AMPs offer many advantages including 

higher efficacy, environmental friendliness, and lower possibility of developing bacterial 

resistance due to their mainly physiomechanical membrane-targeted mechanism of action 

[115]. In addition, given the neutral zwitterionic composition of eukaryotic cell membranes, 

AMPs demonstrate minimized mammalian cell toxicity and a highly selective bactericidal 

activity [116].

There have been several efforts to fabricate antibacterial SFBs using both naturally occurring 

and synthetic AMPs (Table 3). Physical fabrication methods reported so far include dip-

coating of SF sutures in AMP solution [117] and electrospinning of SF/AMP solutions [118] 

for development of antibacterial nanofibrous wound dressings. However, to overcome the 

rapid leaching of the antimicrobial agent associated with the physical methods of synthesis, 

chemical conjugation approaches have been proposed. Covalent attachment of AMPs to 

SFBs has been mainly carried out through carbodiimide chemistry. The chemical grafting of 

AMPs such as cecropin B [119], Cys-KR12 [120], and L-Cysteine [121] onto different SF 

substrates via EDC-NHS coupling have been reported for fabrication of antibacterial wound 
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dressings and implantable biomaterials that have shown strong antibacterial activity toward 

both gram positive and gram negative bacteria and had no demonstrated cytotoxicity (further 

details can be found in Table 3). Other chemical methods such as enzymatic oxidation of 

SF with tyrosinase and consequent grafting of ε-polylysine has also been demonstrated 

by Wang et al with about ~1.97 log reduction in S. aureus bacteria after 18 h, however 

cytotoxicity assays were not performed to further evaluate the biocompatibility of these 

materials [122]. In addition to physical and chemical methods of synthesis, Gomes et al. 

employed a bioengineering approach in which they designed and cloned three fusion AMPs 

(human neutrophil defensin 2, human neutrophil defensins 4, and hepcidin) to modify the 

spider silk [123]. The genetically engineered spider silk demonstrated antibacterial activity 

against E. coli and S. aureus according to a 24 h radial diffusion assay. Nevertheless, some 

of the major limitations regarding the development of recombinant SF proteins include the 

poor yield and the challenging scale-up process [124].

Quaternary ammonium compounds (QACs) are another type of polymeric substances with 

potent antimicrobial properties that have been previously used to develop antibacterial silk 

sutures [125]. QACs are cationic surfactants with a nitrogen atom, covalently bonded to 

four aryl/alkyl chains. Similar to the other antimicrobial polymers and peptides, QACs act 

on bacteria through electrostatic interactions with the membrane. The lipophilic structure of 

the alkyl chains enables the QAC permeation through the bacterial membrane where it will 

disrupt structural proteins and enzymes leading to cell death [126]. The length of the alkyl 

chains as well as the charge density are determining factors in the bactericidal effectiveness 

of the QACs [127]. Silk sutures coated with a 25% solution of K21 quaternary ammonium 

compound demonstrated a long lasting ZOI against Porphyromonas gingivalis (P. gingivalis) 

and Enterococcus Faecalis (E. faecalis) after 12 days in culture.

While the development of antibacterial SFBs using bactericidal polymers and peptides 

offers great promise in vitro, there remains several pitfalls that need to be addressed 

before their clinical translation. For instance, the emergence of resistant bacteria, although 

slower compared to antibiotic treatments, have been reported after long term use of AMPs. 

There are also great concerns regarding the bacteria developing resistance toward host-

defense peptides after exposure to high doses of therapeutic AMPs [128]. The mechanisms 

underlying the evolution of bacterial resistance toward AMPs are described in a review by 

Sierra et al [113]. Aside from the issues related to bacterial resistance, AMPs face other 

limitations as well, such as high production costs, short half-life, and lack of stability in 
vivo due to degradation by proteases [129]. In addition, the adverse long-term effects of 

AMPs are not yet fully known, given that they can induce immunogenicity and demonstrate 

hemolytic activity according to previous studies [130]. The use of delivery systems such as 

SFBs has been proposed as a viable solution to overcome some of the mentioned limitations 

associated with AMPs. However, to further enable their practical clinical applications, 

active research into designing new AMPs with modified properties (e. g. reduced toxicity, 

prolonged stability, and enhanced efficacy) and rigorous in vivo studies using suitable 

animal models are required.
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3.4 Plant extracts

Plants extracts have been used for medicinal purposes [147] since ancient times and in the 

last decade, they have gained attention as natural antioxidants and antibacterial agents to be 

used in combination with polymers such as SFBs for various biomedical applications (Table 

4). Thus far, herbal extracts such as olive leaf, thymol, Nigella sativa, Baicalein, Pistacia 

terebinthus, Pistacia lentiscus, and Hypericum empetrifolium, as well as manuka honey 

have been combined with SFBs mostly through electrospinning method for wound dressing 

applications. The antibacterial and antioxidant properties of these plant extracts are believed 

to be mainly attributed to the presence of abundant phenolic compounds in their structure 

such as phenolic acids, tannins, flavonoids, carvacrol, and thymoquinone [148, 149]. In an 

attempt to determine the correlation between the phenolic content and antibacterial activity, 

Shan. et al studied 46 different herbal extracts by measuring their total phenolic content and 

evaluating their bacterial inhibition efficiency [150]. They found that the bactericidal activity 

of an herbal extract is directly influenced by its phenolic content and plant extracts with 

higher levels of phenolic compounds exhibited stronger antibacterial activity.

Phenolic compounds are important secondary metabolites and a part of defense mechanisms 

in plants which have potent antioxidant and antibacterial activity. Depending on their 

type and molecular structure, plant-derived phenolics exhibit different mechanisms of 

antibacterial action such as interfering with integral proteins and enzymes resulting in the 

alteration of cytoplasmic membrane, dysfunction in the metabolic activity, impairing of the 

genetic material, and affecting the electron and nutrient transfer in bacterial cells [150, 151]. 

Additionally, many phenolic containing herbal extracts have been reported to have anti-

quorum sensing and biofilm suppressing activities as well [152]. In a study by Chan et al., 

baicalein (BAI), a Chinese herbal extract, was blended with SF to electrospin antibacterial 

SF fibers for wound dressing applications. Polyvinylpyrrolidone (PVP) was added to the 

mixture to further control the release of BAI from the dressings. The SF/PVP/BAI mats were 

tested against S. aureus which is one of the most common bacteria found in the mucous 

membranes and soft tissue infections in humans and 88.2–98.9% of bacteria reduction was 

observed after 24 h contact with the mats. The SF/PVP/BAI mats were also able to reduce 

infection and improve the healing rate when tested in vivo in a S. aureus infected mouse 

wound model.

Due to their different modes of action compared to antibiotics, herbal phenolic compounds 

offer promising potential for treatment of the antibiotic resistant bacteria. However, a major 

setback regarding the use of plant extracts as antibacterial agents is the lack of established 

protocols and set criteria for evaluation of their antibacterial effect resulting in contradictory 

results. Moreover, the high diversity of phenolic compounds and their different antibacterial 

effects against various bacterial strains also add up to the complication [153]. Therefore, 

there is a need for more defined and standard methods of investigation to make direct 

comparison between the results of different studies possible.

3.5 Bioinspired approaches

Biofilm formation on the surface of indwelling medical devices and implants is a major 

problem leading to implant failure, significant morbidity and even mortality among the 
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patients. The biofilm starts to form when bacteria adhere to a surface and produce 

an extracellular polymeric substance which secures their attachment and growth [164]. 

Therefore, there have been many efforts to provide the surface of biomedical materials with 

antibiofouling properties. In this regard, nature provides an infinite source of inspiration 

for researchers and scientists to design surfaces that can repel bacteria and inhibit their 

colonization. Several examples of natural antibiofouling surfaces can be found in animals’ 

skin (e.g. shark, gecko), insect wings (e.g. cicada, butterfly), and plant leaves (e.g. lotus, 

rice) that have evolved unique topographical and chemical features to resist bacterial 

contamination [165]. The presence of hierarchical micro/nanoscopic patterns on the surface 

of these living organisms endow them with low adhesion and superhydrophobic and self-

cleaning properties. Micro/nano-patterned surfaces minimize the attachment of bacteria by 

offering a significantly smaller contact area and an intrinsically low surface energy. They 

can also kill the bacteria upon contact by physically rupturing or deforming their cell wall 

membrane [166].

Inspired by the intricate architecture of natural antifouling surfaces and with recent advances 

in micro/nano-fabrication techniques, many researchers have attempted to replicate these 

naturally occurring topographies with the hope of reproducing their behavior on the surface 

of biomedical devices and implants [167]. Considering that this field is still in its infancy, 

there are only a few number of studies regarding the fabrication of micro/nano patterned 

SFBs for antifouling biomedical applications (Table 5). In a study by Mehrjou et al., 

homogeneous nanocones were fabricated on the surface of SF films by oxygen plasma 

etching for orthopedic implant application [168]. The plasma etching process resulted in 

the formation of new hydroxyl bonds on the surface of the nanopatterned films therefore 

increasing the surface energy by around 176%. The hydrophilic nanopatterned SF films 

could reduce the adhesion of both Gram-negative (E. coli) and Gram-positive (S. aureus) 

bacteria by more than 90%, while increased the proliferation of osteoblast cells by 30%. In 

another study by Tullii et al. [169] nanostripes and microwells with different diameters were 

fabricated on the surface of SF films employing a soft lithography approach. The results 

of their study demonstrated that the patterned SF films were able to reduce the number 

of adhered E. coli by 66% compared to flat SF films and at the same time supported the 

adhesion and proliferation of mammalian cells (HEK-293).

Novel bioinspired development of antifouling micro/nano patterned surfaces provides an 

alternative drug-free route for prevention of biomaterials associated infections. In contrary to 

the conventional chemistry-based approaches which require the continuous low-dose release 

of antibacterial agents leading to the emergence of resistant bacteria, the bioinspired micro/

nano scale surface topographies promise a long-term solution, killing the bacteria through 

a mechanical mechanism [170]. However, this also poses a limitation on the use of micro/

nano-patterned surfaces for antibacterial purposes as the bactericidal effect is only achieved 

if the bacteria come into direct contact with the surface. Moreover, there are concerns 

regarding the mechanical stability of these patterns for long-term in vivo applications. 

Physical defects in the fabricated micro/nano-structures might cause complications such as 

localized platelet accumulation, biofilm formation, and unwanted cytotoxic effects [171]. It 

is also important to note that the size, shape, spacing and type of the micro/nano-patterns 

as well as the type of invading bacteria dictates the bactericidal response [172]. Therefore, 
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finding a particular surface pattern that is effective against all types of bacteria remains a 

major scientific challenge. In addition to the bactericidal activity, the cytocompatibility of 

the micro/nano-patterns should also be considered carefully. Cytotoxic responses have been 

reported in the past for mico/nano scale surface structures with high aspect ratio [173]. 

Therefore, utmost importance must be given to investigating the stability and potential short 

and long-term effects of these surfaces in future studies.

In addition to surface-mediated bactericidal mechanisms, many living organisms produce 

antibacterial molecules as part of their defense system against pathogens. One of 

such natural products is nitric oxide (NO), a free-radical gas molecule with manifold 

physiological functions [174]. NO is produced endogenously from L-arginine by nitric 

oxide synthase enzymes in the 10−12-10−6 M range. At lower nanomolar concentration 

(10−12-10−9 M), NO is produced by endothelial (eNOS) and neuronal (nNOS) nitric 

oxide synthases to regulate vasodilation, angiogenesis, and neurotransmission and at higher 

micromolar concentrations (10−9-10−6 M), it is produced by inducible nitric oxide synthase 

(iNOS) in macrophages as a potent antimicrobial agent to eradicate foreign pathogens [175].

NO possesses a broad-spectrum antimicrobial activity, acting upon bacteria, viruses, and 

fungi through multiple different mechanisms [176]. Owing to its small size and lipophilic 

nature, NO can easily diffuse through the bacterial cell membranes where it can cause 

detrimental effects on different bacterial cell components and functions. Being a free radical, 

NO readily reacts with oxygen and superoxides to generate reactive nitrogen and oxygen 

byproducts that can impose oxidative and nitrosative damage on bacterial membrane lipids, 

proteins, metabolic enzymes, and DNA leading to their inhibition or death [177]. The 

multi-mechanistic antibacterial activity of NO makes it extremely difficult for bacteria to 

develop resistance, therefore, offering a promising alternative to conventional antibiotics 

[178, 179].

In the recent years, many researchers have attempted to mimic the endogenous production 

of NO by developing materials that can deliver NO exogenously for different biomedical 

applications such as blood contacting medical devices [180–182], urinary catheters [183], 

endotracheal tubes [184], tissue engineering scaffolds [185, 186], and wound dressings 

[187, 188]. To overcome the limitations associated with direct delivery of NO including 

its gaseous state, high reactivity, and short half-life, various NO donor molecules 

(organic nitrates and nitrites, N-diazeniumdiolates, and S-nitrosothiols (RSNOs)) have been 

developed and incorporated into organic and inorganic substrates [189]. Incorporation of 

the NO donors in a substrate offers many advantages such as improving the NO release 

kinetics, allowing for a more sustained and tunable NO delivery, and minimizing the 

potential cytotoxic effects, therefore enabling the development of versatile biocompatible 

materials with potent antibacterial activity [190]. In addition, exogenous delivery of NO at 

concentrations as low as 450 pM has been shown to effectively disperse antibiotic resistant 

biofilms into a planktonic state by increasing the intracellular phosphodiesterase activity of 

the biofilm, leading to an elevated rate of cyclic di-GMP degradation, ultimately resulting in 

the disintegration of the biofilm [191].
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Natural polymers such as SF offer an interesting platform for NO delivery due to their 

biocompatible degradation products, reduced immune response, large availability, and lower 

cost compared to synthetic delivery platforms [192]. Our group has recently demonstrated 

the fabrication of NO releasing SF NPs through an antisolvent/self-assembling approach 

[193]. S-Nitroso-N-acetylpenicillamine (SNAP), a synthetic tertiary RSNO, was loaded into 

SF NPs by adding SNAP/ethanol solution to an aqueous SF solution and freeze-thawing the 

mixture. The prepared SNAP-SF NPs could release a total of 1.31 ± 0.02 × 10−10 mol mg−1 

NO over a 24 h period and showed a concentration-dependent antibacterial activity against 

methicillin-resistant Staphylococcus aureus (MRSA) and E. coli, inhibiting more than 99.9% 

of the bacteria at a concentration of 10 mg/mL. This study was the first to demonstrate 

the implementation of NO as an antibacterial additive for SF and therefore can open up 

new avenues for more exploration in this area and development of novel NO releasing 

antibacterial SFBs in the future.

3.6 Combination approaches

The multi-drug resistant bacteria, emerged by the widespread use of antibiotics and 

other antimicrobial agents, pose a severe threat to public health worldwide. One effective 

approach to combat this type of bacteria is the combinational use of different antibacterial 

agents [195]. Combination therapies using antibacterial agents with multiple targets of 

action can reduce the chances of development of resistance, decrease the use of excess 

drug doses and occurrence of adverse side effects, and often results in synergistically higher 

antibacterial activity [196].

Thus far, development of antibacterial SFBs using chitosan along with other antibacterial 

agents such as penicillin [197], ZnO nanoparticles [198], and water crude longan seed 

extract [199] have been reported in the literature. These studies are all in agreement that a 

higher bactericidal efficacy can be obtained by using a combination of chitosan with another 

antibacterial agent as additives for SFBs (Table 6). Moreover, in a study by Zhou et al. Ag 

NPs in combination with gentamicin were used to fabricate antibacterial SF based coatings 

for Ti implants [200]. The results of the study showed a significantly higher bactericidal 

activity by synergistic combination of gentamicin and Ag NPs at concentrations far below 

their minimum inhibitory concentration. The prepared coatings were able to reduce the 

bacterial adhesion on the surface of Ti implants by 95%. In another study by Vieira et 

al. Ag NPs were reduced by SF in a basic condition to make conductive SF/Ag NPs 

gels [201]. By applying an electric current to the gels, 50% higher ROS generation were 

obtained compared to control. The SF gels made with 50% AgNO3 had a conductivity of 

1.5 S cm−1 and were able to inhibit 80% of E. coli in 1 min with electric current being 

applied. The fabrication of electrospun SF based nanofibers containing a combination of 

S-Nitrosoglutathione (GSNO) NO donor molecules and type I collagen peptides (CP) has 

also been reported as an antibacterial wound dressing for treatment of ischemic chronic 

wounds [202]. According to a 24 h disk diffusion assay the fibers containing CP alone 

showed only moderate antibacterial activity against E. coli and P. aeruginosa and low 

activity against S. aureus, while addition of GSNO significantly increased the corresponding 

zones of inhibition and antibacterial activity against these bacteria.
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Overall, the combination approaches offer an interesting alternative to inefficient 

monotherapy methods and can reduce the risks associated with the emergence of 

antibacterial resistance. With a multitude of antibacterial agents available and different 

material formats that SF can acquire, there is an opportunity to design a plethora of 

novel antibacterial SFBs. However, the exact molecular mechanisms of all antibacterial 

components and their cross interactions should be carefully considered before fabrication 

to obtain a highly synergistic bactericidal efficiency and prevent any undesired side effects, 

respectively.

4. Antibacterial SFBs in clinical trial

As an FDA approved material, SF has been the subject of considerable interest for 

development of cosmetics, biomedical products, and clothing. Many of these products such 

as silk masks, gels, sutures, wound dressings (Fibroheal™ Ag), tissue scaffolds (FibroFix™, 

SilkVoice®), and textiles (DermaSilk®) have already been commercialized and can be found 

on the market while several others are awaiting to pass clinical trials [206, 207]. The review 

paper by Holland et al. on biomedical uses of SF, presents a detailed overview of the 

previously passed and currently ongoing clinical trials of silk-based biomedical materials 

[208]. Owing to their low inflammatory responses, flexibility, oxygen permeability, tunable 

degradation, and good mechanical properties, SFBs are majorly used as scaffolds for 

tissue engineering and wound healing applications. Several examples of SF-based scaffolds, 

wound dressings, and surgical meshes (HQ® Matrix Soft Tissue Mesh) exist that their 

safety and efficacy have been tested through clinical trials and are soon to be commercially 

available [207]. In a recent study, a bi-layered wound dressing was fabricated by mixing SF, 

gelatin and sericin solutions and casting them on a silk fabric. The top-layer was crosslinked 

using glutaraldehyde and after several washing with glycine and deionized water, it was 

freeze-dried and gamma-sterilized. The final product was compared to the commercial 

Bactigras and showed satisfactory results in preclinical and the randomized clinical trials for 

safe and effective full-thickness skin wound healing [209]. The results of the preclinical 

evaluation of a three-layered SF-based nerve conduit (SilkBridge™), developed by an 

electrospinning method, was published recently [210]. When tested in a model of rat median 

nerve injury, the SilkBridge™ conduit demonstrated great ability to repair the function and 

recover the morphology of the median nerve similar to the results obtained by the reference 

autograft nerve reconstruction method. The SilkBridge™ nerve conduits are currently 

undergoing clinical studies to evaluate their safety and efficacy for the healing of digital 

nerve defects in humans (ClinicalTrials.gov identifier: NCT03673449). With the increasing 

number of SFBs becoming clinically available, combination of antibacterial agents into 

these materials can be a great strategy to further improve their abilities and broaden their 

range of applications. Despite a large body of research regarding antibacterial SFBs in the 

recent years and their promising applications, these materials have scarcely found their way 

into clinical applications. However, due to the rapidly growing nature of this field and the 

myriad of potential applications of antibacterial SFBs, their emergence in clinical settings is 

highly anticipated in the years to come.
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5. Conclusions and future trends

Silk fibroin (SF) is a natural polymer that has been dominantly used for different biomedical 

applications owing to its unique combination of properties including super biocompatibility, 

excellent mechanical properties, controllable biodegradation, and versatile material formats. 

Many SF-based biomaterials (SFBs) have been developed so far that are used as tissue 

engineering scaffolds, wound dressings, sutures, and medical device coatings. Regarding 

the lack of inherent antibacterial activity of SF and with bacterial infection being the 

principal cause of biomaterials failure, there have been many attempts to endow SFBs with 

antibacterial properties and span their range of application. The water-based processing of 

SF, along with the presence of multiple functional groups (e.g. hydroxyl, carboxylic acid, 

and amine) in its structure have enabled the physical loading or chemical functionalization 

of SFBs with different antibacterial agents such as antibiotics, antibacterial polymers/

peptides, and phenolic plant extracts. In addition, the electron donating ability of SF at 

basic pH has made it a potent reducing and stabilizing agents for green synthesis of several 

bactericidal inorganic nanoparticles such as Ag NPs and Au NPs, facilitating the fabrication 

of antibacterial SF-based nanocomposites. However, despite a large body of studies in this 

area, development of bacterial resistance, low stability, high cost, and potential cytotoxic 

effects mark some of the major limitations associated with the use of these antibacterial 

agents.

Recently, increasing interest have been directed toward designing bactericidal surface 

patterns on SF substrates inspired by natural surfaces such as insect wings, animals’ 

skin, and plant leaves, that can repel or kill the bacteria upon contact. These bioinspired 

approaches advantageously eliminate the use of toxic chemicals and have proved effective 

in reducing the surface fouling and mitigating bacterial infections. Although promising, 

this field is still in the early stage of its growth and further studies are required to 

assess the long-term efficacy of these patterns in vivo and find an optimized range of 

design parameters for maximal bactericidal action and minimal cytotoxic effects. Another 

recently emerging bioinspired technique to provide SFBs with antibacterial activity is the 

use of nitric oxide donor molecules. NO donors have been previously incorporated into 

various synthetic polymers for development of antibacterial medical devices and coatings 

and have recently found their way into natural polymers as well. Due to the versatile 

physiological roles of NO beside its antibacterial action, this method is highly promising 

for development of antibacterial SF-based platforms with therapeutic activity for different 

biomedical applications.

Considering the different bactericidal mechanisms offered by various methods, one powerful 

approach is to use a combination of these methods to design SFBs with strong synergistic 

bactericidal activity. However, most approaches lack adequate characterization information 

with unknown long-term effects and are not yet ready for clinical translation. Therefore, 

thorough in vivo studies, establishment of standard verification test protocols and criteria, 

and full understanding of the bactericidal mechanisms of each approach are areas that need 

to be worked on in future.
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Highlights

• An overview of silk fibroin structure-properties relationship as a leading-edge 

biomaterial.

• A comprehensive summary of different approaches for development of 

antibacterial silk fibroin-based biomaterials, their fabrication methods, and 

biomedical applications.

• Addressing the advantages and drawbacks of each antibacterial approach and 

identifying the emerging trend for future research.
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Figure 1. 
A schematic representation of the B. mori silk fibroin structure
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Figure 2. 
Silk fibroin properties, different formats, and biomedical applications
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Figure 3. 
Different antibacterial approaches for silk fibroin based biomaterials

Ghalei and Handa Page 29

Mater Today Chem. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Different methods of developing antibacterial silk fibroin based biomaterials
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