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ABSTRACT:
Unlike shock wave lithotripsy, burst wave lithotripsy (BWL) uses tone bursts, consisting of many periods of a

sinusoidal wave. In this work, an analytical theoretical approach to modeling mechanical stresses in a spherical

stone was developed to assess the dependence of frequency and stone size on stress generated in the stone. The

analytical model for spherical stones is compared against a finite-difference model used to calculate stress in non-

spherical stones. It is shown that at low frequencies, when the wavelength is much greater than the diameter of the

stone, the maximum principal stress is approximately equal to the pressure amplitude of the incident wave. With

increasing frequency, when the diameter of the stone begins to exceed about half the wavelength in the surrounding

liquid (the exact condition depends on the material of the stone), the maximum stress increases and can be more than

six times greater than the incident pressure. These results suggest that the BWL frequency should be elevated for

small stones to improve the likelihood and rate of fragmentation. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Urinary stone management often depends on the size and

location of a stone. Stones found in the ureter smaller than

7 mm are often addressed by medical expulsion therapy, pain

medication, and observation.1,2 However, observation can leave

patients debilitated for weeks before stone passage and many

still require later intervention to remove a stone.2,3 Similarly,

smaller stones in the kidney that do not cause symptoms often

receive active surveillance until they grow or move and cause

later symptoms. Because of the pain and other potential symp-

toms associated with stones, many patients opt for earlier inter-

vention rather than watchful waiting. However, these decisions

are balanced against the potential complications and side effects

of stone removal procedures.4,5

Lithotripsy is one of the most common technologies

used for urinary stone intervention. With this technology,

stones are fragmented by transcutaneous ultrasonic pulses

with the expectation that fragments will then spontaneously

pass through the urinary tract.6 The most widely used

method is shock wave lithotripsy (SWL), in which short,

broadband ultrasonic pulses (�1 cycle) containing a shock

front, are generated by an electrohydraulic, electromagnetic,

or piezoelectric source and focused onto the stone to frag-

ment it.7 Since the pulse duration is usually not adjustable

for SWL, the fragmentation efficiency is commonly related

to the magnitude of the positive and negative pressures, the

spatial width of the focal beam waist, and the pulse repeti-

tion rate.8 Modeling and experiments have indicated that

lithotripter designs with a beam larger than the width of the

stone to be most effective.9,10 Studies have shown that care-

ful selection of these parameters can improve stone frag-

mentation in SWL.6 SWL is not commonly used in stones

smaller than 5 mm because of their high rate of spontaneous

passage and concern for tissue injury from the procedure.11

Unlike SWL, burst wave lithotripsy (BWL) uses longer

tone bursts, consisting of multiple periods of a sinusoidal

profile.12 Such pulses are narrow-band and thus, a new spa-

tial scale (the wavelength) and a new timescale—the wave

period of the center frequency—appear. As a result, the frac-

ture density and size of fragments produced by BWL has

been shown to be strongly dictated by the ultrasound fre-

quency.12,13 Previous studies have identified a frequency of

350 kHz for effectively fragmenting stones into 1–2 mm

pieces,14 which can be accomplished with minimal trauma

to the kidney tissue. These benefits and BWL’s minimal risk

suggest BWL may be useful to treat small stones that might

otherwise be observed in order to alleviate symptoms and

accelerate stone passage.

Based on previous work, one might also expect that the

internal stress and the internal stress distribution within

stones depends on this central frequency relative to stone
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size,13 and that both fragmentation time and fragment size

might be optimized simultaneously with proper selection of

frequency.12 In larger stones, periodic elastic wave patterns

constructively interfere to amplify the stress and lead to

fracture.13,15 However, when the stone diameter is similar to

the wavelength or smaller, the edges of the stone serve as

acoustically soft boundaries for internal waves, and the

stress is limited. Thus, treatment of small stones requires

special consideration. Analytical and numerical models can

be used to assist in the understanding of how stress in the

stone varies with frequency. Numerical models of linear

stress within stones for SWL research have been previously

published,9,16,17 and have been demonstrated to predict the

location and rate of stone fracture based on the location of

maximum principal stress.9 Spherical, cylindrical, and

irregular-shaped stones have been modeled and show similar

response to acoustic pulses in SWL.

The goal of the current study is to develop an analytical

model, validate it against a numerical (finite difference)

model, and then use both to investigate the effect of fre-

quency on stress magnitude in stones exposed to BWL

pulses. These investigations lead to identification of specific

ranges for frequency where BWL may be most effective in

producing stress and fracturing small stones.

II. MATERIALS AND METHODS

An analytical model is derived for the spherical stone and

validation against a previously employed numerical model. In

addition, we use the numerical model to evaluate the depen-

dance of the results on stone geometry and composition. Both

spherical and nonspherical geometries are representative of

actual kidney stones, although in clinical practice, the shape of

an individual’s stone can only be estimated from computed

tomography with a resolution on the order of 1 mm.18 The

material properties of urinary stones of different types have

been characterized,19,20 although clinically, the composition is

usually unknown at the time of the procedure; thus, we evalu-

ate these over their natural range. These results are used to

describe the maximum principal stresses occurring in the

stones as a function of frequency for different properties.

A. Analytical description

Here, an analytical description of elastic waves in a spher-

ical stone in a liquid caused by an axisymmetric acoustic

beam is derived. We consider that the continuous wave (CW)

case, and physical quantities ~Fðr; tÞ (e.g., acoustic pressure ~p,

stress components ~Tij, particle displacement ~u, etc.) depend

on time sinusoidally: ~Fðr; tÞ ¼ Re½FðrÞexp ð�ix tÞ�, where F
is a complex amplitude of ~F. In the liquid, the wave equation

results in the following Helmholtz equation:

Dpþ k2p ¼ 0: (1)

Here, p is the complex amplitude of the acoustic pres-

sure, k ¼ x=c0 is the wavenumber, x is angular frequency,

and c0 is the speed of sound in the liquid. According to the

equation of motion, for the mentioned time dependence

�e�ix t, the particle displacement complex amplitude u in

the liquid is expressed as follows:

u ¼ 1

q0c2
0k2
rp; (2)

where q0 is the liquid density.

The motion of the solid material (inside the sphere) is

convenient to describe using the particle displacement vec-

tor u. In the general case, it can be represented by the scalar

and vector potentials U and A:21

u ¼ �rUþr� A: (3)

The scalar and vector potentials U and A describe the

longitudinal and shear waves, correspondingly, and as such,

are governed by the following Helmholtz equations:

DUþ k2
l U ¼ 0; (4)

DAþ k2
t A ¼ 0: (5)

Here, kl ¼ x=cl and kt ¼ x=ct are the wavenumbers for the

longitudinal and shear waves. The corresponding wave veloci-

ties cl and ct are expressed as follows: cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q�

p
,

ct ¼
ffiffiffiffiffiffiffiffiffiffi
l=q�

p
, where k and l are the Lam�e constants, and q� is

the density of the sphere material. According to Hooke’s law,

the mechanical stress tensor is expressed through the displace-

ment vector u ¼ ðu1; u2; u3Þ:

Tij ¼ kdijr � uþ l
@ui

@xj
þ @uj

@xj

� �
; (6)

where dij is the Kronecker delta.

Let an axisymmetric beam with its axis directed along

the z axis be scattered from an elastic sphere in a liquid. Let

the center of the sphere be positioned at the origin of the

coordinate system. In such a case, it is convenient to use

spherical coordinates:

pi ¼
X1
n¼0

QnPn cos hð Þjn krð Þ; (7)

where r is radial distance (distance to origin, i.e., the stone

center), h is the polar angle (the angle with respect to axis z
axis), Pnð:Þ and jnð:Þ are the Legendre polynomials and

spherical Bessel functions, correspondingly, and the coeffi-

cients Qn describe the structure of the axisymmetric incident

beam. For instance, in the case of a plane incident wave

propagating along the z axis, pi ¼ p0 exp ðikzÞ,22

Q plane waveð Þ
n ¼ p0 in 2nþ 1ð Þ: (8)

Another important case is a quasi-Gaussian beam

focused on the center of the scatterer. The expression for Qn

in such a case can also be presented analytically.23

The scattered wave in fluid will be of the form

ps ¼
X1
n¼0

Qncnhn
ð1ÞðkrÞPn cos hð Þ; (9)
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where hð1Þn ð:Þ are the spherical Hankel functions of the first

kind, and cn are coefficients that depend on sphere diameter

and acoustic properties of the liquid and solid materials.

Because the incident acoustic beam has an axially sym-

metric structure, there is no dependence on the azimuthal

angle u (angle of rotation around the z axis). Therefore,

there is no displacement tangential to the direction of rota-

tion (uu ¼ 0). The two other components of the vortical part

of the displacement vector are ðr � AÞr ¼ ½@ðAu sin hÞ=@h
�@Ah=@u�=ðr sin hÞ and ðr � AÞh ¼ ½ð@Ar=@uÞ= sin h
�@ðrAuÞ=@r�=r. Because @Ar=@u ¼ @Ah=@u ¼ 0, only the

azimuthal component Au is needed, i.e., the pair of functions

U and Au fully describe the displacement field. These poten-

tials can be expressed in the following form:21,24

U ¼
X1
n¼0

anPn cos hð Þjn klrð Þ; (10)

Au ¼
X1
n¼0

bnjn ktrð Þ
dPn cos hð Þ

dh
: (11)

Here, an and bn are coefficients and, similar to cn,

depend on the sphere diameter and acoustic properties of the

media.

Because previous publications solving the problem of

acoustic wave scattering from an elastic sphere do not

describe the stress and displacement fields inside the

sphere,21,24,25 the corresponding expressions are derived

here. Let us introduce the following notations for the spheri-

cal Bessel functions arguments: n ¼ kl r, g ¼ ktr, and

1 ¼ kr. According to Eqs. (7) and (9), the complex amplitude

of the total pressure p ¼ pi þ ps has the following form:

p ¼
X1
n¼0

Qn jn 1ð Þ þ cnh 1ð Þ
n 1ð Þ

h i
Pn cos hð Þ: (12)

The stress tensor components in the spherical coordi-

nates are expressed by the following equations, which fol-

low from Eqs. (3) and (6):

Trr ¼
X1
n¼0

ân �jn nð Þ � j00n nð Þ
� �

þ b̂nn nþ 1ð Þ

8<
:

�
jn gð Þ
g2
�

j0n gð Þ
g

" #)
Pn cos hð Þ; (13)

Thh ¼
X1
n¼0

ân �jn nð Þ þ n nþ 1ð Þ jn nð Þ
n2
� j0n nð Þ

n

" #(

þb̂nn nþ 1ð Þ
j0n gð Þ

g

)
Pn cos hð Þ

þ
X1
n¼0

ân
jn nð Þ
n2
þ b̂n

jn gð Þ
g2
þ

j0n gð Þ
g

" #( )

� cos h
sin h

dPn cos hð Þ
dh

; (14)

Tuu¼
X1
n¼0

ân �jn nð Þ� j0n nð Þ
n

� �
� b̂nn nþ1ð Þjn gð Þ

g2

	 

Pn coshð Þ

�
X1
n¼0

ân
jn nð Þ
n2
þ b̂n

jn gð Þ
g2
þ

j0n gð Þ
g

" #( )
cosh
sinh

dPn coshð Þ
dh

;

(15)

Trh ¼
X1
n¼0

ân
jn nð Þ
n2
� j0n nð Þ

n

" #
� 1

2
b̂n j00n gð Þ
�(

þ n� 1ð Þ nþ 2ð Þ jn gð Þ
g2

�

dPn cos hð Þ

dh
: (16)

Here, ân ¼ 2lk2
l an, b̂n ¼ 2lk2

t bn, the prime indicates

the derivative over the function argument, and the second

derivative of the spherical Bessel function is expressed as

j00nðnÞ ¼ ½nðnþ 1Þ=n2 � 1�jnðnÞ � 2j0nðnÞ=n. Also, � ¼
k=ð2lÞ ¼ r=ð1� 2rÞ is an auxiliary constant, where r ¼
0:5 ðc2

l � 2c2
t Þ=ðc2

l � c2
t Þ is Poisson’s ratio.

The particle displacement components in the liquid,

according to Eqs. (2) and (12), are expressed as follows:

ur ¼
X1
n¼0

Qn

kq0c2
0

j0n 1ð Þ þ cnh 1ð Þ0
n 1ð Þ

h i
Pn cos hð Þ; (17)

uh ¼
X1
n¼0

Qn

kq0c2
0

jn 1ð Þ
1
þ cn

h 1ð Þ
n 1ð Þ
1

" #
dPn cos hð Þ

dh
: (18)

In the sphere, the corresponding expressions follow

from Eqs. (3), (10), and (11):

ur ¼ �
X1
n¼0

klanj0n nð Þ þ ktbnn nþ 1ð Þ
jn gð Þ

g

	 

Pn cos hð Þ;

(19)

uh ¼�
X1
n¼0

klan
jn nð Þ

n
þ ktbn

jn gð Þ
g
þ j0n gð Þ

� �	 


� dPn cos hð Þ
dh

: (20)

Note that the related axial and lateral components of the

particle displacement, uk and u?, are expressed through the

components ur and uh as follows:

uk ¼ ur cos h� uh sin h; (21)

u? ¼ ur sin hþ uh cos h: (22)

The expansions’ coefficients an, bn, and cn are derived

from the boundary conditions on the surface of the sphere

(r ¼ a), which are continuity of the normal stress p ¼ �Trr,

absence of the tangential stress Trh ¼ 0, and continuity of

the normal component of the displacement ur . The corre-

sponding expressions can be represented in the following

form:

ân ¼ bnWn; (23)
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b̂n ¼ 2anWn; (24)

cn ¼
�Cnjn kað Þ þ j0n kað Þ

Cnh 1ð Þ
n kað Þ � h 1ð Þ0

n kað Þ
; (25)

where the following auxiliary notations are used:

Cn ¼
q0c0

2q�ct

bncn þ andn

bnen þ anvn

; (26)

Wn¼
Qn

bnenþanvn

jn kað Þh 1ð Þ0
n kað Þ� j0n kað Þh 1ð Þ

n kað Þ
Cnh 1ð Þ

n kað Þ�h 1ð Þ0
n kað Þ

; (27)

an ¼
jn klað Þ

klað Þ2
� j0n klað Þ

kla
; (28)

bn ¼ j00n ktað Þ þ n� 1ð Þ nþ 2ð Þ jn ktað Þ
ktað Þ2

; (29)

cn ¼
cl

ct
j0n klað Þ; (30)

dn ¼ 2n nþ 1ð Þ jn ktað Þ
kta

; (31)

en ¼
r

1� 2r
j klað Þ � j00n klað Þ; (32)

vn ¼ 2n nþ 1ð Þ jn ktað Þ
ktað Þ2

� j0n ktað Þ
kta

" #
: (33)

Note also that

an ¼
ân

2q�x2

c2
l

c2
t

; (34)

bn ¼
b̂n

2q�x2
: (35)

Equations (12)–(35) provide the exact analytical solu-

tion of the considered problem.

In lithotripsy, the fracture of stones is the primary effect

of interest. The maximum principal stress and peak elastic

energy in the stone can be used as parameters that indicate

the possibility to initiate appearance and growth of cracks.

To find these values, it is necessary to express the time-

dependent stress tensor components:

~Tij r; h; tð Þ ¼ Re Tij r; hð Þexp �ix tð Þ
� �

: (36)

The principal stress components can be expressed as

follows:

TI; II ¼
~Trr þ ~Thh

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Trr � ~Thh

2

� �2

þ ~Trh
2

s
; (37)

TIII ¼ ~Tuu: (38)

From here, the time-dependent maximum principal

stress in different points in the stone can be calculated:

Tmax ¼ max TI; TII; TIIIð Þ: (39)

Elastic potential energy distribution in the stone can be

characterized by the free energy density, which is expressed

through the stress tensor:26

E ¼ 1

4l
~Tik

~Tik �
1

12l
� 1

18K

� �
~Tll

2: (40)

Here, K ¼ kþ 2l=3 is the bulk modulus, ~Tik
~Tik

¼ ~T
2

rr þ ~T
2

hh þ ~T
2

uu þ 2 ~T
2

rh, and ~Tll ¼ ~Trr þ ~Thh þ ~Tuu.

Note that for stones that are not too large in compari-

son with the wavelength, the greatest stresses and free

energy density are achieved near the center of the stone. In

the center of the sphere, expressions for the maximum prin-

cipal stress and free energy density are simplified and do

not require the use of infinite sums and special functions,

since at r ¼ 0 only the terms of Eqs. (13)–(16) correspond-

ing to the indices n ¼ 0 and n ¼ 2 are nonzero (see the

Appendix).

B. Finite-difference model

The analytical solution described above is applicable

only to the case of a uniform spherical stone. For stones of

arbitrary shape and structure, the analysis can be performed

using direct numerical modeling, e.g., in finite differences.

Such an approach was applied to the problems of lithotripsy

earlier.9,15,16 In the axisymmetric case, it is convenient to

use cylindrical coordinates ðr?; z;uÞ, where r? is the trans-

verse coordinate. Because of the axial symmetry, the veloc-

ity vector ~v ¼@~u=@t has only two components: radial, ~vr? ,

and axial, ~vz, and the stress tensor has only four nonzero

components: ~Tr?r? , ~Tzz, ~Tuu, and ~Tr?z. Here, as earlier, the

tilde indicates the full time-dependent quantity versus the

complex amplitudes of the quantity. These six functions

describing the mechanical field are governed by the follow-

ing evolution equations:27

@~vr?

@t
¼ 1

q
1

r?

@ r? ~Tr?r? � ~Tuu

� �� �
@r?

þ @
~Tr?z

@z
þ @

~Tuu

@r?

( )
;

(41)

@~vz

@t
¼ 1

q
1

r?

@ r? ~Tr?z

� �
@r?

þ @
~Tzz

@z

" #
; (42)

@ ~Tr?r?

@t
¼ k

1

r?

@ r?~vrð Þ
@r?

þ @~vz

@z

� �
þ 2l

@~vr?

@r?
; (43)

@ ~Tzz

@t
¼ k

1

r?

@ r?~vr?ð Þ
@r?

þ kþ 2lð Þ @~vz

@z
; (44)

@ ~Tuu

@t
¼ k

@~vz

@z
þ kþ 2lð Þ 1

r?

@ r?~vr?ð Þ
@r?

� 2l
@~vr?

@r?
; (45)

@ ~Tr?z

@t
¼ l

@~vz

@r?
þ @~vr?

@z

� �
: (46)
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In the numerical modeling, it is convenient to consider

the liquid and stone as one inhomogeneous medium, whose

parameters q, k, and l are functions of the coordinate loca-

tions. In the liquid, q ¼ q0, k ¼ q0c2
0, and l ¼ 0. In the

stone, q ¼ q�, k ¼ q�ðc2
l � 2c2

t Þ, and l ¼ q�c
2
t . When such

parameters are used in Eqs. (41)–(46), the boundary condi-

tions at the stone surface are satisfied automatically.

To solve the system of Eqs. (41)–(46) numerically, the

partial differential equations are discretized using a central

differencing scheme with staggered grids in both space and

time. To account for an incident acoustic wave, a proper

boundary condition is set at the calculation box boundary.

The typical spatial grid step for the coordinates was 50 lm,

and the temporal step was 10 ns, which was sufficient to

maintain stability and accuracy. A perfectly matched layer

(PML) of 1.5 mm thickness is placed at the boundary of the

calculation region of 50 � 50 mm size.

Similar to the analytical approach, the results of numer-

ical modeling are analyzed using maximum principal stress

and free energy density. The principal stress components are

expressed similar to Eqs. (37):

TI; II ¼
~Tr?r? þ ~Tzz

2
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Tr?r? � ~Tzz

2

� �2

þ ~T
2

r?z

s
; (47)

and the third principal stress is described by Eq. (38), i.e.,

TIII ¼ ~Tuu. The maximum principal stress then is calculated

according to Eq. (39). The free energy density has the form

of Eq. (40), in which ~Tik
~Tik ¼ ~T

2

r?r?
þ ~T

2

zz þ ~T
2

uu þ 2 ~T
2

r?z

and ~Tll ¼ ~Tr?r? þ ~Tzz þ ~Tuu.

In lithotripsy, the formation of cracks under the action

of a tensile load is of interest; therefore, it is convenient to

use the maximum principal stress Tmax as a parameter. As

our interest is the effect of the wave frequency on Tmax and

since the maximum principal stress also depends on time, it

makes sense to use the peak value of the maximum stress in

time, maxtimeðTmaxÞ, as an indicator of the impact at the

selected point of the stone, and to characterize the possibil-

ity of stone fragmentation, use the largest value within the

entire stone, maxspace½maxtimeðTmaxÞ�. This value depends

on the frequency of the wave and the size of the stone by

means of a dimensionless frequency ka. Here, data are pre-

sented versus ka for the sounds speed in the surrounding

water.

C. Material properties

To relate the study to lithotripsy, the properties of the

sphere are chosen to represent natural kidney stones and

commonly used artificial stone models for testing as shown

in Table I.28–30 The liquid was water with the density

q0¼ 1000 kg/m3 and the speed of sound c0¼ 1500 m/s,

which is reasonable for urine or tissue that surrounds the

stone. The shape of the stone was spherical for the analytical

theory, and spherical, cylindrical, or biconical (with diame-

ter equal to the length) for the finite-difference modeling.

III. RESULTS

A. Analytical modeling results

The theory described in Sec. II A allows one to calcu-

late all the characteristics of the process of mechanical load-

ing of a stone when an acoustic wave is incident on it. For

small stones, the beam width is much larger than the diame-

ter of the stone, therefore, below the incident wave is con-

sidered as a plane (not focused) harmonic wave.

Figure 1 shows the results of calculations of the largest

maximum stress, maxspace½maxtimeðTmaxÞ�, normalized to the

pressure amplitude p0 in the incident wave for a spherical

calcium oxalate monohydrate (COM) stone in a wide range

of variation of the dimensionless frequency ka. This curve

has a characteristic behavior: at low frequencies, the highest

stress coincides with the pressure amplitude of the incident

wave, p0, and weakly depends on the frequency. With

increasing frequency, an increase in the stress in the stone is

observed at ka > 1, and a local maximum is reached at the

frequency ka � 3:6, at which the stress is approximately six

times higher than the amplitude of the incident wave, p0.

With a further increase in frequency, many narrower reso-

nance peaks are observed, which appear above a plateau

level that is several times higher than p0. The presence of

resonances is expected, since a stone, like any volume with

reflecting boundaries, is a resonator for elastic waves. At

each resonant frequency, a particular stress distribution is

formed inside the stone. For clarity, in Fig. 1, the distribu-

tions of the quantity maxtimeðTmaxÞ at the corresponding res-

onant frequencies are shown below the curve. The narrow

peaks are reduced or completely disappear when elastic

wave absorption is present. As an example, this effect is

illustrated in Fig. 1 by a red line when a moderate absorption

is introduced in the model by adding an imaginary part to

the elastic wavenumbers kl and kt, the value of which is con-

sistent with the range of attenuation measured in a sample of

stones.19

Consider in more detail the two lowest resonances:

ka ¼ 3:590 and ka ¼ 5:368. Figure 2 shows the distribution

of the maximum-in-time of the maximum principal stress

for a COM stone, as well as the pattern of the stone defor-

mation in the process of its oscillations at the corresponding

frequencies. The scale deformation of the stones has been

TABLE I. Material properties of common natural and artificial kidney stone

compositions: calcium oxalate monohydrate (COM), calcium oxalate dihydrate

(COD), struvite-magnesium ammonium phosphate hexahydrate (MAPH), and

Ultracal-30 (United States Gypsum Company, Chicago, Illinois) gypsum artifi-

cial stone (U-30).

Material

Density q�
(kg/m3)

Longitudinal

velocity, cl (m/s)

Shear velocity

ct (m/s)

COM 1823 4476 2247

COD 1875 2687 1344

MAPH 1587 2798 1634

U-30 1693 3180 1880
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exaggerated for display. Note the maximum stress is not

always at the stone center. The deformation is shown by the

grid, which is a square grid in the unperturbed state. At the

lowest resonance frequency, ka ¼ 3:590, the vibration of the

stone has the structure of a quasi-longitudinal standing

wave, in which particle displacement mainly occurs in the

longitudinal direction, and transverse deformations are due

to the Poisson effect. At the second resonant frequency,

ka ¼ 5:368, the deformation of the stone has the form of

bending vibrations. It should be noted that at the lowest fre-

quency, the resonance peak is relatively wide, with the max-

imum stress being achieved near the center of the stone. At

higher frequencies, stress is more likely to be concentrated

near the border of the stone (see also Fig. 1).

The values of the resonances depend on the stone com-

position. Figure 3 shows a view of the lowest-frequency

resonance curve for several materials. It can be seen that

both the resonance frequency and the magnitude of the max-

imum stress achieved are different for different materials,

and the magnitude of the resonance peak increases with

decreasing the resonance frequency. The arrows show the

values of the resonance frequency, calculated under the

assumption of the lowest resonance of the quasi-

longitudinal standing wave in a thin rod with a length equal

to the diameter of a spherical stone. The speed of the indi-

cated bar wave is crod ¼
ffiffiffiffiffiffiffiffiffiffi
E=q�

p
, where E is Young’s modu-

lus, which corresponds to the expression

crod ¼ ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3c2

l � 4c2
t Þ=ðc2

l � c2
t Þ

q
. This gives an estimate for

the lowest resonance frequency, fres ¼ crod=ð4aÞ, which in

terms of the dimensionless frequency ka is written as fol-

lows: ðkaÞres ¼ ðp=2Þcrod=c0.

FIG. 1. (Color online) Maximum in space and time of the maximum principal stress, maxspace½maxtimeðTmaxÞ�, normalized by the incident plane wave ampli-

tude p0, versus dimensionless frequency ka, where k is the wavenumber in the liquid, a is the stone radius. The modeled spherical stone is made from COM

material. The blue line corresponds to the case when no losses are present in the stone, the red line represents simulations when an absorption that grows lin-

early with frequency is introduced to the elastic waves in the stone: kt ! ktð1þ 0:01 iÞ, kl ! klð1þ 0:01 iÞ. Images below the curve represent spatial distri-

bution of the maximum-in-time of the maximum principal stress, maxtimeðTmaxÞ, for the frequencies where the curve has local maxima (i.e., the resonance

frequencies).

FIG. 2. (Color online) The distribution of the maximum-in-time of the max-

imum principal stress for a COM stone (left), as well as the pattern of the

stone deformation in the process of its oscillations (center and right) at the

1st and 2nd lowest resonance frequencies, ka ¼ 3:590 and ka ¼ 5:368.

Here, t0 is a moment in time and T is the wave period.

FIG. 3. (Color online) Normalized maximum stress maxspace ½maxtimeðTmaxÞ�=p0

in a stone as a function of dimensionless frequency ka varying stone composition:

COD, MAPH, U-30, and COM. Arrows indicate the lowest resonance frequency

for quasi-longitudinal standing waves in a thin rod with length equal to the stone

diameter.
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B. Comparison of analytical and finite-difference
modeling approaches

The analytical method described in Sec. II A provides

an exact solution of the considered problem but is limited to

the case of a spherical stone. The finite-difference numerical

approach presented in Sec. II B can be used for any stone

shape and thus, is more general, although it needs more

computing resources and calculation time. However, such

numerical method is approximate by its nature because the

derivatives are replaced by finite differences, i.e., it provides

sufficiently high accuracy only for a sufficiently small calcu-

lation steps in space and time. The proper choice of calcula-

tion steps and boundary conditions can be verified by using

the analytical solution where both approaches are possible.

For such a comparison, the problem of the incidence of

a plane wave on a spherical COM stone of different diame-

ters is considered. To be specific, the maximum principal

stress, maxtimeðTmaxÞ, normalized by the incidence pressure

amplitude in the absence of the stone, p0, is calculated at the

stone center for a frequency range from 0 to 1 MHz for the

stones of diameters 5 and 10 mm. In the stone center, only

two terms in Eqs. (10) and (11) are nonzero, so the analyti-

cal expressions are simplified as shown in the Appendix.

Finite-difference modeling of CW regimes for a series

of frequencies requires considerable calculation time. To

avoid this difficulty, an impulse response approach was

employed. Specifically, a plane wave in the form of a short

pulse was used in the finite-difference simulation as an inci-

dent wave, and then, the frequency response was recon-

structed using the Fourier transform of the transient stresses

in the absence of the stone (to find the incident pressure

amplitude as a function of frequency) and with the stone (to

find the principal stresses as functions of frequency).

The modeling results are shown in Fig. 4. The exact ana-

lytical solution is shown by solid lines and the finite-difference

modeling results are shown by circles. It is seen that the two

modeling approaches provide nearly identical results.

C. Finite-difference modeling results for nonspherical
stones

Since real kidney stones are commonly nonspherical, a

natural question arises whether the conclusions drawn from

the analysis of mechanical stresses for spherical stones can

be extended to the more general case of stones of a different

shape. To answer this question, a finite-difference simula-

tion of the frequency dependence of the maximum principal

stress in stones of various shapes under the action of a plane

acoustic wave was carried out. The calculation of the fre-

quency dependence was performed by the impulse response

method described in Sec. III B. However, in comparison

with Secs. III A and III B, the maximum principal stress,

Tmax, was calculated not only in the center of the stone, but

in the entire stone. To characterize the efficiency of mechan-

ical loading of the stone, the highest value of this value was

considered, maxspace½maxtimeðTmaxÞ�. Figure 5 shows the

results of calculations for three stone shapes: in addition to

the previously mentioned spherical shape, a cylindrical

stone with a diameter equal to the length was considered, as

well as a stone in the form of two oppositely oriented cones

with a common base, the length of which was chosen equal

to its transverse diameter. From the curves shown in Fig. 5,

one can conclude that the qualitative form of the dependen-

ces of the maximum stress on frequency for nonspherical

stones remained the same as for spherical stones: in the low-

frequency region, there is an initial section extending to the

value ka � 1:5� 2 at which the maximum stress weakly

depends on the frequency and remains close to the ampli-

tude of the incident wave. Note that at this frequency the

stone diameter is 2a � k0=2, where k0 is the wavelength in

the liquid. With a further increase in frequency, the

FIG. 4. (Color online) Maximum principal stress maxtimeðTmaxÞ at the cen-

ter (r¼ 0) of 5 and 10 mm diameter COM stones normalized by the incident

plane wave amplitude p0. The exact analytical solution is presented as solid

lines, whereas the finite-difference modeling results are shown as circles

with 10 kHz frequency steps. Note, we discuss only the peak at the stone

center to consider the resonance behavior here, but higher values exist

above the lowest resonance off axis.

FIG. 5. (Color online) Normalized maximum stress maxspace ½maxtimeðTmaxÞ�=p0

in an axisymmetric COM stone as a function of the dimensionless frequency ka for

stones of different shapes (shown in different colors): spherical, cylindrical, and in

the form of two connected cones. For nonspherical stones, the parameter a corre-

sponds to the radius of a sphere of equal volume.
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maximum stress begins to grow and increases several times.

The degree of the stress amplification depends on the shape

of the stone: for example, for the cases shown in Fig. 5, at

the first peak of the curve, the stress amplification for a

cylindrical stone is about 4, for a spherical stone about 6,

and for a stone with conical ends about 8. The frequency at

which the corresponding peak occurs also depends on the

shape of the stone. However, in any case, the indicated

amplification effect occurs at ka in the range from 2 to 5, a

similar range to that was observed earlier when considering

spherical stones made from different materials (see Fig. 3).

IV. DISCUSSION AND CONCLUSIONS

An analytical model of stress in a spherical stone was

developed and compared to a finite-difference model which

was, in turn, used to calculate the stress in nonspherical

stones. A range for ka was found above which the incident

BWL pressure was significantly amplified within the stone.

Amplification was 6 for COM stones and greater for other

stone compositions. About half of the stones are of pure

composition—calcium stones are most common but also

range substantially in properties.31 Stones can also be of

mixed composition, and this was not addressed here.

However, mixed compositions likely have properties in the

range addressed by considering different pure compositions.

Amplification could be maximized at specific resonance

peaks, although in clinical practice, this would be difficult to

achieve without foreknowledge of the stone composition.

However, the model suggests that high stresses can be

achieved in all compositions provided ka is sufficiently high

for those with the greatest sound speed (COM), around

ka �5. The general trend observed in the simulations was

not the result of the perfect symmetry of the stone, as similar

behavior was seen for this range of ka with cylindrical and

biconical stones as well.

Simulation shows (see Fig. 1) that the mechanical

stresses are generally somewhat higher for higher frequen-

cies. However, in this case, the zone of increased stresses is

localized near the surface of the stone and, therefore, does

not lead to fragmentation of the stone, but only to its surface

erosion. Surface erosion also occurs at low frequencies

through the cavitation mechanism (at low frequencies it is

even more effective because of the greater growth of bub-

bles and the formation of jets when they collapse). To

increase the efficiency of stone comminution by means of

near-surface erosion, it is necessary to increase the surface

of the stones, i.e., to split them into multiple fragments. That

is why it is important to create high stresses inside the stone,

closer to its center. This is exactly what happens at the first

low-frequency resonance. Thus, the choice of the frequency

in the vicinity of the first low-frequency resonance is advan-

tageous for two reasons—both due to the growth of the

stone splitting into fragments, and due to the increase in the

surface area, which determines the efficiency of erosion

both caused by cavitation and the direct action in the case of

transition to higher BWL source frequency.

The analysis showed that when the stone diameter is less

than the wavelength in the liquid, the tension created in it by

the incident wave drops sharply. For small stones, the stress in

the stone is practically equal to the amplitude of the incident

wave (see Figs. 1, 3, and 5). This feature can be explained by

the fact that at low frequencies the effect of external pressure

on the stone becomes the same as in the static mode, when

the stress inside the stone coincides with the external pressure.

Important for practice is the result that with an increase in fre-

quency, the maximum principal stress in the stone can be sev-

eral times (from four and more) higher than the amplitude of

the incident wave. The physical reason is the occurrence of

resonant vibrations of the stone. At the lowest resonance, the

deformation of the stone resembles a resonance in an elastic

rod, when the displacement of particles occurs mainly along

the direction of wave propagation. However, due to the

Poisson effect, there is some deformation in the transverse

direction (see Fig. 2). In this case, the Q-factor of the first res-

onance is low, i.e., it occurs over a wide range of frequencies,

and the very fact of the occurrence of this resonance (and the

corresponding increase in stress amplification in the stone)

does not depend on either the shape or the material of the

stone; only the specific value of the resonance frequency and

the degree of stress amplification depend on these factors.

One of the significant limitations of modeling for stones

is that only limited data are available regarding the attenua-

tion; moreover, it can be expected that attenuation strongly

depends on the type of stone, its structure, and the frequency

of the incident wave. To assess the effect of losses, let’s

assume for simplicity that the attenuation of elastic waves

increases linearly with frequency. Then, the analytical

model can be modified as follows: kt ! ktð1þ i tan dtÞ,
kl ! klð1þ i tan dlÞ, where tan dt and tan dl are the corre-

sponding loss tangents for shear and longitudinal waves. A

rough estimate of the loss tangent can be made from a study

by Singh and Dhawan,19 who measured the attenuation

coefficient for natural kidney stones in the range of 3–11

dB/cm at 2.5 MHz. This gives a range of change in tan dl

from 0.004 to 0.016 and is likely an overestimation for

lower-frequency BWL. Figure 6 shows the modeling results

of the maximum stress in the center of the COM stone (see

the Appendix) for the case of equal loss tangents for shear

and longitudinal waves: tan dt ¼ tan dl ¼ tan d. Different

colors correspond to a set of different tan d¼ 0, 0.001, 005,

0.01, and 0.02. Simulations show that taking into account

even moderate losses dampens the narrow peak at ka � 7:6
almost completely, and significantly reduces wider high-

frequency resonances. On the contrary, the lowest-

frequency resonance of interest to us in the current paper,

with a central frequency of ka � 3:6, is practically insensi-

tive to the presence of absorption. This shows that the simu-

lation results obtained in Sec. III the approximation of zero

losses are valid even in absorbing stones, i.e., neglect of

absorption is reasonable, particularly for small stones.

Important to the clinical application of BWL for small

stones, the low-frequency mode has a single position of high

stress, and its likely outcome would be to bisect the stone
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into two smaller fragments. Once fragmented, the smaller

individual pieces may no longer experience amplified stress,

but a stress closer to p0. While larger stones require frag-

mentation into numerous pieces, even a single fracture can

benefit the passage of an obstructing ureteral stone or even

relieve obstruction of urine flow. Previous preclinical14 and

clinical32 work evaluating stone comminution of COM

stones14 found that fragments produced with a 350 kHz

transducer were reduced to 1–2 mm (ka �1.5–2.9), consis-

tent with the range for onset of amplified stress in the model.

This model, therefore, explains why stones are not necessar-

ily reduced to fine particles but remain a specific size related

to the wavelength. The notion of bisecting a stone sequen-

tially through a fundamental resonance gives the possibility

to use a low frequency and break a stone into larger pieces,

and then use a higher frequency to break them further. This

strategy could prove faster than using only high frequency,

which can take a substantial time to completely fragment a

stone on its own. As a result, very small fragments could be

produced in a clinically reasonable timeframe and pass

asymptomatically. Future work will evaluate this promising

technique to accelerate stone fragmentation in BWL.
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APPENDIX: STRESSES AND FREE ENERGY DENSITY
AT THE SPHERICAL STONE CENTER

At the stone center, r ¼ 0, the spherical Bessel func-

tions provide nonzero terms only for the indices n 	 2,

which follows from the following expressions for the

spherical Bessel functions: j0ðxÞ ¼ 1� x2=6þ � � �, j1ðxÞ ¼
x=3 �x3=30þ � � �, j2ðxÞ ¼ x2=15þ � � � Substitution of these

expansions into Eqs. (13)–(16) and the transition to the limit

r ! 0 leads to the conclusion that the stress is completely

characterized by two components of the stress tensor–axial

and lateral (perpendicular to the axis), which have the fol-

lowing complex amplitudes:

Tk ¼ � þ 1

3

� �
â0 �

2

15
â2 þ

2

5
b̂2

� �
; (A1)

T? ¼ � þ 1

3

� �
â0 þ

1

15
â2 þ

1

5
b̂2: (A2)

According to Eq. (39), the corresponding maximum

principal stress is Tmaxjr¼0 ¼ maxð ~Tk; ~T?Þ, where,

~Tk ¼ Re Tke
�i x t

 �
; (A3)

~T? ¼ Re T?e�i x t
� �

: (A4)

The peak value (maximum in time) of Tmaxjr¼0 is therefore

Tpeak
max jr¼0 ¼ max jTkj; jT?j

� �
: (A5)

The corresponding free energy density in accordance

with Eq. (40) is

Ejr¼0¼
1

4l
~T

2

k þ2 ~T
2

?

 �
� 1

12l
� 1

18K

� �
~Tkþ2 ~T?

 �2

:

(A6)

Here, K ¼ kþ 2l=3 is the bulk modulus. As is seen

from Eqs. (13)–(16), the solution at r ¼ 0 is completely

defined by three coefficients â0, â2, and b̂2. According to

Eqs. (23)–(33), these coefficients are expressed through ele-

mentary functions. Indeed, the spherical Hankel and Bessel

functions in Eqs. (23)–(33) are expressed through the trigo-

nometric functions:33

h 1ð Þ
0 xð Þ ¼ �i

eix

x
; (A7)

h 1ð Þ
2 xð Þ ¼ �i

3

x3
� 3

x2
þ i

1

x

� �
eix; (A8)

j0 xð Þ ¼ sin x

x
; (A9)

j2 xð Þ ¼ 3

x3
� 1

x

� �
sin x� 3 cos x

x2
: (A10)

The above equalities enable the coefficients presented

by Eqs. (23)–(33) to be expressed by elementary (trigono-

metric) functions and thus easily calculated at the spherical

stone center.
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