Table 3.
The performance of seven VDA prediction methods on three datasets.
Datasets | Methods | Sensitivity | Specificity | F1 score | Accuracy | AUC |
---|---|---|---|---|---|---|
Dataset 1 | NGRHMDA | 0.578 3 | 0.556 7 | 0.061 5 | 0.557 2 | 0.645 9 |
SMiR-NBI | 0.833 1 | 0.193 6 | 0.038 5 | 0.207 9 | 0.572 3 | |
LRLSHMDA | 0.803 4 | 0.581 3 | 0.111 9 | 0.586 3 | 0.840 3 | |
VDA-KATZ | 0.697 6 | 0.668 4 | 0.151 7 | 0.669 1 | 0.880 3 | |
VDA-RWR | 0.482 4 | 0.783 1 | 0.115 3 | 0.827 8 | 0.858 2 | |
VDA-BiRW | 0.832 3 | 0.636 8 | 0.133 2 | 0.641 1 | 0.876 5 | |
VDA-RWLRLS | 0.562 6 | 0.838 0 | 0.225 9 | 0.831 9 | 0.885 8 | |
Dataset 2 | NGRHMDA | 0.454 4 | 0.356 2 | 0.021 8 | 0.358 1 | 0.301 1 |
SMiR-NBI | 0.834 9 | 0.094 2 | 0.033 6 | 0.108 1 | 0.415 6 | |
LRLSHMDA | 0.783 8 | 0.484 0 | 0.073 3 | 0.489 6 | 0.824 8 | |
VDA-KATZ | 0.551 2 | 0.757 4 | 0.080 5 | 0.753 5 | 0.829 6 | |
VDA-RWR | 0.502 2 | 0.664 3 | 0.057 4 | 0.661 3 | 0.667 5 | |
VDA-BiRW | 0.557 4 | 0.752 4 | 0.110 5 | 0.748 7 | 0.832 2 | |
VDA-RWLRLS | 0.513 3 | 0.826 4 | 0.123 2 | 0.820 5 | 0.835 5 | |
Dataset 3 | NGRHMDA | 0.358 2 | 0.408 1 | 0.011 9 | 0.407 4 | 0.255 4 |
SMiR-NBI | 0.923 0 | 0.042 7 | 0.023 0 | 0.053 6 | 0.436 5 | |
LRLSHMDA | 0.812 9 | 0.523 9 | 0.055 2 | 0.527 5 | 0.816 9 | |
VDA-KATZ | 0.711 6 | 0.566 6 | 0.062 6 | 0.568 4 | 0.847 8 | |
VDA-RWR | 0.505 3 | 0.705 7 | 0.055 6 | 0.703 2 | 0.712 3 | |
VDA-BiRW | 0.707 8 | 0.574 1 | 0.072 6 | 0.575 8 | 0.851 1 | |
VDA-RWLRLS | 0.519 8 | 0.843 8 | 0.118 9 | 0.844 6 | 0.862 5 |