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)e microbiota colonized in the human body has a symbiotic relationship with human body and forms a different micro-
ecosystem, which affects human immunity, metabolism, endocrine, and other physiological processes. )e imbalance of
microbiota is usually linked to the aberrant immune responses and inflammation, which eventually promotes the occurrence and
development of respiratory diseases. Patients with chronic respiratory diseases, including asthma, COPD, bronchiectasis, and
idiopathic pulmonary fibrosis, often have alteration of the composition and function of intestinal and lung microbiota. Gut
microbiota affects respiratory immunity and barrier function through the lung-gut microbiota, resulting in altered prognosis of
chronic respiratory diseases. In turn, lung dysbiosis promotes aggravation of lung diseases and causes intestinal dysfunction
through persistent activation of lymphoid cells in the body. Recent advances in next-generation sequencing technology have
disclosed the pivotal roles of lung-gut microbiota in the pathogenesis of chronic respiratory diseases. )is review focuses on the
association between the gut-lung dysbiosis and respiratory diseases pathogenesis. In addition, potential therapeutic modalities,
such as probiotics and fecal microbiota transplantation, are also evaluated for the prevention of chronic respiratory diseases.

1. Introduction

With the development of high-throughput second-gen-
eration sequencing technology and through the analysis
and sequencing of the whole gene spectrum of microbiota,
a certain correlation between the respiratory tract and the
intestine has been gradually found [1, 2], and certain
microbiota disorders or microbial pathogens in the lungs
and intestines have been discovered to be capable of af-
fecting the occurrence, development, and prognosis of
diseases through different means, such as inflammation,
metabolism, and cell signaling [3, 4]. Clinically, lung
diseases, such as asthma, chronic obstructive pulmonary
disease (COPD), and even lung cancer, are often asso-
ciated with digestive tract diseases, resulting in prolonged
disease courses, aggravated diseases, and increased
mortality [5–8].

In these circumstances, the concept of the lung-gut axis
was put forward in modern medicine. )is theory uses the
immune system and microbial flora, which colonize in the
lung and gut, as a link hub to form a two-way axis that
connects the lungs and intestines; in other words, intestinal
flora influences the development of lung diseases, and in
turn, lung diseases, especially infectious diseases caused by
various bacteria, can also affect the digestive tract through
immunoregulation. )e lung-gut link proposed by the lung-
gut axis provides a new insight for clinical diagnosis and
treatment of the lung diseases through modulating the in-
testine system and vice versa. )is link further explains the
scientific nature of the concept of the “exterior-interior
relationship between the lung and the large intestine” in
Chinese medicine. In this study, the progress of research on
the lung-gut axis and the effects of lung and intestinal
microecology on lung diseases are reviewed and surveyed.
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2. Interaction between Lung and
Intestinal Microbiota

A large and varied number of microorganisms live in the
human body and are mainly distributed on mucosal sur-
faces, such as the oral cavity, intestinal tract, respiratory
tract, skin, and vagina, forming a highly complex micro-
ecosystem [9–11]. Moreover, the numerous and various
microorganisms in different parts of the body not only help
the human body to maintain normal physiological functions
but also play an important role in the occurrence and de-
velopment of disease.

2.1. Gut Microbiota and Respiratory Diseases. At present,
more than 1000 kinds of intestinal flora are known. )ey
mainly include Bacteroides, Firmicutes, Actinomycetes, and
Verrucomicrobia [12, 13]. Gut flora consists of approxi-
mately 38 trillion bacteria, which can encode approximately
3.3 million specific genes [14, 15]. Each microbiome is
distributed in different parts of the gastrointestinal tract in
accordance with pH gradient and oxygen content.

Intestinal flora is not only involved in the immune
development of the intestinal mucosa but also known as an
important innate immune system regulator. Research has
found that the development of the immune system is greatly
affected by gut microbes [16–18]. In the early stage of life, the
incidence of immune system diseases, asthma, and other
allergic diseases is significantly increased due to the lack of
the irritation of gut microbes [19–22]. )is incidence shows
the trend of being higher in developed countries than in
developing countries and in cities than in rural areas. )is
trend is related to the reduction in intestinal flora diversity
due to the improved hygiene and goodmedical conditions in
developed countries and cities. Epidemiological studies have
also confirmed that the use of broad-spectrum antibiotics in
infants and young children reduces the variety of gut mi-
crobes [19, 23–25]. )is effect is a contributing factor to
allergic asthma in adulthood [26–28]. )erefore, intestinal
flora, especially those in early life, have an important effect
on the development of immune system diseases and re-
spiratory diseases.

2.2. Lung Microbiota and Respiratory Diseases. Up to now,
less is known about lung microecology than about intestinal
microecology. In a healthy state, Prevotella, Streptococcus,
Veronococcus, Fusobacterium, and Haemophilus are the
dominant bacteria in the human respiratory tract and lungs
[29], but their relative abundances are remarkably less than
those in the intestine (Figure 1). It has been proven that the
lung-based microorganisms play the biologic roles primarily
through regulation of the immune system [10, 30, 31]. In the
early stage of life, lung microorganisms migrate into the
lungs from pharyngeal secretions or gastric juice mainly
through microaspiration and finally are removed through
phagocytosis by alveolar macrophages and transported by
mucociliary cilia, thereby promoting the maturation of the
immune system to achieve the balance and stability of lung
microecology. However, in the state of disease, microbial

homeostasis in the lungs is disturbed due to the following:
(1) changes in the respiratory tract environment caused by
chronic inflammation are conducive to the growth and
reproduction of certain flora (Figure 2). It is now clear that
the number of Pseudomonas aeruginosa, Staphylococcus, and
Burkholderia is significantly increased in the respiratory
tracts of patients with cystic fibrosis. In patients with COPD,
the number of Moraxella and Haemophilus bacteria in the
lungs is increased [32, 33]. )e bacteria from the genera
Fusobacterium, Lachnospira, Veillonella, and Rothia are
more common in asthmatic patients than in healthy [29].
)e supplementation of these genera in nude mice can
reduce the number of pulmonary eosinophils, reduce the
immune response of )1/)2 or )17 [34–36], and alleviate
the symptoms of those abovementioned respiratory diseases
[37–39]. Notably, Haemophilus influenzae, Moraxella
catarrhalis, Streptococcus pneumoniae, and Klebsiella
pneumoniae were found to be the most common bacterial
species in patients with severe respiratory diseases, which
were also considered to be the potential pathogenic factors
[40–42]. (2) )e pulmonary epithelial barrier dysfunction
impacts the removal mechanism for lung microorganisms
(e.g., damaged mucosa cilia) or promotes the migration of
microorganisms to the lungs (e.g., secondary infections).
Although the mechanism of action through which lung flora
influence the development of disease is not clear, it can be
used as a potential target for the diagnosis and treatment of
diseases and provide a new basis for reasonable disease
classification and thus has a good clinical application value.

2.3. Mucosal Immunity Bridges the Lung-Gut Axis. From the
perspective of embryonic development, the lungs, trachea,
and large intestines are homologous, in which the alveolar,
glandular, and mucosal epithelia all develop from the en-
doderm of the archenteron. )e mucosal structure of the
respiratory tract and gastrointestinal tract is not only an
important site for the survival of microflora but also protects
the body from pathogen invasion through the mucosal
immune system [43, 44].)e physiological conditions on the
surface of the mucosa, such as temperature, humidity, and
pH, as well as secretions, can affect the growth andmigration
of microorganisms. In addition, immunoglobulin sIgA,
which is secreted by the mucosa, has a selective effect on
microorganisms on the surfaces of the mucosa. For example,
some pathogens are removed by binding to sIgA, whereas
some nonpathogenic and beneficial bacteria can be retained
on the mucosal surface by binding to sIgA. Moreover, the
body’s own congenital immunity and adaptive immunity
also play a regulatory role in microecology. )e immune
system can use inherent immune cells or epithelial cells to
identify the presence of microbes and release antimicrobial
peptides (such as α-defensins) and inflammatory factors to
further activate lymphocytes to produce an immune re-
sponse. In addition to endogenous factors, such as mucosal
properties and the immune system, exogenous factors, such
as diet structure, glucocorticoids, antibiotics, lifestyle, and
environment, can affect the composition and function of
bacteria in the lung and gut microbiota [45–47].
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3. The Lung-Gut Microbiome Crosstalk

)e intestines and lungs interact with and restrict each other
through microorganisms, immune functions, and metabo-
lites, thus achieving two-way regulation (Figure 3).

3.1. Direct Interaction between Lung and Gut Microbiome.
)e microorganisms that have colonized the mucosa of the
respiratory and digestive tracts can have a regulatory effect
on tissues and are the material basis for lung-gut connec-
tions. For example, gavage with a suspension of feces from

Probiotics Pathogenic bacteria

Figure 2: Sankey diagram of gut-lung microbiota composition at genus or species level during the development of various respiratory
diseases.
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Figure 1: )e profiles of lung microbiota in the lung tissues of healthy people and the patients with various chronic pulmonary diseases.
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healthy mice can alleviate the symptoms of pneumonia in
mice infected with Streptococcus pneumoniae under anti-
biotic treatment [48, 49]. In children, oral administration of
Lactobacillus and Bifidobacterium can help relieve asthma
symptoms and reduce the frequency of seizures [50]. )ese
results have shown that changes in gut microbes can cause
changes in lung immunity and lung diseases. Conversely,
S. pneumoniae and Haemophilus flu in the lungs activate the
MAPK pathways of intestinal tissue cells and enhance the
inflammatory response [51–53]. In addition, gut microbes
can be transferred to the lungs [54]. For example, the de-
terioration of sepsis and acute respiratory distress syndrome
has been clinically found to be promoted when the integrity
of the intestinal mucosa is destroyed, causing the intestinal
flora to transfer into blood and even the lungs [55, 56].

3.2. Immunomodulation of Lung and Gut Microbiome.
Studies have shown that certain lung and intestinal flora can
affect the body’s immune system. For example, segmented
filamentous bacteria in the gut can stimulate the body to
produce)17 immune cells, thus reducing the infection rate
and mortality rate of S. pneumoniae [57, 58]. In mice, gut
inoculation with Lactobacillus johnsonii can significantly
reduce the inflammatory response of )2 in the lungs [59].
In addition, when intestinal or lung flora disorders occur in
the body, immune cells, such as ILC2s, can migrate through
blood in the lungs and intestines, releasing excessive in-
flammatory media and thus affecting the microecological
environment of the lungs and the type and intensity of the
immune response.

3.3. Gut Microbiota Metabolites and Respiratory Diseases.
Certain components or metabolites of gut microbiota, such as
short chain fatty acids (SCFAs) [60, 61], lipopolysaccharide

(LPS), and peptide peptidoglycans, also play an important role
in the body when it is in a diseased or healthy state [17, 62, 63].
Studies on SCFA functions are the most detailed. SCFAs in
the intestinal lumen provide energy to colon cells and regulate
immune response in the intestine to maintain the stability of
the intestinal microecology. In addition, SCFAs can activate
downstream effect molecules (e.g., MAPK, PI3K, and NLRP3)
by binding to G protein-coupled receptors (e.g., GRP43,
FFA2, and HCA2) on cell membranes, thus changing den-
dritic cells (DCs) and auxiliary T cells [64], which can also
enter the cell via the transporters SLC5A8 or SLC16A1
[65, 66], inhibit the activity of histone deacetylase, and in-
crease the number of Ly6c− monocytes in the bone marrow
and lungs, thereby reducing the production of neutrophils
and improving allergic inflammation in the lungs. In addition
to SCFAs, metabolites produced by intestinal flora, such as
desaminotyrosine, indole derivatives, niacin, polyamine,
urolithin A, pyruvate, and lactic acid, have anti-inflammatory
and antiinfection activities. For example, indoles and indoles’
derivatives can inhibit central nervous system inflammation
by activating aryl hydrocarbon receptor signaling in astro-
cytes and regulate intestinal ecosystem function, thus playing
anti-inflammatory and antioxidant roles [67, 68].

4. Probiotics and Fecal Microbiota
Transplantation for Treatment of
Respiratory Diseases

Given that intestinal flora play an important role in the
human body, attempts have been made to treat diseases with
complementary probiotics (mainly composed of Bifido-
bacteria and Lactobacilli) [23–25] or fecal microbiota
transplantation [48, 49].

It was reported previously that 6 h after FMT, the pul-
monary bacterial counts as well as TNF-α and IL-10 levels
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Figure 3: )e role of lung and gut microbiota in the pathology of respiratory diseases.
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were remarkably normalized in microbiota-depleted mice,
indicating the protection of gut microbiota against pneu-
mococcal pneumonia [18]. Similarly, FMT downregulated
the activity of the TLR4/NF-kB signaling pathway and re-
lieved oxidative stress in animals with acute lung injury by
restoring the gut microecology [69]. )ey can not only treat
all kinds of intestinal diseases caused by intestinal flora
disorders but also have a positive effect on the prevention
and treatment of infectious diseases. In particular, the
clinical treatment guidelines made by the United States,
China, and other countries for the prevention of COVID-19
pneumonia have clearly proposed that intestinal micro-
ecological regulators can be used to maintain intestinal
microbiota hemostasis and prevent secondary lung infection
[70, 71]. However, a certain risk for pathogenic bacterial
contamination, which can increase the occurrence of im-
mune-related adverse events, may exist regardless of the use
of flora regulation agents or flora transplantation. )erefore,
in clinical practice, we should pay attention to the safety and
quality control of microflora regulation agents or flora
transplantation and prevent and reduce the occurrence of
adverse events as much as possible while enhancing efficacy.

5. The Immunomodulation of Traditional
Chinese Medicine on Lung Dysbiosis

)e theory of the exterior-interior relationship between the
lung and large intestine is an important part of the Tibetan
elephant theory in traditional Chinese medicine. As early as
3000 years ago, the classic Huangdi Neijing of traditional
Chinese medicine recorded the physiological and patho-
logical relationship between the lungs and the large intestine
in detail. Xuanbai Chengqi decoction, Gegen Qinlian de-
coction, and other tonic Chinese medicines, such as Ginseng
Radix et Rhizoma, Gardeniae Fructus Praeparatus, Angel-
icae Sinensis Radix, and Astragali Radix, can improve LPS-
induced acute lung tissue damage and pathological colon
tissue damage by adjusting the lung-gut mucosal immune
function and are thus candidate drugs in innovative drug
development based on the concept of treating the lung and
intestine together [72–74].

However, the current research on the mechanism of
traditional Chinese medicine has mainly focused on the
changes in the expression levels of secreted IgA and cyto-
kines and the number of immune cells, such as
T lymphocytes. In-depth studies on airway/intestinal mucus
secretion, changes in immune cell function in mucosal
systems, and changes in the local microecological compo-
nents of the lung-gut axis are lacking.

6. Future Challenges and Prospects

With the further development of microbiome research,
people have increasingly realized the important role of lung
and gut microecology in the body, and the mechanism
behind the lung-gut axis has been gradually uncovered in
many clinical phenomena and experimental data. However,
due to the differences in the sources of clinical trial samples,
the consistency and repeatability of the results are poor.

Given the lack of longitudinal or intrusive research on the
microbiome, the study of the specific mechanisms and
pathways of the gut-lung axis remains difficult, and oral
probiotic administration, flora transplantation, or antibiotic
prevention and treatment still need further verification. In
the future, with the updating of sample-handling methods,
advances in biotechnology, and increased interpretation of
sequencing results, this area could lead to revolutionary
advances in the prevention and treatment of lung diseases
and provide new ideas and therapeutic targets for the clinical
treatment of related diseases.
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