Skip to main content
. 2021 Dec 7;140:105119. doi: 10.1016/j.compbiomed.2021.105119

Table 3.

The performance of seven VDA prediction methods on three datasets.

Datasets Methods Sensitivity Specificity F1 score Accuracy AUC
Dataset 1 NGRHMDA 0.578 3 0.556 7 0.061 5 0.557 2 0.645 9
SMiR-NBI 0.833 1 0.193 6 0.038 5 0.207 9 0.572 3
LRLSHMDA 0.803 4 0.581 3 0.111 9 0.586 3 0.840 3
VDA-KATZ 0.697 6 0.668 4 0.151 7 0.669 1 0.880 3
VDA-RWR 0.482 4 0.783 1 0.115 3 0.827 8 0.858 2
VDA-BiRW 0.832 3 0.636 8 0.133 2 0.641 1 0.876 5
VDA-RWLRLS 0.562 6 0.838 0 0.225 9 0.831 9 0.885 8
Dataset 2 NGRHMDA 0.454 4 0.356 2 0.021 8 0.358 1 0.301 1
SMiR-NBI 0.834 9 0.094 2 0.033 6 0.108 1 0.415 6
LRLSHMDA 0.783 8 0.484 0 0.073 3 0.489 6 0.824 8
VDA-KATZ 0.551 2 0.757 4 0.080 5 0.753 5 0.829 6
VDA-RWR 0.502 2 0.664 3 0.057 4 0.661 3 0.667 5
VDA-BiRW 0.557 4 0.752 4 0.110 5 0.748 7 0.832 2
VDA-RWLRLS 0.513 3 0.826 4 0.123 2 0.820 5 0.835 5
Dataset 3 NGRHMDA 0.358 2 0.408 1 0.011 9 0.407 4 0.255 4
SMiR-NBI 0.923 0 0.042 7 0.023 0 0.053 6 0.436 5
LRLSHMDA 0.812 9 0.523 9 0.055 2 0.527 5 0.816 9
VDA-KATZ 0.711 6 0.566 6 0.062 6 0.568 4 0.847 8
VDA-RWR 0.505 3 0.705 7 0.055 6 0.703 2 0.712 3
VDA-BiRW 0.707 8 0.574 1 0.072 6 0.575 8 0.851 1
VDA-RWLRLS 0.519 8 0.843 8 0.118 9 0.844 6 0.862 5