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A B S T R A C T   

Coronavirus disease 2019 or COVID-19 is one of the biggest challenges which are being faced by mankind. 
Researchers are continuously trying to discover a vaccine or medicine for this highly infectious disease but, 
proper success is not achieved to date. Many countries are suffering from this disease and trying to find some 
solution that can prevent the dramatic spread of this virus. Although the mortality rate is not very high, the 
highly infectious nature of this virus makes it a global threat. RT-PCR test is the only means to confirm the 
presence of this virus to date. Only precautionary measures like early screening, frequent hand wash, social 
distancing use of masks, and other protective equipment can prevent us from this virus. Some researches show 
that the radiological images can be quite helpful for the early screening purpose because some features of the 
radiological images indicate the presence of the COVID-19 virus and therefore, it can serve as an effective 
screening tool. Automated analysis of these radiological images can help the physicians and other domain experts 
to study and screen the suspected patients easily and reliably within the stipulated amount of time. This method 
may not replace the traditional RT-PCR method for detection but, it can be helpful to filter the suspected patients 
from the rest of the community that can effectively reduce the spread in the of this virus. A novel method is 
proposed in this work to segment the radiological images for the better explication of the COVID-19 radiological 
images. The proposed method will be known as SuFMoFPA (Superpixel based Fuzzy Modified Flower Pollination 
Algorithm). The type 2 fuzzy clustering system is blended with this proposed approach to get the better- 
segmented outcome. Obtained results are quite promising and outperforming some of the standard ap-
proaches which are encouraging for the practical uses of the proposed approach to screening the COVID-19 
patients.   

1. Introduction 

The use of automated systems is increasing rapidly and the advan-
tages of the computer-based automated systems are exploited by 
different domains. With the recent advancements in artificial intelli-
gence and computer vision, automated systems are gaining popularity 
which is increasing day by day. Automated systems which are equipped 
with artificial intelligence, are highly reliable and proves to be very 
helpful in various real-life scenario. Machine learning is a branch of 
artificial intelligence that allows a machine to learn from the input data 
sets and to perform a certain task based on the acquired knowledge. 
Machine learning methods have proven their efficiency and effective-
ness in exploring many real-life data sets (Pesapane, Volonté, Codari, & 
Sardanelli, 2018). Some systems are proved to be more efficient than 
humans in certain circumstances. One of the initial applications of 

machine learning is observed in 1959 in the checker games (Samuel, 
2000). After that, machine learning methods have evolved a lot and 
many complex problems are effectively solved with the application of 
some advanced machine learning methods (Chakraborty, Chatterjee, 
Ashour, Mali, & Dey, 2017). Typically, machine learning approaches can 
be divided in two ways. The first one is a supervised approach where 
some ground truth data are required to train the machine learning 
model. In the case of unsupervised learning approaches, no ground truth 
data are required and the machine learning model can efficiently 
explore the underlying data set to find some hidden patterns, and 
therefore, no supervision is required. Like many other domains, the field 
of biomedical image analysis is no exception and exploits several ad-
vantages of the machine learning systems (Chakraborty & Mali, 2020; 
Liu et al., 2019). Computer vision and machine learning-based ap-
proaches are helpful to automate the diagnostic procedures and machine 
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learning-based decision support systems can act as a third eye to the 
physicians and other domain experts (Fourcade & Khonsari, 2019; Hore 
et al., 2016). 

Radiological images are one of the important modalities of the 
biomedical imaging that serves as an important tool to assess the con-
dition of various living organisms and some non-living objects in a non- 
invasive manner. In general, physicians have to study the radiological 
images manually, to interpret it and generate the reports in highly time- 
bound conditions (Kahn et al., 2009; Sistrom et al., 2009). But on many 
occasions, raw radiological images are not very suitable for interpreta-
tion and, different operations like enhancement, segmentation, etc. are 
to be performed (Chakraborty & Mali, 2020; Roy et al., 2017). Machine 
learning methods are not only useful in performing these jobs efficiently 
but also effective in performing some other relevant tasks like adjusting 
different parameters of the radiological imaging devices, determining 
the amount of radiation, etc. which are crucial from the diagnostic 
perspective. Machine learning-based automated systems can guide in 
different stages of the radiological image assessment including quality 
assurance. For example, Altan et. al. (Altan & Karasu, 2020) proposed a 
hybrid model to detect and analyze COVID-19. This approach com-
binedly applies a 2D curvelet transform, chaotic salp swarm algorithm, 
and deep learning approach to determine the status of the infection in a 
patient using X-ray images. The EfficientNet-B0 architecture is used for 
the diagnosis purpose. 

COVID-19 is currently the biggest threat for mankind that creates a 
global pandemic scenario and the absence of a dedicated vaccine or 
drugs makes the situation more complicated. Officially 16,558,289 
numbers of people found who are infected with this virus and 656,093 
people are already expired due to this virus as of 30th July 2020, 5:36 
pm CEST (WHO Coronavirus Disease (COVID-19) Dashboard | WHO 
Coronavirus Disease (COVID-19) Dashboard, n.d.). According to these 
statistics, it can be concluded that the mortality rate is not very high 

(approximately 3.96%) but the heavily infectious nature of this virus is a 
big reason to worry. Already 217 countries are suffering from this virus 
and trying to find the weapon to combat the spread of this highly in-
fectious virus but, some precautionary steps are the only hope to prevent 
this virus in this present scenario. Early screening, appropriate saniti-
zation, social distancing, use of masks, gloves, and other protective 
equipment can only stop the spread of this virus. The presence of this 
virus can be detected by only RT-PCR test to date but, radiological im-
ages can show some early signs of the COVID-19 disease (Kanne, Little, 
Chung, Elicker, & Ketai, 2020). Some researches show that the 
computerized tomography scans of the chest region can be useful in 
identifying some early signs of this disease (Fang et al., 2020). Still, the 
RT-PCR test has no alternative and the computerized tomography scans 
cannot be used as an alternative tool because of the false negatives (Ai 
et al., 2020; Bernheim et al., 2020) but, these images can be useful in the 
early screening purpose and it is helpful to isolate some suspected pa-
tients from the society that can reduce the risk of the community spread. 
In general, the ground truth segmented images are not widely available 
for the COVID-19 CT scan images but, the segmentation plays a vital role 
in interpreting the radiological images. It can help in easy understanding 
and decision-making process about the COVID-19 by interpreting some 
relevant features from the CT scan images of the chest region, which are 
reported in Table 1 (Torkian, Ramezani, Kiani, Bax, & Akhlaghpoor, 
2020). Typically, modern CT scan devices are advanced enough to ac-
quire high-quality images containing a large amount of spatial infor-
mation. It is one of the challenging tasks to process a large amount of 
spatial information efficiently (Lei et al., 2019). The above discussion 
gives a glimpse of the motivation behind proposing a novel segmenta-
tion approach namely SuFMoFPA (Superpixel-based Fuzzy Modified 
Flower Pollination Algorithm). The proposed method incorporates the 
concept of superpixels to make the processing easier so that, a large 
amount of spatial information could not be a constraint anymore. The 
type 2 Fuzzy system is blended with this proposed method, to get the 
better-segmented outcome. The proposed method can be considered as a 
computer-assisted tool to combat the spread of the COVID-19 virus. 

1.1. A brief overview of the literature 

Computer vision and digital image processing are applied in different 
ways to cope up with this pandemic scenario. The application domain of 
the computer vision and image processing-based application can be 
broadly categorized into 3 categories. These categories and some of their 

Fig. 1. A broad overview of the application domain of the computer vision and digital image processing in managing the COVID-19 pandemic.  

Table 1 
Some useful properties in the chest CT scan of the COVID-19 positive patients for 
the early screening purpose (Caruso et al., 2020).  

Property Sample percentage 

ground-glass opacities (GGO) 100% 
multilobe and posterior involvement 93% 
bilateral pneumonia 91% 
subsegmental vessel enlargement (>3 mm) 89%  
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subcategories are depicted in Fig. 1. 
In this work, CT scan images are investigated using an automated 

unsupervised approach for easy interpretation and early screening of the 
COVID-19 suspects. Therefore, the main focus of the study of the related 
literature is confined to the approaches related to the CT scan images. A 
comprehensive overview of some of the related works is presented in 
Table 2 which is beneficial to understand the current state-of-the-art 
research and also helpful in further progress. 

Apart from these recently developed works, related comprehensive 
overview of this topic can be found in (Dong et al., 2020; Shi et al., 2020; 
Shoeibi et al., 2020; Ye, Zhang, Wang, Huang, & Song, 2020). 

1.2. Motivation of the proposed work 

As discussed earlier, the whole world is suffering in the mid of this 

pandemic scenario due to the COVID-19 virus. The entire mankind is 
trying to find some ways to get rid of this virus. COVID-19 is highly 
infectious in nature and early screening of the suspected patients can 
help to stop the drastic spread of this virus. The RT-PCR test is consid-
ered as the gold standard and it is frequently used worldwide to confirm 
the presence of this virus. It is a time-consuming procedure and some-
times, it can consume up to two days to produce the result. Investigation 
of the chest computed tomography (CT) scans can be beneficial in this 
context due to the presence of some prominent features which are dis-
cussed in Table 1. One prominent problem which is faced by the re-
searchers is the absence of a sufficient amount of properly annotated 
ground truth data due to the need for manual or expert intervention 
(Mei, Lee, & Diao, 2020). It is very difficult to get and not practical to 
expect a manually annotated dataset for investigations purposes in this 
pandemic scenario (Yao, Xiao, Liu, & Zhou, 2020). Motivated from this, 

Table 2 
A brief overview of the current state-of-the-art approaches.  

Approach Type Deployment details Brief description 

Chen et. al. (Chen et al., 2020) Supervised Renmin Hospital of 
Wuhan University 

This approach is based on deep learning and used high-resolution CT scan images to 
automatically diagnose the COVID 19 infection. The UNet++ model is used to choose the 
appropriate regions of the CT images. This approach is useful to assist the radiologist to 
diagnose the CT images. This approach achieves 100% sensitivity, 93.55% specificity, and 
95.24% accuracy. 

Wang et. al. (S. Wang et al., 2020) Supervised Not available A deep learning-based COVID-19 CT image analysis framework is proposed where the deep 
learning framework can explore the COVID-19 related features from the CT scan images of the 
chest region. This approach uses modified inception and transfers learning. The performance 
of this approach on the external testing achieves 79.3% accuracy, 83.00% specificity, and 
67.00% sensitivity. 

Butt et. al. (Butt et al., 2020) Supervised Not available Multiple convolutional neural networks based automated CT image analysis technique is 
proposed in this work. The region of interest is segmented with the help of the 3D 
convolutional neural network. Noisy-or Bayesian function is used to determine the infection 
probability. This approach achieves a result of 98.2% sensitivity and a 92.2% specificity. 

Xu et. al. (Xu et al., 2020) Supervised Not available This approach uses two three-dimensional classification models based on convolutional 
neural networks. The ResNet-18 and location-Attention-oriented model are combined to 
analyze the CT scan images. Three different classes COVID-19, Influenza, and irrelevant to 
infection groups are identified by this approach. This approach achieves an overall accuracy 
of 86.7%. 

Jin et. al. (Jin et al., 2020) Supervised 16 number of hospitals 
in China 

This approach uses Transfer learning on ResNet-50 to design a computer-assisted CT image 
analysis framework to investigate COVID-19 from radiological images. A three-dimensional 
UNet++ model is used for segmentation purposes. This approach can effectively identify the 
infected region of the CT scan image efficiently. This approach achieves 97.4% sensitivity and 
92.2% specificity. 

Wang et. al. (X. Wang et al., 2020) Weakly- 
supervised 

Not available A weakly-supervised lung lesion segmentation approach is proposed in this work that 
automatically identifies the lesion from the Ct scan images. A trained UNet architecture is 
used for lesion segmentation purposes. A three-dimension deep neural architecture is used to 
analyses the three-dimensional segmented region to determine the chances of COVID-19 
infection. Experimental results prove the performance and the real-life applicability of this 
approach. 

Mohammed et. al. (Mohammed et al., 
2020) 

Weakly- 
supervised 

Not available This approach is known as ResNext + . A lung segmentation mask is used to perform the 
segmentation operations and the spatial features are extracted with the help of the spatial and 
channel attention. This approach achieves 81.9% precision and 81.4% F1 score. 

Laradji et. al. (Laradji, Rodriguez, 
Mañas, et al., 2020) 

Weakly- 
supervised 

Not available This work uses a point marking scheme i.e. the infected regions are marked with the help of 
some points that significantly reduce the manual effort to make manual delineations. A 
consistency-based loss function is proposed in this work that helps in generating consistent 
outputs with the spatial transformations. Experimental results show the improvement of the 
proposed approach over the traditional approaches that are based on point level loss 
functions. 

Laradji et. al. (Laradji, Rodriguez, 
Branchaud-Charron et al., 2020) 

Weakly- 
supervised 

Not available This work is based on an active learning approach that is useful for fast and efficient labeling 
of the CT scan images. The proposed annotator ensures of producing a significantly high 
amount of information content cost-effectively. The experimental results prove that the 7% 
annotation effort can produce the 90% performance compared to the completely annotated 
dataset. 

Gozes et. al. (Gozes et al., 2020) Supervised Not available A two-dimensional deep convolutional neural network-based model is proposed to 
automatically analyze the CT scan images for efficient diagnosis of the COVID-19 infection. 
This approach uses the Resnet-50 model. Apart from this, U-net architecture is used for 
segmentation purposes. This approach achieves 98.2% sensitivity and 92.2% specificity.  
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an unsupervised approach is proposed in this work to automatically 
analyze the CT scan images without depending on the expert de-
lineations. Typically, modern CT scan images consist of a large amount 
of spatial information which is difficult to process. Motivated from this, 
a novel superpixel based approach is proposed to reduce the computa-
tional burden. The flower pollination algorithm is modified and com-
bined with the type 2 fuzzy system to effectively handle the 
uncertainties. 

1.3. Outline of the theoretical and practical contributions 

This article proposes an unsupervised approach to automatically 
analyze CT scan images for early screening of COVID-19. This contri-
bution can act as a third eye for the physicians and also helpful to resist 
the significant spread of this virus without depending on the manually 
annotated dataset and it makes the proposed approach beneficial and 
applicable to get adapted in practical scenarios. In this work, the 
traditional flower pollination algorithm is modified using the type 2 
fuzzy system which is one of the major contributions. The advantages of 
type 2 fuzzy systems are mentioned in Section 3. The cluster centers 
updated using the flower pollination algorithm. The proposed algorithm 
is free from the dependency of the choice on the initial cluster centers. 
To reduce the associated computational burden of processing a large 
amount of spatial information, a novel superpixel based approach is 
proposed in which the noise sensitivity of the watershed-based super-
pixel computation method is handled by determining the local minima 
from the gradient image. Moreover, to exploit the advantage of the 
superpixels, the fuzzy objective function is modified accordingly. These 
are the major contributions to the existing literature from the practical 
as well as theoretical point of view. It is completely a unique and novel 
contribution to the literature compared to the other approaches that are 
designed for the same job. 

1.4. Organization of the article 

The remaining article is organized as follows: Section 2 briefly il-
lustrates the flower pollination algorithm. Section 3 illustrates the type 
two fuzzy clustering system. The proposed algorithm and the obtained 
results are presented in Section 4 and 5 respectively. Section 6 discusses 
some of the important points related to this article. Section 7 concludes 
the article. 

2. A brief overview of the flower pollination algorithm 

As the name suggests, the flower pollination algorithm is inspired by 
the pollination process of some flowers and it is developed by X.S. Yang 
in 2012 (Yang, 2012). It is a global optimization process that mimics the 
operation of the pollinators that helps in the reproduction process in the 
flower plants. This approach uses a global search as well as a local search 
scheme to effectively determine the local minima. Some basic assump-
tions of this approach are stated below:  

a. Global exploration is performed by mimicking the cross-pollination 
and biotic pollination process. The movement of the pollinators is 
controlled by the Lévy flight.  

b. Local exploitation is carried out by mimicking the self-pollination 
and abiotic pollination process. 

c. The local exploitation and global exploration are guided a proba-
bility factor prob ∈ [0,1].  

d. The probability of the reproduction is dependent on the similarities 
of the two flowers which are involved in the pollination process.  

e. A solution is mimicked by a pollen gamete.  
f. A single pollen gamete can be produced by a single flower and 

therefore, a candidate solution is also equivalent to a flower. 

The local pollination and the global pollination are two prime steps 

of this algorithm. The global pollination helps to explore the solution 
space more effectively by mimicking the long-range movements of 
different pollinators. Eq. (1) can be used to update the solution Sp using 
the Lévy flight from an iteration itr to the next iteration itr + 1. 

sitr+1
p = sitr

p +Ψ⋅
(

sitr
p − sbest

)
(1) 

In this equation, ψ denotes the step size which is also known as 
‘strength of the pollination’ and this value can be determined from the 
Lévy distribution of the form as given in Eq. (2). Sbest is the optimal 
solution found so far. 

Ψ ∼
ω⋅Γ(ω)⋅sin(πω/2)

π
1

s1+ω, where s≫0 and s0 > 0 (2) 

In this equation, Γ(⋅) represents the standard gamma function and ω 
is a parameter whose value is considered as 1.6 in this work. The local 
pollination process can be implemented using Eq. (3) where Sq and Srare 
the solutions (i.e. pollens) from different flowers. The value of φ can be 
drawn from a uniform distribution in [0,1]. 

sitr+1
p = sitr

p +φ⋅
(

sitr
q − sitr

r

)
(3)  

3. Clustering based on type-2 fuzzy systems 

Crisp clustering approaches are not applicable on many occasions 
due to its inherent limitations and restrictions (Liew, Leung, & Lau, 
2000). Fuzzy clustering approaches are practically useful in various 
practical scenarios (Bezdek, Ehrlich, & Full, 1984) where the crisp 
clustering methods do not perform well. Fuzzy clustering approaches 
allow a single pixel to be a member of multiple classes simultaneously 
with some membership degree. The sum of the membership values for a 
certain point must be 1 i.e. the degree of membership can take any 
values between 0 and 1. The objective function is given in Eq. (4) which 
is optimized by the fuzzy c-means clustering approaches. It is a squared 
error function where μmn is the membership value of the point pm to the 
nth cluster and this value can be computed using Eq. (5) and the χ is the 
fuzzifier. The cluster centers can be updated using Eq. (6). nP and nC 
represents the number of data points and the number of cluster centers. 

Oχ =
∑nP

m=1

∑nC

n=1
μχ

mn‖pm − cn‖
2
, where 1⩽χ < ∞ (4) 

As noted above, the degree of membership can take any value from 
[0,1] and the sum must be 1 i.e. 

∑nC
n=1μmn = 1fori = 1,2,3,…,nP. 

μmn =
1

∑nC
p=1

(

‖pm − cn‖

‖pm − cp‖

) 2
χ− 1

(5)  

cn =

∑nP
i=1μχ

mn⋅pm
∑nP

m=1μχ
mn

(6) 

Noise can significantly affect the type 1 fuzzy clustering system. 
Moreover, the relative membership creates some additional problems in 
real-life applications. Type 2 fuzzy system is helpful in this context to 
overcome the inherent constraints of type 1 fuzzy systems by properly 
modeling the noise and uncertainty and controlling the impact of a data 
point depending on the value of the uncertainty. Some basic advantages 
of adapting the type 2 fuzzy system are mentioned below (Rhee & Cheul, 
n.d):  

a. Effective uncertainty modeling allows a point to have a greater 
impact if it has lesser uncertainty and vice-versa. 

b. Some realistic segmented output can be produced using the appli-
cation of type 2 fuzzy system.  

c. Impact of noise can be reduced with the help of type 2 fuzzy systems. 

S. Chakraborty and K. Mali                                                                                                                                                                                                                  



Expert Systems With Applications 167 (2021) 114142

5

The fuzzy type 2 membership value can be derived from Eq. (5) and it 
is given in Eq. (7). The cluster centers can be updated using Eq. (8). 
Algorithm 1 illustrates the type 2 fuzzy system-based clustering 
approach and Fig. 2 demonstrates the working flow of type 2 fuzzy 
system as discussed above. 

φmn = μmn −
1 − μmn

2
(7)  

c̃n =

∑nP
m=1φχ

mn⋅pm
∑nP

m=1φχ
mn

(8)   

Algorithm 1. Type 2 fuzzy system-based C-means clustering 

Input: The dataset to be clustered and the number of clusters nC where,2⩽nC⩽nP  
Output: Computed near optimal cluster centers 

1: Choose the initial cluster centers randomly. 
2: Assign some membership values to the data points in a random manner. 
3: Set a tiny threshold ς. 
4: Update the cluster centers using Eq. (8). 
5: Compute the fitness of the objective function using Eq. (4). 
6: Check if improvement⩾ς then  

a. Compute the membership value using Eq. (7). 
b. Goto step 2. 

end if 
9: Return the computed near optimal cluster centers.  

4. 4. Proposed SuFMoFPA approach 

With technological advancements, the quality of the radiological 
imaging devices is increasing day by day and precise and sophisticated 
hardware allows us to capture high quality multi-slice radiological im-
ages. Although it is a blessing in the biomedical imaging and the diag-
nostic domain, the technological advancements also bring the challenge 
to automate the processing task of such a huge amount of spatial in-
formation. To process a high-quality image automatically and within the 
stipulated amount of time, it is necessary to develop an efficient 
computer-aided solution (Chakraborty & Mali, 2018, 2020). Superpixels 
(Moore, Prince, Warrell, Mohammed, & Jones, 2008) are helpful in this 

context because, superpixels can efficiently represent a group of pixels 
that can reduce the computational burden and therefore, a superpixel 
based clustering approach is proposed in this work to accelerate the 
screening process of the COVID-19 infected patients. 

Superpixels are a frequently used concept to perform the segmen-
tation task efficiently and a superpixel image can be constructed in 
various ways (Achanta et al., 2012; Comaniciu & Meer, 2002; Hu, Zou, 
& Li, 2015). The shape and size of the superpixels can vary with the 
method. For example, the SLIC (Achanta et al., 2012) method produces 
regular superpixels. Mean shift (Comaniciu & Meer, 2002) and the 
watershed (Hu et al., 2015) are another two methods that produce 
superpixels of irregular sizes. Typically, irregular superpixels are more 
useful for segmentation purposes (Lei et al., 2019). One major drawback 
of the watershed-based approach is its noise sensitivity and this is the 
main reason behind the widespread popularity of the mean shift method 
which happens to be more complex than the watershed-based superpixel 
approach. The watershed method is adapted due to its simplicity and the 
associated problem is addressed in this work by computing the local 
minima of the gradient image (Hore et al., 2015) of the corresponding 
input image. The essential gradient information is preserved by per-
forming the morphological opening ξ and closing ς based reconstruction 
operation which is defined in 9 and 10 respectively where ζ and υ rep-
resents the morphological erosion and dilation respectively and these 
are defined in Eqs. (11) and (12) respectively. In Eqs. (11) and (12), V 
and Λ represent the point wise maximum and the minimum value, Im 
and Im’ are the actual and the marker images respectively and Im’ can 
be expressed using Eqs. (13) and (14) where se is the acronym for the 
structuring element and it plays a vital role in generating the superpixel 
images and the choice of the correct controlling parameter essential for 
precise segmentation outcome and it can be easily understood from 
Figs. 3 and 4 where the disk and square structuring elements are used 
with different sizes on I001 (please refer Table 2). Figs. 2(i) and 3(i) 
demonstrate the effect of the size of the structuring elements on the 
number of superpixels. 

γξ
Im(Im

′

) = γυ(γϑ) (9)  

Fig. 2. Working flow diagram of type 2 fuzzy system.  
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γζ
Im(Im

′

) = γϑ(γυ) (10)  

ϑκ
Im(Im

′

) = ϑ⋅
(
ϑκ− 1(Im)

)
∨ Im′ (11)  

υκ
Im(Im

′

) = υ⋅
(
υκ− 1(Im)

)
∧ Im′ (12)  

Im′

= υse(Im) (13)  

Im′

= ϑse(Im) (14) 

Now, it is not practically feasible to determine the correct structuring 
element for every image manually. This issue is addressed by deter-
mining the pointwise maximum values from the mixture of the gradient 
images (Chakraborty & Mali, 2020) which are generated using different 
structuring elements and the number of structuring elements can be 
selected depending on the [ρl, ρh] ∈ N which is nothing but the range of 
the guiding parameter ρ for the corresponding structuring element and 

ρl⩽ρ⩽ρh. It can be achieved using Eq. (15) which is derived from Eq. (9) 
and the upper bound can be computed using Eq. (16) where γ is a 
threshold to control the error rate. 

γξ
Im(Im

′

, ρl, ρh) = max
{

γξ
Im(Im

′

)seρl
, γξ

Im(Im
′

)seρl+1
, γξ

Im(Im
′

)seρl+2
, ....., γξ

Im(Im
′

)seρh

}

(15)  
{

γ̂ξ
Im(Im

′

, ρl, ρh) − γ̂ξ
Im(Im

′

, ρl, ρh + 1)
}

⩽γ (16) 

The superpixels can represent a group of pixels nPm using a repre-
sentative pixel τm and it can be computed using Eq. (17). With the help of 
this representative pixel value, Eq. (4) is updated and the modified as 
given in Eq. (18) and the degree of membership can be determined using 
Eq. (19) which is used to find the type 2 membership value as given in 
Eq. (7). 

Fig. 3. Demonstration of the impact of the size of the disk structuring elements on the superpixel image (a)–(h) superpixel image corresponding to the I001 generated 
using se of size 3 to 10 respectively, (i) Size of superpixels vs. number of superpixels. 
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Fig. 4. Demonstration of the impact of the size of the circle structuring elements on the superpixel image (a)–(h) superpixel image corresponding to the I001 
generated using se of size 3 to 10 respectively, (i) Size of superpixels vs. number of superpixels. 
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Fig. 5. Test images under consideration and their histograms.  
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τm =
1

nPm

∑

υ∈Rm

pxυ (17)  

Oχ =
∑nP

m=1

∑nC

n=1
nPm⋅μχ

mn⋅‖τm − cn‖
2
, where 1⩽χ < ∞ (18)  

μmn =
1

∑nC
w=1

(
‖τm − cn‖
‖τm − cw‖

) 2
χ− 1

(19) 

The cluster centers are guided and updated using the modified flower 
pollination algorithm instead of the fuzzy cluster center updation 
equation. In this work, the local pollination method is modified to 
improve the segmentation output. The exploitation is typically 

performed by searching the neighborhood of a particular solution but it 
may not worth always. Searching around the best solutions may discover 
some potentially better solutions and can reduce the overall exploitation 
overhead (Eiben & Schippers, 1998). The concept of Fitness Euclidean 
distance Ratio (FER) in this work to update the Eq. (1) and the updated 
version of Eq. (1) is given in Eq. (20) where Sitr

p,FER is defined in Eq. (21) 
and FER is defined in Eq. (22). Algorithm 2 demonstrates the proposed 
SuFMoFPA method. 

sitr+1
p = sitr

p, FER +Ψ⋅
(

sitr
p − sbest

)
(20)  

sitr
p, FER = argmax

q=[1,2,.....,nP]
FERitr

p,q (21)  

Fig. 5. (continued). 
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FERitr
p,q =

O
(

sitr
q

)
− O

(
sitr

p

)

⃦
⃦
⃦sitr

q − sitr
p

⃦
⃦
⃦

(22) 

This approach will help to exploit the fittest individuals near a 
solution. 

5. Results of the simulation 

The SuFMoFPA approach is applied and evaluated using some CT 
scan images of the chest region which are collected from the COVID-19 
infected patients from the different geographic regions of the world. The 
proposed approach can be helpful in the easy explication of the COVID- 
19 disease without the ground truth and annotated segmented image. It 
can be highly useful to restrict and isolate suspected patients from the 
community. RT-PCR test can be performed for the confirmation purpose 
but, the proposed method can be effective for the screening purpose. The 
effectiveness of the proposed approach is established through both vi-
sual and quantitative analyses using four well-known cluster validity 
parameters.  

Algorithm 2. The proposed SuFMoFPA approach 

Input: Input image which is to be segmented 
Output: Segmented output image 

1: Find the gradient image corresponding to the input image using the method 
proposed in (Hore et al., 2015). 
2: Apply Eqs. (9) and (10) to find the superpixel image corresponding to the input 
image. 
3: Determine the representative point τ of a superpixel. 
4: Randomly initialize the cluster centers Ci = τlow +random(0,1)

(
τhigh − τlow

)

where τhigh and τlow denotes the upper and lower bound respectively for a 
representative point.  
5: Randomly assign the fuzzy membership values to the superpixels. 
6: nItr←1 //Iteration counter  
7: Repeat until nItr > evalCnt //evalCnt is the maximum number of iterations  
8: Determine the fitness values 
9: Perform global pollination 
10: Perform local pollination 
11: Update the solutions using Eq. (20) 
12: Check if Sitr+1

p is worse than Sitr
p then  

(continued on next column)  

(continued ) 

Algorithm 2. The proposed SuFMoFPA approach 

13: Sitr+1
p = Sitr

p  

end if 
14: Update the global best 

end until 
15: Prepare the output segmented image by assigning the superpixels to their 
nearest cluster centers. 
16: Return the segmented image.  

5.1. Description of the dataset 

115 CT scan images of the chest region are considered for the 
experimental purpose out of which, details of the 18 images are pre-
sented in this article. The test images are collected from the COVID-19 
infected patients from various geographic regions and different views 
are considered of the works. Moreover, patients from different age 
groups are considered for this experiment. 10 images are considered 
from the age group greater than or equal to 50 years and 8 images are 
considered from the age group less than 50 years in this article to 
demonstrate and compare the performance of the proposed approach. 
The sample test images along with their histograms are given in Fig. 5 
and the description of the dataset is given in Table 3. 

To establish the practical applicability of the proposed approach and 
analyze it quantitatively, four well-known cluster validity measures are 
used in this work. These are Davies–Bouldin index (Davies & Bouldin, 
1979), Xie-Beni index (Xie & Beni, 1991), Dunn index (Dunn, 1974) and 
β index (Pal, Ghosh, & Shankar, 2000). 

5.2. Experimental results 

The proposed approach is evaluated and compared through quali-
tative and quantitative measures. Experiments are performed using 
MatLab R2014a with a computer that is equipped with an Intel i3 pro-
cessor (1.8 GHz) and 4 GB of RAM. The proposed SuFMoFPA approach is 
evaluated and compared with some of the standard methods like robust 
modified GA (Shayeghi, Jalili, & Shayanfar, 2007) based clustering, 
modified PSO (Sedghi, Aliakbar-Golkar, & Haghifam, 2013) based 

Table 3 
Description of the images under test.  

Image 
Id 

View Source Gender Age Features observed Comments 

I001 Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-a) 

M 50 ground-glass opacities (GGO) 
crazy paving 
air space consolidation 

Case courtesy of Dr Bahman Rasuli, 
Radiopaedia.org, rID: 74,576 I002 Coronal 

I003 Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-b) 

M 65 ground-glass opacities (GGO) 
crazy paving 

Case courtesy of Dr Elshan Abdullayev, 
Radiopaedia.org, rID: 76,015 I004  Coronal 

I005 Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-c) 

F 70 ground-glass opacities (GGO) 
crazy paving 
air space consolidation 
bronchovascular thickening 

Case courtesy of Dr Ammar Haouimi, 
Radiopaedia.org, rID: 75,665 I006 Coronal 

I007 Sagittal 

I008 Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-d) 

M 60 ground-glass opacities (GGO) 
crazy paving 
air space consolidation 

Case courtesy of Dr Antonio Rodrigues 
de Aguiar Neto, Radiopaedia.org, rID: 
77,067 

I009 Coronal 
I010 Axial (Non- 

contrast) 
I011  Axial (COVID-19 Pneumonia | Radiology 

Case | Radiopaedia.Org, n.d.-e) 
M 45 multilobar and bilateral peripheral ground glass 

opacities 
Case courtesy of Dr Fateme 
Hosseinabadi , Radiopaedia.org, rID: 
74,868 

I012  Axial (COVID-19 Pneumonia - Early-Stage 
| Radiology Case | Radiopaedia.Org, 
n.d.) 

F 45 small patchy ground glass opacities and 
consolidations are scattered at both lungs 

Case courtesy of Dr Mohammad Taghi 
Niknejad, Radiopaedia.org, rID: 75,829 I013  Coronal 

I014  Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-f) 

M 25 Air space consolidation is present at the right lower 
lobe and ground glass opacity nodules can also be 
observed 

Case courtesy of Dr Bahman Rasuli, 
Radiopaedia.org, rID: 74,879 I015  Coronal 

I016  Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-g) 

M 40 multiple patchy, peripheral and basal, bilateral 
areas of ground-glass opacity is observed 

Case courtesy of Dr Maksym Kovratko, 
Radiopaedia.org, rID: 75,350 

I017  Axial (COVID-19 Pneumonia | Radiology 
Case | Radiopaedia.Org, n.d.-h) 

F 35 bilateral confluent ground-glass opacities Case courtesy of Henri Vandermeulen, 
Radiopaedia.org, rID: 75,417 I018  Coronal  
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clustering, modified ACO (Zhu & Wang, 2016) based clustering and 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017) 
based clustering approaches. A comparison of the proposed method with 
these standard approaches can be found in Fig. 6 where the I001 image 
used for the study and the segmentation results of the remaining 9 im-
ages are reported in Fig. 7. The quantitative comparison is presented in 
Tables 4–7 for the Davies–Bouldin index, Xie-Beni index, Dunn index 
and β index respectively. The acceptable values are marked in boldface. 

To get an overall understanding about the performance of all five 
approaches in terms of four different approaches and to interpret the 
obtained results in a better way, the average of 10 images for all ap-
proaches and different clusters are added at the end of each table and a 
graphical comparison is presented in Fig. 8. In the average part of each 
table, the values in boldface denote the acceptable values for a certain 

number of clusters which are different from the rest of the table where 
the values in boldface indicate the best values in a row i.e. the best value 
for a particular approach. From this analysis, it can be observed that the 
proposed approach outperforms other approaches in most of the occa-
sions. For example, in Fig. 8(a), it can be observed that the proposed 
approach completely outperforms all other approaches for all clusters. 

5.3. Analysis of the convergence rate 

The convergence analysis is one of the important perspectives to 
analyze and compare the proposed approach with other methods. This 
subsection gives a graphical analysis of the convergence in terms of the β 
index usingI001. The higher value of the β index indicates good clustering 
result. From Fig. 9, it can be clearly understood that the proposed 

Fig. 6. Comparison of different methods using I001 for different number of clusters.  
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Number of ClustersImage 3 5 7 9
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Fig. 7. Segmented output for different number of clusters which are obtained by applying the SUFEMO method.  
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Fig. 7. (continued). 
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approach outperforms some standard approaches in terms of conver-
gence. It also establishes the effectiveness and the real-life applicability 
of the proposed approach. The experiment is carried out for the different 
number of clusters and the performance of the proposed method is quite 
satisfactory for the higher number of clusters compared to other stan-
dard algorithms. 

5.4. Analysis of the complexity 

In this subsection, the complexity of the proposed approach is 
analyzed. The proposed algorithm is mainly divided into two phases. In 
the first phase, the superpixels are computed from the actual image 
based on the watershed-based approach. The noise sensitivity of the 
watershed-based superpixel computation approach is handled by 
determining the local minima from the gradient image. In the second 
phase, the fuzzy modified flower pollination approach is adapted to 
determine the optimal segmentation outcome. Now, the watershed- 
based approach is a simple approach to determine the superpixels that 
provide the linear complexity (Hu et al., 2015) which is one of the major 
motivations behind adapting this approach in this work. Now, the 
modification introduced in the flower pollination algorithm is nothing 
the incorporation of the type 2 fuzzy system where the fuzzy modified 
objective function is optimized by the flower pollination algorithm. It is 
known that the flower pollination algorithm takes linear time (Abdel- 
Basset & Shawky, 2019) for the optimization problems. So, the proposed 
approach is simple to implement as well as computational friendly. 

5.5. Analysis of the parameter uncertainty 

At first, during the computation of the superpixel image, it is always 
challenging to determine the structuring element and it is vital to choose 

the appropriate structuring element for a certain application. From 
Figs. 3 and 4, the effect of the size of the structuring element can be 
observed. Secondly, the choice of the size of the initial population is 
another challenging job. The small size of the initial population can lead 
to a significant delay in the convergence. Similarly, a large initial pop-
ulation can cause introduce significant redundancy and can spoil the 
whole optimization process. So, the correct choice of this parameter is 
also essential. Thirdly, the choice of the number of clusters is very sig-
nificant because it has a direct impact on the segmented outcome. In this 
work, it is chosen experimentally but automated processes can be 
incorporated to decide these values which will certainly increase the 
practical significance of this work. 

6. Discussion 

From the detailed analysis of the proposed SuFMoFPA approach, it 
can be concluded that the proposed approach can produce significant 
outcomes from the CT images which is beneficial to analyze the sus-
pected COVID-19 patients without depending on any manual de-
lineations. This approach significantly outperforms some other standard 
approaches in terms of both quantitatively and qualitatively. This work 
proposes a novel superpixel-based fuzzy objective function that is 
minimized using the fuzzy modified flower pollination algorithm. One 
major drawback of this approach is that the number of clusters cannot be 
automatically determined. In this work, the number of clusters is 
selected randomly. It can be incorporated in the future to make the 
proposed approach more realistic and suitable for practical applications. 
The proposed approach helps to significantly reduce the overhead of 
processing a huge amount of spatial information and it is beneficial from 
the perspective of quick and accurate diagnosis. From Fig. 8, it can be 
observed that the proposed approach completely outperforms some 

Fig. 7. (continued). 
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Table 4 
Comparison of different segmentation methods with the Davies–Bouldin index values (Highlighted values denotes the acceptable values).  

Image Id Algorithm No. of Clusters 

3 5 7 9 

I001  robust modified GA (Shayeghi et al., 2007)  1.46566084  1.74543298  2.90550813  1.166586138 
modified PSO (Sedghi et al., 2013)  1.27069619  1.71228711  2.75030941  2.271593017 
modified ACO (Zhu & Wang, 2016)  0.71499362  1.12138179  2.09958914  1.7088708 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.85023122  2.20605136  0.95728619  2.292252512 
SuFMoFPA (Proposed)  1.08842834  1.07747973  0.53539368  1.778431432 

I002  robust modified GA (Shayeghi et al., 2007)  1.62773175  1.31925593  2.40392655  1.191051933 
modified PSO (Sedghi et al., 2013)  2.57308165  2.63202031  3.11996996  2.123245072 
modified ACO (Zhu & Wang, 2016)  2.7662899  3.22557015  2.50463222  1.795131518 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.01832075  1.34648767  1.67138427  0.998082371 
SuFMoFPA (Proposed)  1.18390271  0.95679948  1.65405987  1.32410342 

I003  robust modified GA (Shayeghi et al., 2007)  1.91583123  1.1671004  1.03516035  1.828472656 
modified PSO (Sedghi et al., 2013)  1.85688108  1.07056686  1.107896  0.665328328 
modified ACO (Zhu & Wang, 2016)  1.09573718  0.9340154  1.61607886  1.566379073 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  0.53000143  0.66238182  1.34665728  1.212108295 
SuFMoFPA (Proposed)  0.95124587  2.2761225  1.82915305  1.349001333 

I004  robust modified GA (Shayeghi et al., 2007)  1.6600279  2.4451295  2.31047531  2.643031826 
modified PSO (Sedghi et al., 2013)  1.06648072  1.79694851  1.76383591  2.094111557 
modified ACO (Zhu & Wang, 2016)  1.50860621  0.85245887  1.02585668  1.901277409 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.99528813  1.34999352  1.13965062  0.737896183 
SuFMoFPA (Proposed)  1.71026086  0.76668142  1.31795642  1.64507146 

I005  robust modified GA (Shayeghi et al., 2007)  2.25838317  2.55455974  1.87962855  1.805648018 
modified PSO (Sedghi et al., 2013)  1.57623769  1.98474109  2.14412299  2.951422852 
modified ACO (Zhu & Wang, 2016)  1.47407174  2.01603748  1.36439983  2.404545846 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.38990864  3.86711577  2.1478699  1.830888571 
SuFMoFPA (Proposed)  1.81518141  1.09159251  1.66683998  2.989766006 

I006  robust modified GA (Shayeghi et al., 2007)  1.23138832  1.01014988  0.95618714  0.787057999 
modified PSO (Sedghi et al., 2013)  2.16222311  0.81622082  1.72504726  2.16507972 
modified ACO (Zhu & Wang, 2016)  0.80889272  1.66389743  1.5421688  1.835921993 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  0.43185735  1.29048782  0.50438778  0.682941573 
SuFMoFPA (Proposed)  1.17476198  0.98550436  1.31757186  0.335980865 

I007  robust modified GA (Shayeghi et al., 2007)  1.57652908  1.6194884  1.9736603  2.097535382 
modified PSO (Sedghi et al., 2013)  1.10447081  1.26272695  1.36844449  2.675402245 
modified ACO (Zhu & Wang, 2016)  2.31158307  2.11203941  1.52910585  1.531703371 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.25098064  2.16640854  2.00816908  1.560587542 
SuFMoFPA (Proposed)  1.61738912  3.01887919  2.35125854  1.007280189 

I008  robust modified GA (Shayeghi et al., 2007)  2.87594572  3.08027  2.69379274  2.876237664 
modified PSO (Sedghi et al., 2013)  2.34842572  1.23482571  1.541943  1.475744307 
modified ACO (Zhu & Wang, 2016)  1.92449742  1.76792302  1.75173512  2.07728695 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.96624057  1.40574191  0.91283874  1.76713855 
SuFMoFPA (Proposed)  1.44323534  1.8190357  2.41462487  1.089341918 

I009  robust modified GA (Shayeghi et al., 2007)  1.5124999  1.82220571  1.69599381  2.487036546 
modified PSO (Sedghi et al., 2013)  2.031554  2.00024885  1.57173881  3.129046095 
modified ACO (Zhu & Wang, 2016)  1.29799698  1.65648242  2.68760426  2.50496945 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.40913356  1.25466882  1.45602541  2.464918427 
SuFMoFPA (Proposed)  1.00272734  0.52918873  2.23226914  2.943121702 

I010  robust modified GA (Shayeghi et al., 2007)  2.10490036  2.63338268  3.23131984  1.527199305 
modified PSO (Sedghi et al., 2013)  1.51393914  2.03440721  3.1910575  2.364745851 
modified ACO (Zhu & Wang, 2016)  1.42880839  1.72549789  1.59589807  1.409002754 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.77377859  1.8807976  1.37702388  1.631550862 
SuFMoFPA (Proposed)  1.49954426  1.80651403  0.80097162  2.595115205 

I011  robust modified GA (Shayeghi et al., 2007)  1.53482292  2.68752282  3.4813301  2.06306391 
modified PSO (Sedghi et al., 2013)  0.91109125  2.59537271  2.5134342  2.954316867 
modified ACO (Zhu & Wang, 2016)  1.43064584  1.17580191  1.20036121  2.004273422 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.04527618  2.27041931  2.42526682  1.946313785 
SuFMoFPA (Proposed)  1.01088876  2.18670769  3.23843823  1.237978898 

I012  robust modified GA (Shayeghi et al., 2007)  1.22658437  3.17522974  2.27317978  0.344527227 
modified PSO (Sedghi et al., 2013)  2.54989016  1.57511342  1.2428984  0.689328996 
modified ACO (Zhu & Wang, 2016)  0.28415421  2.74713111  1.02942694  2.712611798 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.8764765  3.23680059  1.39796326  2.361006173 
SuFMoFPA (Proposed)  1.07310418  2.0509123  1.32380555  1.530585878 

I013  robust modified GA (Shayeghi et al., 2007)  0.61510902  1.41130686  2.31081462  2.454117072 
modified PSO (Sedghi et al., 2013)  0.69302372  2.23337638  2.6482827  2.660312932 
modified ACO (Zhu & Wang, 2016)  0.90384693  0.80032964  1.71976028  0.74821378 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.32272452  0.3677459  1.17416408  2.161732805 
SuFMoFPA (Proposed)  1.00737929  1.43298693  1.1225014  1.420251346 

I014  robust modified GA (Shayeghi et al., 2007)  1.3731039  2.22284221  1.54779963  2.335616159 
modified PSO (Sedghi et al., 2013)  1.58257822  3.18142561  3.38494164  1.796379355 
modified ACO (Zhu & Wang, 2016)  2.53668303  2.53703367  2.76676462  1.256570426 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.45128835  0.92768719  2.83487868  1.638298952 
SuFMoFPA (Proposed)  1.84160988  1.79008218  2.7911172  0.761798871 

I015  robust modified GA (Shayeghi et al., 2007)  0.97732237  1.50302038  1.28425245  1.357409005 
modified PSO (Sedghi et al., 2013)  3.54852343  2.89261202  3.28192626  0.845549773 
modified ACO (Zhu & Wang, 2016)  3.03732267  1.78607349  1.51302288  1.024783073 

(continued on next page) 
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Table 4 (continued ) 

Image Id Algorithm No. of Clusters 

3 5 7 9 

modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.21838199  2.66022916  2.85416128  3.347336396 
SuFMoFPA (Proposed)  2.04570242  2.20236741  1.53215432  1.269017534 

I016  robust modified GA (Shayeghi et al., 2007)  0.96299427  2.90984857  1.17120698  2.642412232 
modified PSO (Sedghi et al., 2013)  2.43261273  2.47702112  2.01797272  3.266493868 
modified ACO (Zhu & Wang, 2016)  1.59364378  1.85125757  3.0135343  3.339244033 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.23768482  3.4428074  3.61698754  3.057258286 
SuFMoFPA (Proposed)  1.02819889  2.88473661  2.63056273  1.718441873 

I017  robust modified GA (Shayeghi et al., 2007)  1.5158794  0.90469494  1.1378578  2.157363193 
modified PSO (Sedghi et al., 2013)  1.45799655  1.51945747  3.10569445  4.308694749 
modified ACO (Zhu & Wang, 2016)  1.61444958  0.67963783  2.55840916  0.981993266 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.33053578  3.60084369  2.66888415  1.489080936 
SuFMoFPA (Proposed)  0.41959794  1.39546262  1.5516554  1.183681245 

I018  robust modified GA (Shayeghi et al., 2007)  2.92505535  3.04178458  2.45828714  2.454949186 
modified PSO (Sedghi et al., 2013)  0.92664642  0.98893148  1.29211482  0.594085259 
modified ACO (Zhu & Wang, 2016)  1.17945546  2.05736916  2.2385389  2.056917812 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.68811487  4.12460479  2.72524349  2.601467668 
SuFMoFPA (Proposed)  1.85109038  1.23907301  1.09513163  1.224494386 

Average robust modified GA (Shayeghi et al., 2007)  1.631098  2.069624  2.041688  1.901073 
modified PSO (Sedghi et al., 2013)  1.755908  1.88935  2.209535  2.168382 
modified ACO (Zhu & Wang, 2016)  1.550649  1.706108  1.875383  1.825539 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.265901  2.114515  1.845491  1.876714 
SuFMoFPA (Proposed)  1.320236  1.639451  1.744748  1.522415  

Table 5 
Comparison of different segmentation methods with the Xie-Beni index values (Highlighted values denotes the acceptable values).  

Image Id Algorithm No. of Clusters 

3 5 7 9 

I001  robust modified GA (Shayeghi et al., 2007)  3.21817245  1.36519126  1.37370621  0.832343158 
modified PSO (Sedghi et al., 2013)  2.17940336  2.00732781  1.91394161  1.736100633 
modified ACO (Zhu & Wang, 2016)  2.19583107  1.24738026  1.40991562  2.590986787 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.13218772  2.48575471  1.36003351  1.827333414 
SuFMoFPA (Proposed)  2.36627797  0.92609827  1.48464329  0.42034107 

I002  robust modified GA (Shayeghi et al., 2007)  2.68233984  3.52564787  2.64236667  2.717464341 
modified PSO (Sedghi et al., 2013)  2.28652953  2.30104937  0.97089446  1.67302776 
modified ACO (Zhu & Wang, 2016)  1.63053092  3.33795819  3.68980214  1.507676081 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.91912589  1.8666488  1.92677413  2.582014527 
SuFMoFPA (Proposed)  0.8117843  1.28927477  1.04297006  2.266470147 

I003  robust modified GA (Shayeghi et al., 2007)  4.87045671  3.21325653  2.26552738  2.477519609 
modified PSO (Sedghi et al., 2013)  3.68718368  3.61315881  2.9575926  3.603151966 
modified ACO (Zhu & Wang, 2016)  3.76907001  3.93736001  3.03620985  2.160024412 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.27505226  2.42443772  2.83502179  3.103077692 
SuFMoFPA (Proposed)  1.71822942  2.02281672  3.87167305  1.979848481 

I004  robust modified GA (Shayeghi et al., 2007)  2.74340266  2.78224527  3.12958372  2.737426929 
modified PSO (Sedghi et al., 2013)  1.62907192  1.64898948  2.82690111  2.656397918 
modified ACO (Zhu & Wang, 2016)  1.21734389  1.01377112  1.80297714  2.111560047 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.23264547  1.07518795  1.93924806  1.464449536 
SuFMoFPA (Proposed)  1.05084803  1.86424393  1.58397303  2.474808563 

I005  robust modified GA (Shayeghi et al., 2007)  2.88523588  1.874593  2.15274233  1.086324633 
modified PSO (Sedghi et al., 2013)  2.32294144  1.81637124  1.42260397  2.745273247 
modified ACO (Zhu & Wang, 2016)  2.67335291  2.06601942  1.79012347  2.410216274 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.86329968  1.24600699  1.24162556  1.623343707 
SuFMoFPA (Proposed)  1.63114379  1.05156975  1.43117277  0.965257035 

I006  robust modified GA (Shayeghi et al., 2007)  2.63300482  1.18379706  1.13787659  2.704963143 
modified PSO (Sedghi et al., 2013)  1.40202358  0.94763653  1.18797854  3.008681424 
modified ACO (Zhu & Wang, 2016)  1.25010936  0.84928892  1.25056741  1.164569476 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.21819335  0.94250707  1.81469575  2.28152942 
SuFMoFPA (Proposed)  0.86378523  0.57133645  1.25309223  1.427646696 

I007  robust modified GA (Shayeghi et al., 2007)  4.1891548  4.88492581  3.96898641  3.719715939 
modified PSO (Sedghi et al., 2013)  4.27485496  3.33563516  1.71947535  2.175527606 
modified ACO (Zhu & Wang, 2016)  3.004285  3.72027465  3.18668583  3.470873592 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.8890883  2.06306755  3.07727844  2.664247727 
SuFMoFPA (Proposed)  1.88280107  3.95342752  2.3180929  2.715312615 

I008  robust modified GA (Shayeghi et al., 2007)  3.46905142  2.47990393  1.66895615  2.365868215 
modified PSO (Sedghi et al., 2013)  1.27976206  2.99584076  3.27660735  2.513513065 
modified ACO (Zhu & Wang, 2016)  1.88795608  2.25034876  1 0.7877613  2.588727005 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.1942788  3.11714096  2.95424688  2.31370579 
SuFMoFPA (Proposed)  2.2580697  1.20701143  1.56911353  2.606214047 

I009  robust modified GA (Shayeghi et al., 2007)  1.24618871  0.64676108  0.7108075  2.923074858 
modified PSO (Sedghi et al., 2013)  3.1905011  1.80549786  1.66312933  1.670702967 
modified ACO (Zhu & Wang, 2016)  1.518378  2.94049124  1.55888295  2.844178345 

(continued on next page) 
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other approaches in terms of all four cluster validity indices. Therefore, 
this approach is useful for real-life COVID-19 screening purposes. Apart 
from producing satisfactory segmentation outcomes, the proposed 
approach not only performs well in terms of four cluster validity indices 
but also performs well in terms of the convergence. From Fig. 9(e), it can 
be noted that the proposed approach also works well for the higher 
number of clusters which are the major results of the proposed 
approach. 

7. Conclusion 

A novel method is proposed in this article to screen the COVID-19 
patients at the earliest so that, the spread of this highly infectious dis-
ease can be restricted. The proposed SuFMoFPA approach uses the 
concept of superpixel to efficiently process the spatial information of the 

CT scan images. The type 2 fuzzy system and the modified flower 
pollination algorithm helps to efficiently exploit and explore the search 
space. The proposed approach is tested and compared using 115 CT scan 
images and out of them, the results of the 18 different CT scan images are 
reported. Four well-known cluster validity indices are used for the 
quantitative evaluation and the obtained results are quite promising and 
outperform some of the related approaches under discussion. This 
approach achieves significantly better segmentation results from both 
qualitative and quantitative points of view. From the obtained average 
values, the average values reported at the end of each table from 
Tables 4–7 and the graphical comparison in Fig. 8 reveals that on 
average, the proposed approach outperforms most of the other com-
petitors. Moreover, Fig. 9 demonstrates the convergence performance of 
the proposed approach which is also quite satisfactory specifically for 
the higher number of clusters. It is an important point because, most of 

Table 5 (continued ) 

Image Id Algorithm No. of Clusters 

3 5 7 9 

modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.62117672  1.42795605  2.2731199  0.804572159 
SuFMoFPA (Proposed)  0.99415379  1.5837012  1.39345292  1.368263896 

I010  robust modified GA (Shayeghi et al., 2007)  3.5664172  2.11307998  0.52173083  0.705577543 
modified PSO (Sedghi et al., 2013)  2.39855285  2.01074484  2.88952903  1.415173255 
modified ACO (Zhu & Wang, 2016)  1.33526641  1.02509423  1.55461444  3.077377137 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  0.42095703  1.83375494  1.10662455  1.351317264 
SuFMoFPA (Proposed)  2.90165104  1.17241288  1.26429887  0.24945176 

I011  robust modified GA (Shayeghi et al., 2007)  1.10477625  2.81995288  2.58449323  2.618595149 
modified PSO (Sedghi et al., 2013)  0.08541246  1.91146671  2.02244803  4.384603468 
modified ACO (Zhu & Wang, 2016)  2.19733738  0.43085828  1.8402415  2.691986128 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.29823505  1.80859507  2.93591826  1.839428366 
SuFMoFPA (Proposed)  0.98436623  2.223423  3.94400992  1.859826731 

I012  robust modified GA (Shayeghi et al., 2007)  1.42854313  2.564549  2.50745286  1.01021662 
modified PSO (Sedghi et al., 2013)  2.55044632  1.44757483  1.97426354  1.320351713 
modified ACO (Zhu & Wang, 2016)  1.08783035  2.89308407  1.80323366  3.180526833 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.39079188  3.40368176  1.88121939  2.135322085 
SuFMoFPA (Proposed)  2.20279543  1.54105389  2.84407727  2.187520039 

I013  robust modified GA (Shayeghi et al., 2007)  0.99301454  1.32707249  2.28544596  3.428079106 
modified PSO (Sedghi et al., 2013)  0.7490175  1.91574923  2.46777988  2.055655827 
modified ACO (Zhu & Wang, 2016)  0.82664572  0.59339851  2.77438008  1.048554517 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.79289801  0.59131407  1.02416727  1.763133485 
SuFMoFPA (Proposed)  1.7610329  3.81683047  2.81223407  2.364123586 

I014  robust modified GA (Shayeghi et al., 2007)  0.22006745  0.86055227  1.82069224  2.242449359 
modified PSO (Sedghi et al., 2013)  1.72968283  2.78441235  2.87998407  2.007299512 
modified ACO (Zhu & Wang, 2016)  2.92256927  2.0446814  2.06883674  1.70090367 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.03300801  2.12343218  2.8543342  1.551431688 
SuFMoFPA (Proposed)  1.83154788  2.65621274  2.12845904  1.817467588 

I015  robust modified GA (Shayeghi et al., 2007)  0.35249741  2.11438251  1.98098198  0.833641185 
modified PSO (Sedghi et al., 2013)  2.51857315  2.5984684  2.89267801  1.569651809 
modified ACO (Zhu & Wang, 2016)  3.26182455  1.6343017  1.81108183  0.807782546 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.2698238  2.36713893  2.88798836  3.999939242 
SuFMoFPA (Proposed)  3.13955162  2.53717758  2.26363163  2.176438597 

I016  robust modified GA (Shayeghi et al., 2007)  1.92818846  3.3276728  2.51147115  1.829572857 
modified PSO (Sedghi et al., 2013)  1.98628832  2.60809164  1.30794522  3.881667058 
modified ACO (Zhu & Wang, 2016)  0.57874494  1.16557843  2.36074575  3.155892364 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.95600656  3.16356094  2.95930208  2.763235569 
SuFMoFPA (Proposed)  1.76006559  2.11442515  5.14117809  1.560251665 

I017  robust modified GA (Shayeghi et al., 2007)  1.0189718  0.1566355  1.32292613  1.906411138 
modified PSO (Sedghi et al., 2013)  2.06525797  1.83796498  3.27385569  3.954765376 
modified ACO (Zhu & Wang, 2016)  0.97340241  1.15638837  1.54883415  1.336527526 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.63174044  4.85891753  2.95700702  1.416670977 
SuFMoFPA (Proposed)  1.04984083  4.29808824  1.98875903  1.945587123 

I018  robust modified GA (Shayeghi et al., 2007)  3.48061386  3.14204392  2.13706718  2.247345259 
modified PSO (Sedghi et al., 2013)  0.71351645  1.22469501  1.36076698  1.464676443 
modified ACO (Zhu & Wang, 2016)  1.18504581  1.90007151  2.11212867  2.464056407 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.28985517  2.70210051  3.02767788  2.755097766 
SuFMoFPA (Proposed)  1.41875201  2.28290882  2.54149114  2.424585243 

Average robust modified GA (Shayeghi et al., 2007)  2.335005411  2.243459064  2.040156362  2.13258828 
modified PSO (Sedghi et al., 2013)  2.05827886  2.156148612  2.167131932  2.435345614 
modified ACO (Zhu & Wang, 2016)  1.86197356  1.900352726  2.09407419  2.239578842 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.357131341  2.194511318  2.280904613  2.124436134 
SuFMoFPA (Proposed)  1.701483157  2.061778489  2.270906824  1.822745271  
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Table 6 
Comparison of different segmentation methods with the Dunn index values (Highlighted values denotes the acceptable values).  

Image Id Algorithm No. of Clusters 

3 5 7 9 

I001  robust modified GA (Shayeghi et al., 2007)  1.12535573  1.61578897  4.08857997  1.905081252 
modified PSO (Sedghi et al., 2013)  3.74240514  4.53644815  3.93796563  2.206052346 
modified ACO (Zhu & Wang, 2016)  4.07813945  2.22984218  3.0136908  3.430451366 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.02336228  3.40532418  2.6234403  4.045114582 
SuFMoFPA (Proposed)  1.20465098  4.72691948  0.72556603  2.230860023 

I002  robust modified GA (Shayeghi et al., 2007)  0.67388477  0.37924682  1.01229087  0.371401309 
modified PSO (Sedghi et al., 2013)  2.12379148  0.13614716  3.09316933  0.702857413 
modified ACO (Zhu & Wang, 2016)  0.83057152  0.72541859  1.53110771  1.798947306 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.4247201  1.39796129  2.9206735  1.79260722 
SuFMoFPA (Proposed)  1.77849394  2.26010929  3.21819337  1.54670362 

I003  robust modified GA (Shayeghi et al., 2007)  0.27645967  1.08953352  1.85659804  1.584958757 
modified PSO (Sedghi et al., 2013)  0.5135087  0.0277859  1.76580402  0.598600031 
modified ACO (Zhu & Wang, 2016)  1.02015134  1.18862089  1.62740649  0.199552398 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.76700722  1.61928839  1.5456074  3.114432622 
SuFMoFPA (Proposed)  1.86738691  1.1010286  2.99042464  2.198167978 

I004  robust modified GA (Shayeghi et al., 2007)  0.43265393  0.9089483  0.31715197  1.664270374 
modified PSO (Sedghi et al., 2013)  0.48782614  0.29953957  1.80272564  2.283849511 
modified ACO (Zhu & Wang, 2016)  2.0973503  0.804764  0.90457287  0.784878997 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  0.94912988  1.47172469  1.40035734  1.831345324 
SuFMoFPA (Proposed)  3.03713567  1.7705106  0.41365583  2.273399184 

I005  robust modified GA (Shayeghi et al., 2007)  1.75251283  2.10414104  1.19411085  0.930799564 
modified PSO (Sedghi et al., 2013)  0.16893279  0.38204891  1.82656744  1.157408411 
modified ACO (Zhu & Wang, 2016)  0.80168041  0.53885776  2.21644001  3.33477766 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017) 1.52392077  0.43724981  2.59218063  1.705536748 
SuFMoFPA (Proposed)  3.85647327  2.10913175  2.10302368  2.453340434 

I006  robust modified GA (Shayeghi et al., 2007)  1.98274446  1.6841264  1.18028628  0.863347565 
modified PSO (Sedghi et al., 2013)  0.26504151  2.62308356  4.01097655  2.458085347 
modified ACO (Zhu & Wang, 2016)  2.99658324  3.00682622  1.41340446  2.640352682 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.98771487  1.18145786  1.43427534  2.725758672 
SuFMoFPA (Proposed)  1.61986091  1.0012967  4.52813153  1.828473353 

I007  robust modified GA (Shayeghi et al., 2007)  0.03567237  0.74251006  3.30533244  2.960232017 
modified PSO (Sedghi et al., 2013)  1.65448103  2.08776357  2.18141231  0.008377465 
modified ACO (Zhu & Wang, 2016)  0.28990355  0.50583374  0.74786489  1.751319553 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.01823885  0.88426808  0.14329284  3.076938017 
SuFMoFPA (Proposed)  4.65062371  1.81888595  1.19360059  2.341863431 

I008  robust modified GA (Shayeghi et al., 2007)  0.46762575  0.98111232  0.2363378  1.301492095 
modified PSO (Sedghi et al., 2013)  3.50159548  0.03993424  0.83938028  0.770974762 
modified ACO (Zhu & Wang, 2016)  2.56030394  1.79836797  0.81428664  1.799451758 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  0.63599478  1.2713109  0.08120175  1.838166072 
SuFMoFPA (Proposed)  3.64491352  3.02948476  1.68982292  2.139971306 

I009  robust modified GA (Shayeghi et al., 2007)  0.87124016  1.36016844  1.81508208  2.746990589 
modified PSO (Sedghi et al., 2013)  4.19588116  1.84804193  1.88863398  1.080175537 
modified ACO (Zhu & Wang, 2016)  0.37935729  2.97962137  2.61451103  2.060206272 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.31761798  3.66026645  3.59355705  4.578409411 
SuFMoFPA (Proposed)  2.9280758  4.41427395  3.90686462  1.889027695 

I010  robust modified GA (Shayeghi et al., 2007)  1.71308337  2.57918531  3.472013  2.894621015 
modified PSO (Sedghi et al., 2013)  3.51067707  3.6804834  4.20999705  2.040446984 
modified ACO (Zhu & Wang, 2016)  3.91554431  1.69577549  3.01877796  3.33552876 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.90294354  3.97209268  2.19230993  4.039165139 
SuFMoFPA (Proposed)  1.84609008  3.9931925  1.04178473  1.796884647 

I011  robust modified GA (Shayeghi et al., 2007)  2.11605621  2.7016858  2.32089956  2.040890622 
modified PSO (Sedghi et al., 2013)  0.19326148  1.29244744  3.1218127  3.959432542 
modified ACO (Zhu & Wang, 2016)  1.20819205  0.74549486  0.41027461  2.578597498 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.92946018  2.58444185  2.17711825  2.186020531 
SuFMoFPA (Proposed)  1.95707205  2.03946121  4.6878584  2.073638044 

I012  robust modified GA (Shayeghi et al., 2007)  0.838755  3.59989836  1.51810874  0.546175437 
modified PSO (Sedghi et al., 2013)  3.60942136  0.71660202  2.18079874  1.325483556 
modified ACO (Zhu & Wang, 2016)  0.88814174  2.83481384  1.27071954  3.244886146 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.39904194  2.95128964  2.19801115  2.623335759 
SuFMoFPA (Proposed)  1.88991079  1.43751981  3.46975149  2.164342801 

I013  robust modified GA (Shayeghi et al., 2007)  1.22925491  1.42229243  2.73024479  2.559421351 
modified PSO (Sedghi et al., 2013)  0.44568111  1.64928522  2.33534677  2.943228742 
modified ACO (Zhu & Wang, 2016)  1.93856904  0.47494083  2.18503931  1.550660621 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.41472033  0.69026251  1.0381164  1.184316929 
SuFMoFPA (Proposed)  2.59614135  4.08411025  2.23356922  2.289015299 

I014  robust modified GA (Shayeghi et al., 2007)  2.3478567  2.23264276  1.78127824  1.596607169 
modified PSO (Sedghi et al., 2013)  1.836135  2.80021459  3.39016033  1.707833052 
modified ACO (Zhu & Wang, 2016)  2.95217015  2.29434247  2.57750903  0.686348581 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.84350732  2.38885812  2.92955856  1.604039136 
SuFMoFPA (Proposed)  1.92531342  2.05327029  4.62150971  2.014009802 

I015  robust modified GA (Shayeghi et al., 2007)  0.69394011  2.48058702  1.02352207  1.958463577 
modified PSO (Sedghi et al., 2013)  2.87660663  3.2850893  2.86999687  1.896004966 
modified ACO (Zhu & Wang, 2016)  2.63362583  2.7087012  2.03774092  0.682257146 

(continued on next page) 
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Table 6 (continued ) 

Image Id Algorithm No. of Clusters 

3 5 7 9 

modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.40016767  2.55868281  2.68173452  4.203708965 
SuFMoFPA (Proposed)  2.26261551  4.06478279  3.24136536  2.00582908 

I016  robust modified GA (Shayeghi et al., 2007)  1.28057124  3.12410702  1.34990754  1.701904384 
modified PSO (Sedghi et al., 2013)  2.28967642  2.58036004  0.8950637  3.579965207 
modified ACO (Zhu & Wang, 2016)  1.54549966  1.48056375  2.75748805  2.750500444 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.3260119  3.24011433  2.72159848  2.787082695 
SuFMoFPA (Proposed)  2.9428701  2.31184632  4.4780755  2.140141906 

I017  robust modified GA (Shayeghi et al., 2007)  1.72957874  0.68293573  1.01932287  2.862744247 
modified PSO (Sedghi et al., 2013)  1.9693704  1.97936832  3.4024238  3.981022433 
modified ACO (Zhu & Wang, 2016)  0.98140635  1.01289196  1.85292021  0.920427273 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.87030128  4.23734844  2.24640752  0.643010075 
SuFMoFPA (Proposed)  0.0388915  3.02172489  1.61481739  1.876040136 

I018  robust modified GA (Shayeghi et al., 2007)  2.96208646  2.69070595  2.18238358  2.212471484 
modified PSO (Sedghi et al., 2013)  0.45375751  1.45264234  0.83294531  0.715728097 
modified ACO (Zhu & Wang, 2016)  1.31021766  1.89294933  1.98705276  2.449007895 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.69220643  3.57281612  3.06597316  3.088158888 
SuFMoFPA (Proposed)  2.83685521  4.85155301  2.27747269  2.745606669 

Average robust modified GA (Shayeghi et al., 2007)  1.392228  1.953287  2.508091  1.879283 
modified PSO (Sedghi et al., 2013)  1.838011  1.872875  2.185965  1.573213 
modified ACO (Zhu & Wang, 2016)  1.813528  1.734997  2.051701  2.291343 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.833804  1.819202  1.86698  2.422787 
SuFMoFPA (Proposed)  2.68384  2.691592  2.270533  2.167687  

Table 7 
Comparison of different segmentation methods with the β index values (Highlighted values denotes the acceptable values).  

Image Id Algorithm No. of Clusters 

3 5 7 9 

I001  robust modified GA (Shayeghi et al., 2007)  1.08030166  2.54577616  3.22490003  2.347810386 
modified PSO (Sedghi et al., 2013)  0.12896068  1.0972991  2.50810354  3.105269436 
modified ACO (Zhu & Wang, 2016)  0.95460335  1.10476818  1.52963416  2.744418936 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.67130847  1.32872736  2.13048943  1.894271413 
SuFMoFPA (Proposed)  0.39961555  2.05274396  3.95434278  2.433800915 

I002  robust modified GA (Shayeghi et al., 2007)  1.60888678  2.52923119  2.17984335  0.17301238 
modified PSO (Sedghi et al., 2013)  3.4656689  0.7370578  1.34864831  1.062931572 
modified ACO (Zhu & Wang, 2016)  0.75240613  2.52461831  1.90775524  2.708374815 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.28630694  2.71348371  1.84906597  2.303622357 
SuFMoFPA (Proposed)  1.25105943  1.26202883  3.56707587  1.50230463 

I003  robust modified GA (Shayeghi et al., 2007)  0.85462328  1.13172637  2.44214648  2.332910353 
modified PSO (Sedghi et al., 2013)  0.05850133  1.54902953  2.48389261  2.474018521 
modified ACO (Zhu & Wang, 2016)  1.15553341  0.11922888  2.25133489  0.96989777 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.62117707  1.22497331  1.46286087  2.202865732 
SuFMoFPA (Proposed)  2.01391643  3.60499596  2.54503349  2.478372258 

I004  robust modified GA (Shayeghi et al., 2007)  − 0.323756  2.1072883  1.53166572  1.130117436 
modified PSO (Sedghi et al., 2013)  2.52282579  2.99556638  3.05567925  2.597314922 
modified ACO (Zhu & Wang, 2016)  3.84312474  1.46517086  1.77834996  1.627108032 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.40700832  1.9367675  1.96927611  2.334228243 
SuFMoFPA (Proposed)  2.22061779  2.9231381  4.04870654  0.389403893 

I005  robust modified GA (Shayeghi et al., 2007)  0.90736785  1.09738243  1.1964885  1.965702243 
modified PSO (Sedghi et al., 2013)  2.70120004  3.10898795  2.83360465  0.799582251 
modified ACO (Zhu & Wang, 2016)  2.80200617  2.25668212  1.80455619  0.565179198 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.24901793  2.9797685  4.00365635  3.211382077 
SuFMoFPA (Proposed)  2.50442646  3.45505346  3.95273903  1.710608254 

I006  robust modified GA (Shayeghi et al., 2007)  1.48932711  2.64378217  1.61909543  2.715290484 
modified PSO (Sedghi et al., 2013)  2.18962706  3.19300694  2.23155991  2.6998225 
modified ACO (Zhu & Wang, 2016)  1.17775759  1.6740792  2.82040535  2.854924226 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.46858705  3.25291566  2.55103456  2.180550543 
SuFMoFPA (Proposed)  0.19171251  3.04508239  4.83691179  1.876129512 

I007  robust modified GA (Shayeghi et al., 2007)  1.03190965  0.92863533  1.70238882  2.033984423 
modified PSO (Sedghi et al., 2013)  2.66441796  1.84029684  3.02041233  3.328463297 
modified ACO (Zhu & Wang, 2016)  1.01154939  1.77237091  2.61272764  0.885098898 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.31950134  4.03012854  2.61867249  1.208037556 
SuFMoFPA (Proposed)  0.90437179  3.99787823  2.42973167  1.957067206 

I008  robust modified GA (Shayeghi et al., 2007)  3.38371626  2.6349559  2.25267573  1.651698877 
modified PSO (Sedghi et al., 2013)  1.30299086  1.53569527  1.21467864  0.931970088 
modified ACO (Zhu & Wang, 2016)  1.26054601  2.10699216  1.89587126  2.524847925 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.17034431  3.80187904  3.4724212  2.526850986 
SuFMoFPA (Proposed)  2.60614501  4.9605439  2.39995219  2.92391514 

I009  robust modified GA (Shayeghi et al., 2007)  0.71399444  2.14788247  2.72756786  2.616832182 
modified PSO (Sedghi et al., 2013)  2.44888085  0.52143725  1.7003886  1.505823292 
modified ACO (Zhu & Wang, 2016)  3.0116282  3.45612248  2.40811288  2.035794501 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.59708775  2.17195911  2.00127627  3.378663995 

(continued on next page) 
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the time, an image consists of several small overlapping regions which 
are very difficult to segment. The proposed approach shows an 
impressive performance in terms of determining segments from the CT 
images without depending on any expert delineations which are highly 
beneficial in assessing COVID-19 suspects as well as in analyzing 
biomedical images in general. The proposed computer-aided approach 
helps determine the early signs of the COVID-19 infection from the CT 
scan image and detection of some prominent features (which are 
mentioned in Table 1) can be helpful in early isolation and treatment. 
This approach cannot replace the RT-PCR test to confirm the COVID-19 

infection but can be helpful to take some early precautionary measures 
and can accelerate the treatment process. 
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Table 7 (continued ) 

Image Id Algorithm No. of Clusters 

3 5 7 9 

SuFMoFPA (Proposed)  2.83994234  1.92787401  5.00456648  3.639328475 
I010  robust modified GA (Shayeghi et al., 2007)  1.81960457  2.35468121  3.5681476  1.597325231 

modified PSO (Sedghi et al., 2013)  0.60991396  0.83944781  1.65777353  3.498810794 
modified ACO (Zhu & Wang, 2016)  0.76997978  1.37772079  0.71073799  2.016448483 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.0215901  1.64210239  3.31696429  1.34090451 
SuFMoFPA (Proposed)  0.22223857  2.30889269  3.95499191  1.228755654 

I011  robust modified GA (Shayeghi et al., 2007)  1.15289064  1.5291455  2.05372676  3.03432955 
modified PSO (Sedghi et al., 2013)  0.48630903  2.5296523  1.78686171  2.5096375 
modified ACO (Zhu & Wang, 2016)  1.18699733  1.08986712  2.34039959  1.006494197 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.36262768  0.8773631  0.75446494  1.701325217 
SuFMoFPA (Proposed)  1.05915599  2.96080359  2.2682372  3.215903931 

I012  robust modified GA (Shayeghi et al., 2007)  1.099847  1.95694211  1.26228229  1.294054493 
modified PSO (Sedghi et al., 2013)  1.33645051  2.65755194  3.91970296  2.117279192 
modified ACO (Zhu & Wang, 2016)  2.31398358  2.69638937  2.67147565  2.171889289 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  1.90548359  2.01335749  2.1705331  2.171304072 
SuFMoFPA (Proposed)  2.91573865  2.3324229  4.03121674  1.097428558 

I013  robust modified GA (Shayeghi et al., 2007)  1.3966156  1.89421075  0.62674073  2.074990828 
modified PSO (Sedghi et al., 2013)  3.09948678  2.80258726  3.01168379  0.417157951 
modified ACO (Zhu & Wang, 2016)  3.68787034  1.93767678  2.18609032  1.93744153 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.459167  2.51295226  4.05511791  4.112032152 
SuFMoFPA (Proposed)  3.09240172  4.6510254  3.39698465  2.503391612 

I014  robust modified GA (Shayeghi et al., 2007)  1.75901468  2.89057369  1.48593163  1.940841246 
modified PSO (Sedghi et al., 2013)  1.91261272  3.0947708  1.51191584  3.398500184 
modified ACO (Zhu & Wang, 2016)  1.01082091  1.71159966  3.14750022  2.67908343 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.22703421  2.71169602  3.68267574  2.413376839 
SuFMoFPA (Proposed)  1.23079627  2.75525092  4.22777124  2.234653012 

I015  robust modified GA (Shayeghi et al., 2007)  1.63630722  0.34174905  1.1411655  2.268922039 
modified PSO (Sedghi et al., 2013)  1.92343591  2.57740959  4.13875254  3.438041968 
modified ACO (Zhu & Wang, 2016)  1.32360399  1.15506857  1.85106544  1.451104932 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.6072077  4.77845301  3.77258317  1.23872438 
SuFMoFPA (Proposed)  0.29891733  4.14725366  1.69171125  1.261310612 

I016  robust modified GA (Shayeghi et al., 2007)  3.43809754  3.0480546  2.74492167  2.627967634 
modified PSO (Sedghi et al., 2013)  0.24807311  0.80150704  1.20288975  0.4368312 
modified ACO (Zhu & Wang, 2016)  2.0218355  2.05944617  2.27188204  1.973079218 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  3.90131485  3.44227838  3.10907189  3.029066541 
SuFMoFPA (Proposed)  1.50412711  5.06291945  2.6895786  2.641977937 

I017  robust modified GA (Shayeghi et al., 2007)  1.15958777  2.37983691  2.75183093  1.785976134 
modified PSO (Sedghi et al., 2013)  2.73704867  0.31549428  2.11261402  1.168603999 
modified ACO (Zhu & Wang, 2016)  3.5972623  3.40862177  2.19918987  1.847951785 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.4957426  1.80301025  2.82065921  3.476861333 
SuFMoFPA (Proposed)  2.83342366  2.13269299  4.28523577  3.113438599 

I018  robust modified GA (Shayeghi et al., 2007)  1.43661557  1.75386802  2.15887356  1.38820541 
modified PSO (Sedghi et al., 2013)  0.71616599  1.81928812  2.27493676  3.379698838 
modified ACO (Zhu & Wang, 2016)  1.02390364  1.03870838  1.30638805  3.652735604 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  4.28406919  1.17302868  2.1763827  2.444311055 
SuFMoFPA (Proposed)  2.41350136  1.44933675  4.2196256  1.040516042 

Average robust modified GA (Shayeghi et al., 2007)  1.42472  1.995318  2.037244  1.943332 
modified PSO (Sedghi et al., 2013)  1.697365  1.889783  2.334117  2.159431 
modified ACO (Zhu & Wang, 2016)  1.828078  1.830841  2.094082  1.98066 
modified cuckoo search (Chakraborty, Chatterjee, Dey, et al., 2017)  2.947476  2.46638  2.662067  2.398243 
SuFMoFPA (Proposed)  1.694562  3.057219  3.528023  2.06935  
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Fig. 8. Comparison of the average performance of all five algorithms for four different cluster validity indices i.e. (a) Davies-Bouldin, (b) Xie-Beni, (c) Dunn, and (d) 
β index. 
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