Skip to main content
. 2020 Oct 29;167:114142. doi: 10.1016/j.eswa.2020.114142
Algorithm 2. The proposed SuFMoFPA approach
Input: Input image which is to be segmented
Output: Segmented output image
 1: Find the gradient image corresponding to the input image using the method proposed in (Hore et al., 2015).
 2: Apply Eqs. (9) and (10) to find the superpixel image corresponding to the input image.
 3: Determine the representative point τ of a superpixel.
 4: Randomly initialize the cluster centers Ci=τlow+random0,1τhigh-τlow where τhigh and τlow denotes the upper and lower bound respectively for a representative point.
 5: Randomly assign the fuzzy membership values to the superpixels.
 6: nItr1//Iteration counter
 7: Repeat until nItr>evalCnt//evalCnt is the maximum number of iterations
 8:  Determine the fitness values
 9:  Perform global pollination
 10:  Perform local pollination
 11:  Update the solutions using Eq. (20)
 12:  Check if Spitr+1 is worse than Spitr then
 13:   Spitr+1=Spitr
   end if
 14:  Update the global best
  end until
 15: Prepare the output segmented image by assigning the superpixels to their nearest cluster centers.
 16: Return the segmented image.