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Abstract

Natural populations often show enhanced genetic drift consistent with a strong skew in their offspring number distribution. The skew arises
because the variability of family sizes is either inherently strong or amplified by population expansions. The resulting allele-frequency fluc-
tuations are large and, therefore, challenge standard models of population genetics, which assume sufficiently narrow offspring distribu-
tions. While the neutral dynamics backward in time can be readily analyzed using coalescent approaches, we still know little about the ef-
fect of broad offspring distributions on the forward-in-time dynamics, especially with selection. Here, we employ an asymptotic analysis
combined with a scaling hypothesis to demonstrate that over-dispersed frequency trajectories emerge from the competition of conven-
tional forces, such as selection or mutations, with an emerging time-dependent sampling bias against the minor allele. The sampling bias
arises from the characteristic time-dependence of the largest sampled family size within each allelic type. Using this insight, we establish
simple scaling relations for allele-frequency fluctuations, fixation probabilities, extinction times, and the site frequency spectra that arise
when offspring numbers are distributed according to a power law.

Keywords: natural selection; site-frequency spectrum; fixation probability; stationary distribution; traveling waves; K-coalescent; jackpot
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Interpreting The Genetic Differences between and within popula-
tions we observe today requires a robust understanding of how
allele frequencies change over time. Most theoretical and statisti-
cal advancements have been based on the Wright–Fisher model
(Fisher 1930; Wright 1931), which has shaped the intuition of gen-
erations of population geneticists for how evolutionary dynamics
works (Crow and Kimura 1970). The Wright–Fisher model
assumes that the genetic makeup of a generation results from
resampling the gene pool of the previous generation, whereby
biases are introduced to account for most relevant evolutionary
forces, such as selection, migration, or variable population sizes.
For large populations, the resulting dynamics can be approxi-
mated by a biased diffusion process, which simplifies the statisti-
cal modeling of the genetic diversity. More importantly, the
Wright–Fisher diffusion is the limiting allele frequency process of
a wide variety of microscopic models, as long as they satisfy
seemingly mild assumptions (see below). This flexibility has
made the Wright–Fisher diffusion the standard model of choice
to infer the demographic history of a species, loci of selection, or
the strength of polygenic selection (Bollback et al. 2008; Berg and
Coop 2014; Feder et al. 2014; Foll et al. 2015; Schraiber et al. 2016;
Tataru et al. 2017).

Despite its versatility, the Wright–Fisher diffusion can be a
poor approximation when the population dynamics is driven by

rare but strong number fluctuations. It is increasingly recognized
that number fluctuations can be inflated for very different rea-
sons. First, the considered species may have a broad offspring
distribution, which occurs for marine species and plants with a
Type III survivorship curve (Hedgecock 1994; Eldon and Wakeley
2006) as well as viruses and fungi [reviewed in Tellier and
Lemaire (2014)]. Broad offspring distributions also arise in infec-
tious disease, when relatively few super-spreaders are responsi-
ble for the majority of the disease transmissions (Lloyd-Smith
et al. 2005). In the recent SARS-CoV-2 pandemic, for example, a
strongly skewed offspring distributions were consistently inferred
from both contact tracing data and infection cluster size distribu-
tions (Adam et al. 2020; Laxminarayan et al. 2020). Understanding
allele frequency trajectories in these systems is extremely chal-
lenging, as statistical inference based on the Wright–Fisher
model is often misleading (see, e.g., Sackman et al. 2019).

A second mechanism for strong number fluctuations are so-
called jackpot events, which can occur in any species no matter
the actual offspring distribution. Jackpot events are population
bottlenecks that arise when the earliest, the most fit or the most
advanced individuals have an unusual large number of descend-
ants. Temporal jackpot events (“earliest”) were first discovered by
Luria and Delbrück (1943) and studied as a signal of spontaneous
mutations in an expanding population. They observed that a
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phage resistant mutant clone can grow exceptionally large if the
resistance mutation by chance occurs early in an expansion
event. Despite being rare, these jackpot events are easily detect-
able in large populations because they strongly inflate the vari-
ance of the expected number of mutants and lead to power-law
descendant distributions.

The very same descendant distribution arises in models of
rampant adaptation and background selection. In these models,
mutations generate jackpot events when they arise within the
few fittest individuals (Neher and Hallatschek 2013). Jackpot
events also arise in range expansions, where the most advanced
individuals in the front of the population have a good chance to
leave many descendants over the next few generations. This phe-
nomenon of gene surfing can produce a wide range of scale-free
descendant distributions (Hallatschek and Nelson 2008; Fusco
et al. 2016; Birzu et al. 2018, 2021).

To account for skewed offspring distributions, a number of
theoretical studies have been conducted in the context of the co-
alescent framework. Based on this backward-in-time, a striking
feature of broad offspring distributions is the simultaneous merg-
ing of multiple lineages. One of the most widely studied models is
the beta-coalescent (Schweinsberg 2003a), which is a subclass of
the K-coalescent and corresponds to the population dynamics
with a power-law offspring number distribution / u�1þa. The
case a¼ 1, called Bolthausen–Sznitman coalescent (Bolthausen
and Sznitman 1998), has been shown to be the limiting coales-
cent in models of so-called “pulled” traveling waves, which de-
scribe the most basic scenarios of range expansions (Brunet et al.
2007) and of rampant adaptation (Desai et al. 2013; Kosheleva and
Desai 2013; Neher and Hallatschek 2013; Schweinsberg 2017).
Moreover, so-called “semi-pushed” traveling waves that contain
some level of co-operativity, induced e.g. by an Allee effect, gener-
ate power-law offspring distributions with 1 < a < 2 (Birzu et al.
2018), indicating that their coalescent is intermediate between
the Bolthausen–Sznitman and Kingman coalescents.

The tractability of coalescent approaches make it particularly
useful for inferring demographic histories and detecting outlier
behaviors (Basdevant and Goldschmidt 2008; Eldon 2009 2011).
However, as it is notoriously difficult to integrate selection in coa-
lescent frameworks, there is also a strong need for forward-in-
time approaches that capture the competition between genetic
drift and selection. While for a � 2, the limiting allele frequency
dynamics is given by the well-understood Wright–Fisher process,
much less is known for the case a < 2. This is unfortunate be-
cause, as mentioned above, any exponent 1 � a � 2 can arise
dynamically.

Recently, the forward-dynamics of the special case a¼ 1 was
studied by one of the authors (Hallatschek 2018), finding that an
emergent sampling bias generates strong deviations from the
Wright–Fisher dynamics. The sampling bias arises because, in
each generation, an allele with high frequency can sample more
often and, hence, deeper into the tail of the offspring distribution
than an allele with small frequency. The major allele of a biallelic
site, therefore, has with high probability a greater number of off-
spring per individual than the minority type. This sampling bias
acts like a selective advantage of the major allele, but its average
effect is compensated by rare frequency hikes of the minor allele
so that the expected change in frequency only changes in the
presence of genuine selection.

Here, we focus on the understudied case 1 < a < 2 intermedi-
ate between the known cases of a � 2, corresponding to the
Wright–Fisher diffusion, and a¼ 1 described by jumps and

sampling bias but vanishing diffusion. Similarly to the a¼ 1 bor-
derline case, we find that a minor-allele-suppressing sampling
bias arises but that it is fading over time as the offspring distribu-
tions are sampled more and more thoroughly. This time-
dependent sampling bias determines the scaling of the fixation
probability, extinction time, stationary distribution, and site fre-
quency spectrum (SFS). The combination of jumps and bias gen-
erates a so-called Levy-flight which controls the variability of
allele frequency trajectories, for instance between unlinked genes
or between populations. The flexibility of our model should en-
able to fit wide range cases that deviate from the Wright–Fisher
diffusion.

Model and methods
Model
To study the impact of broad offspring numbers, we consider an
idealized, panmictic, haploid population of constant size N that
produces non-overlapping generations in the following way. First,
we associate with each individual i a “reproductive value” (Fisher
1930; Barton and Etheridge 2011) Ui, which represents its expected
contribution to the population of the next generation. The ran-
dom numbers Ui are drawn from a specified distribution PU. In a
second step, we sample each individual in proportion to its repro-
ductive value until we have obtained N new individuals repre-
senting the next generation.

Our model belongs to the general class of Cannings models
(Cannings 1974). The Wright–Fisher model is obtained if we
choose PU to be a Dirac delta function, such that all individuals
have the same reproductive value.

We focus most of our analysis on the dynamics of two mutu-
ally exclusive alleles, a wild type and a mutant allele. The dy-
namics of the two alleles is captured by the time-dependent
frequency X(t) (0 � X � 1) of mutants. The wild type frequency
is given by 1� XðtÞ. The total reproductive values M and W of the
mutant population and the wild type population, respectively,
are given by

M �
XNX

i¼1

UðMÞi ; W �
XNð1�XÞ

i¼1

UðWÞi : (1)

Here, UðMÞi and UðWÞi are the individual reproductive values of
mutants and wild types and sampled from the distribution PU.
The population at the next generation is generated by binomially
sampling N individuals with success probability (namely, the
probability that the parent of a randomly chosen individual is a
mutant) M

MþW. Mutations and selection are included as in the
Wright–Fisher model. If the fitness of the mutant relative to the
wild-type is 1þ s, where s is the selection coefficient, and the for-
ward- and back- mutation rates are l1 and l2, respectively, then
the success probability is given by ð1�l2Þð1þsÞMþl1W

ð1þsÞMþW .
For the offspring distribution PU, we consider a family of fat-

tailed distributions, which asymptotically behave as PU � 1
uaþ1

with a being a positive constant. To make our presentation con-
crete, we choose PUðuÞ ¼ a=uaþ1ðu � 1Þ, which is known as the
Pareto distribution. In the large population size limit, the neutral
allele-frequency dynamics is known to only depend on the as-
ymptotic power law exponent a provided we measure time in
units of the coalescence time (Schweinsberg 2003b). For different
but closely related modeling of broad offspring distributions, see
Bah and Pardoux (2015).
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Methods
Our goal is to understand the asymptotic dynamics of our model
for large N, where the frequency becomes continuous over time
(Kimura 1955; Gardiner 2009) provided that a � 1 (Schweinsberg
2003b). We first present simulation results regarding relevant
measures in the population genetics. Later, we provide a heuristic
argument to explain them. Many separate observations (the fixa-
tion probability, extinction time, allele frequency fluctuations,
stationary distribution, and SFS) can be matched up with a unify-
ing scaling picture.

Below, t and s ¼ t=Tc denote a time in units of generations and
one normalized by the characteristic (coalescent) timescale Tc, re-
spectively. Tc depends on the population size and the exponent a

as follows: Tc ¼ N when a > 2; Tc ¼ N= log N when a¼ 2, Tc ¼ Na�1

when 1 < a < 2, and by Tc ¼ log N when a¼ 1. These timescales
were originally derived in the coalescent framework
(Schweinsberg 2003b). Later, we explain how they can be ratio-
nalized within the forward-in-time approach.

To understand the frequency dynamics when 1 � a < 2, it is
essential to distinguish between average and typical trajectories.
As a proxy for typical trajectories, we use the median of the fre-
quencies, denoted by XmedðsÞ, throughout this paper.

Results
Neutral dynamics: typical trajectories and
extinction time
First, we characterize the allele frequency dynamics in the ab-
sence of selection s¼ 0. In this neutral limit, the expected value
of the allele frequency does not change over time, i.e.,
hXðtÞi ¼ Xð0Þ. Yet, despite the overall neutrality, a typical trajec-
tory experiences a bias against the minority allele. This can be
seen in Figure 1, where the mean and median are plotted across
many realizations that start from the same frequency
Xð0Þ ¼ 0:01. While the mean does not change over time, as re-
quired from neutrality, the median decays to zero in an a-depen-
dent manner. By symmetry, the median increases toward
fixation if the starting frequency is larger than 50%. Thus, the
median experiences a bias against the minor allele. Note also
that, when 1 < a < 2, the velocity of the median approaching
extinction decreases as it approaches the extinction boundary
(see the red curve in Figure 1). As we will show later, an uptick of
the SFS at the boundaries originates from this slowing.

Numerical simulations of the early part of trajectories show
that time-dependent median displacement follows a simple
power law,

DXmed � XmedðsÞ � Xð0Þ � �s
1
a; (2)

up to an X(0)-dependent prefactor. Figure 2 shows the numerical
result for a ¼ 1:5. The red curve represents the median of trajec-
tories, which agrees well with DXmed � �s

2
3.

Next we quantify the time to extinction, which turns out to be
driven by the above minor-allele suppressing bias. Numerical
results of the mean extinction time are consistent with

sext � Xð0Þa�1; (3)

as shown in Figure 3. Hence, in units of the coalescence time, the
mean extinction time sext becomes larger as a decreases (namely,
for a broader offspring distribution). Note, however, that if one
measures time in units of generations, Equation 3 can be rewrit-
ten as text ¼ sextTc � ðNXð0ÞÞa�1, which becomes smaller as a

decreases since NXð0Þ � 1. As we show later, Equation 2 can be
analytically derived from a short-time approximation of the dy-
namics (Equation 25). Equation 3 can be explained from an effec-
tive sampling bias (Equation 35).

Allele frequency fluctuations as a signature of
broad offspring distributions
Next, we explore to what extent the spectrum of allele frequency
fluctuations can provide a clue for identifying the exponent a of
the offspring distribution. A deviation from the Wright–Fisher dif-
fusion is most clearly revealed by measuring the median square
displacement [median standard deviation (SD)],

Figure 1 The mean (blue dashed curve) and median (red solid curve) of allele frequency trajectories for a ¼ 0:8; 1; 1:5; 2; and 2.5. For each a, 104

trajectories are generated with the initial frequency x0 ¼ 0:01. For ease of viewing, only 50 trajectories are shown in gray in each panel. The time t in
units of generations and the one s ¼ t

Tc
re-scaled by the coalescent timescale Tc are shown in the horizontal axes. The dependence of the coalescent time

on the population size N is written below each panel. The population size is N ¼ 105.

Figure 2 Trajectories of the median (red thick line) and the mean (blue
dashed) of allele frequency when a ¼ 1:5 and N ¼ 108. Inset: The
trajectory (red points) of jDXmedj ¼ Xð0Þ � XmedðsÞ is shown in log–log
plot. The median agrees well with the expectation from the scaling
argument DXmed � �s

1
a (black solid line).
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Median SD � M½ðXðtÞ � Xðt ¼ 0ÞÞ2�; (4)

where M½�� denotes taking the median (e.g., M½XðtÞ� ¼ XmedðtÞ). To
measure the median SD, we simulate 1000 neutral allele fre-
quency trajectories with initial condition Xð0Þ ¼ 0:5, for a ¼ 1; 1:5
and the Wright–Fisher model (Figure 4A). As shown in Figure 4B,
the median SD computed from this data set is consistent with
the scaling,

Median SD � t
2
a; (5)

when t=Tc 	 1. Noting 1 � a < 2, this scaling means that typical
fluctuations characterized by the median SD exhibit super-
diffusion. Later, we derive the superdiffusive exponent 2

a in
Equation 5 analytically (Equation 32).

Usually, allele frequency fluctuations are quantified by

using the mean SD � hðXðtÞ � Xð0ÞÞ2i, rather than the median

SD. For the Wright–Fisher diffusion, the distinction between

these two measures is irrelevant since both of them increase

linearly with time, except with differing prefactors. However,

for 1 � a < 2, the a-dependence in Equation 5 can be detected

by measuring the median SD. As shown in Figure 4C, the

mean SD (computed from a large data set) grows linearly in

time even when a is less than 2, as if the underlying process was

diffusive.
That the dynamics is not diffusive also impacts the mean SD,

but somewhat subtly in that its value depends on the size of the

data set (i.e., the number of frequency trajectories) used to mea-

sure it. This is because while rare large jumps contribute the

mean SD in a large data set, these jumps are not observed in a

small data set (with high probability). To demonstrate this data-

size dependence, we prepare an ensemble of data sets, where

each data set consists of a given number of allele-frequency tra-

jectories. Then, for each data set, we measure the diffusion expo-

nent j, which is defined by

Figure 4 (A) Fluctuations of neutral allele frequencies when a ¼ 1:5 and N ¼ 105. For Xð0Þ ¼ 0:5, the median XmedðtÞ (red) is constant as well as the mean
hXðtÞi (blue). (B) The median square displacement computed from a data set of 1000 trajectories. For a ¼ 1; 1:5 and the Wright–Fisher model,
N ¼ 108; 104; and 103 are used respectively. The straight lines represent the scaling in Equation 5. For a¼ 1, the fitting after t � 5 is not perfect, since
t=Tc ¼ t=lnN	 1 is not satisfied. (C) The mean square displacement (mean SD) for different values of a. Solid lines represent linear scaling, which is
expected for a regular diffusion process. (D) Data-size dependence of the estimated diffusion exponent jestimated for the mean SD (blue circle) and that
for the median SD (orange triangle). See the main text for the detailed explanation. The horizontal lines show j ¼ 2

a and j¼ 1. The bars represent the
standard deviations of jestimated, a ¼ 1:3, and N ¼ 108 are used.

Figure 3 The mean extinction time text (in units of generations) as a
function of initial allele frequency X(0) is plotted for a ¼ 1:4; 1:5; 1:6. Each
of the straight lines has the slope a� 1. The initial-frequency
dependence of text can be fitted well by Equation 3. The population size is
N ¼ 108.
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Mean SD / tj: (6)

In Figure 4D, the ensemble-averaged exponent is shown by
the blue circle. We can see that, as the data size increases, fluctu-
ations characterized by the mean SD exhibit a crossover from
super-diffusion (j ¼ 2

a) to normal diffusion (j¼ 1). For the median
SD, by contrast, we find that its diffusion exponent j can be com-
puted reliably without any significant dependence on the size of
the data set (orange triangles in Figure 4D). For example, under
the parameter setting in Figure 4D, given a date set of 320 trajec-
tories, the diffusion exponent jestimated of the median SD falls
within the interval ½1:45; 1:57� with probability �68%. This in turn
predicts aestimated :¼ jestimated

2 
 1:3260:05, which is close to the ac-
tual value a ¼ 1:3.

Fixation probability
Next, we examine the effect of natural selection on the fixation
probability of beneficial mutations. We consider a mutant with
positive selective advantage s> 0 arising in a monoclonal popula-
tion. The fixation probability PfixðsÞ of a single mutant depends
on the parameter a of the offspring distribution. In the Wright–
Fisher model (or equivalently, a � 2), the fixation probability can
be obtained using a diffusion approximation and is given by
PfixðsÞ ¼ 1�e�2s

1�e�2Ns, which becomes Pfix 
 2s when Ns� 1 and s is
small. When a¼ 1, an analytic result has been recently obtained
in (Hallatschek 2018), which can be approximated as PfixðsÞ � 1

N1�s.
For the intermediate case, 1 < a < 2, we find that the fixation
probability is given by

PfixðsÞ � s
1

a�1: (7)

See Figure 5 for the numerical results. Note that since PfixðsÞ ! 1
N

in the neutral limit independently of a, these results hold for suf-
ficiently strong selection, 1	 Ns

1
a�1. Equation 7 can be deduced

from the balance between the selection force and an emergent
sampling bias (Equation 38 and Figure 13A).

As Equation 7 shows, for a fixed population size and selective
advantage, the fixation probability becomes smaller as a

decreases. Intuitively, this is because, for smaller a, the success
of fixation in catching a ride on a jackpot event depends more
strongly on luck than on fitness differences.

Site frequency spectrum
We return to the neutral case and present the scaling behaviors
of the neutral SFS. The SFS is often used as a convenient sum-
mary of the genetic diversity within a population. Theoretically,

the SFS is defined in the infinite alleles model (Kimura 1969) as
the density fSFSðxÞ of neutral derived alleles in the population
(namely, fSFSðxÞdx is the number of derived alleles in the fre-
quency window ½x� dx

2 ; xþ dx
2 �).

Figure 6 shows numerical plots of the neutral SFS for
a ¼ 1; 1:5, and the Wright–Fisher model. In the standard Wright–
Fisher model, the SFS is proportional to 1=x, which decreases
monotonically as x increases. By contrast, when offspring
numbers are broadly distributed (when a < 2), the SFS is non-
monotonic with a somewhat surprising uptick toward the fixa-
tion boundary. When a¼ 1, the analytic understandings of
asymptotic behaviors near both boundaries are well-established:
fSFSðxÞ is proportional to 1

ðx log xÞ2 near x � 0 and � 1
ð1�xÞ logð1�xÞ near

x � 1, respectively (Kosheleva and Desai 2013; Neher and
Hallatschek 2013) (see also Appendix A).

For the intermediate case 1 < a < 2, the rare-end behavior
of the SFS has been analytically studied. From a backward ap-
proach (the K-coalescent), the authors in Berestycki et al. (2014)
showed

lim
n!1

fðnÞi

n2�a
/ Cðiþ a� 2Þ

i!
: (8)

Here, n is a sample size and fðnÞi is the number of sites at which
variants appear i times in the sample (see Berestycki et al. 2014)
for the proportionality constant of the right-hand side of
Equation 8). By using Stirling’s approximation in Equation 8, we
have

fSFSðxÞ /
1

x3�a
when x	 1: (9)

Equation 8, cannot be used for high-frequency variants, be-
cause the number of times the variants appear (i in Equation 8) is
kept finite in taking the limit of the sample size n. To the best of
our knowledge, a precise behavior at the high-frequency end for
1 < a < 2 has not been reported. As shown in Figure 7, we find
that the asymptotic form of the uptick of fSFSðxÞ is given by

fSFSðxÞ /
1

ð1� xÞ2�a ðfor 1� x	 1Þ: (10)

We will show that the uptick arises due to the fact that an ef-
fective sampling bias decreases as an allele-frequency trajectory
approaches the fixation boundary (Equation 42).

Figure 5 The fixation probability Pfix as a function of selective advantage
s. The lines are the expectations from the scaling argument in Equation
40. The population size is N ¼ 108.

Figure 6 The neutral site frequency spectrum for different values of a
and fixed population size N ¼ 105. When 1 < a < 2, the rare-end
spectrum and the frequent-end spectrum are / 1

x3�a and / 1
ð1�xÞ2�a,

respectively (see also Figure 7).
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Mutation-drift balance
A broad offspring distribution also affects the stationary distribu-
tion of allele frequency when mutations and genetic drift are bal-
ancing one another. For simplicity, we consider symmetric
reversible mutations between two neutral allele types. We denote
the scaled mutation rate (per unit time in the continuous descrip-
tion) as h ¼ Tcl, where l denotes the mutation rate per genera-
tion. In the Wright–Fisher model, it is known that the stationary
distribution is given by Kimura (1955)

PWFðxÞ / x2h�1ð1� xÞ2h�1: (11)

There is a critical value hWF
c ¼ 1

2: When h > hWF
c , the distribution in

Equation 11 has a single peak at the center x ¼ 1
2; when h < hWF

c ,
it has a U-shaped distribution, where the density is increasing
monotonically from the center to the boundaries.

Figure 8, A and B show the numerical results of the stationary
distributions for the Wright–Fisher model and a ¼ 1:5, respec-
tively. When 1 � a < 2, while a critical value of the mutation
rate hc exists as in the Wright–Fisher model, there is a qualita-
tively different feature: For a small mutation rate h < hc, the sta-
tionary distribution is not a U-shaped but an M-shaped
distribution with two peaks near the boundaries. Note that the
M-shaped distribution indicates a stochastic switching behavior,
as illustrated in Figure 8D (the blue curve). As shown in
Figure 8D, the peak positions are approximately given up to pre-
factors by

xpeak; 1� xpeak 
 h
1

2�a: (12)

In Appendix B, we show that the M-shaped stationary distribu-
tion persists even in the presence of natural selection, provided
that selection is weaker than the sampling bias at the peaks of
the distribution.

A similar M-shaped distribution was observed for the EW pro-
cess in (Der and Plotkin 2014), wherein moments of the stationary
distribution were extensively studied. However, the origin of the
M-shaped distribution remained unclear. Below, using scaling
arguments, we explain why the bimodal distribution arises in our
case (see the argument above Equation 44).

Analytical arguments
Limiting process, transition density, and
time-dependent effective bias
We now provide analytical arguments for the observations made
in the simulations described in the first part of this paper. Our
discussion starts with an exact but somewhat unwieldy descrip-
tion of the allele frequency dynamics. We then show how exact
short-time and intermediate time asymptotics can be derived
and used to rationalize the sampling bias and the scaling laws
discovered above.

The allele frequency dynamics can be fully characterized by
the transition probability density wNðyjxÞ that the mutant fre-
quency changes from x to y in one generation. Since one genera-
tion consists of random offspring contributions to the seed pool
and binomial sampling from the seed pool, we have

wNðyjxÞ ¼
Ð

dM
Ð

dW PMUTðM; xNÞPWTðW; ð1� xÞNÞ

�Prbinom: yN;N;
M

MþW

� �
:

(13)

Here, PMUTðM; xNÞ is the probability density that the sum of xN
random mutant offspring numbers takes the value M,
PWTðW; ð1� xÞNÞ is that for the wild type, and Prbinom: is the proba-
bility of getting yN successes in N trials with success probability

M
MþW. First, we will focus on the neutral case, for which PMUT and
PWT are the same function, i.e., PMUTð�Þ ¼ PWTð�Þ.

While the resampling distribution wN may in general behave
in complex ways, it has few options in the large N limit. These
constraints emerge from two asymptotic simplifications. First,
since M and W are the sums of many random variables, PMUT and
PWT tend to stable distributions as described by the generalized
central limit theorem (Gnedenko and Kolmogorov 1968; Uchaikin
and Zolotarev 2011) (see also Appendix C for a brief description of
the theorem). Second, the fluctuations associated with binomial
sampling become negligible compared with those induced by off-
spring number contributions to the seed pool, provided that the
offspring distribution is sufficiently broad, i.e., a � 2. Thus, we
can replace Prbinom:ðyN;N; M

MþW Þ with a Dirac delta function,
dðy� M

MþW Þ. By using these facts and evaluating the integral in
Equation 13 (see Appendix D for details), we obtain a simple ana-
lytical expression of wNðyjxÞ, which is valid in the large N limit:
When a¼ 1 (Hallatschek 2018),

wNðyjxÞ ¼
1

log N
xð1� xÞ
ðx� yÞ2

: (14)

When 1 < a < 2,

wNðyjxÞ ¼
N1�aCaxð1� xÞ ð1� yÞa�1

ðy� xÞaþ1 when x < y

N1�aCaxð1� xÞ ya�1

ðx� yÞaþ1 when x > y;

8>>>><
>>>>:

(15)

where Ca � a a�1
a

� �a
.

To obtain the continuum description, we must appropriately
scale the time t with the population size N (Gardiner 2009). The
characteristic timescale (coalescent timescale) Tc can be read
from the dependence of the transition density on N. Hallatschek
(2018) showed that, when a¼ 1, the resulting limiting process is
described by,

Figure 7 The SFS near x¼ 1 for a ¼ 1:3; 1:4; 1:5; 1:6 (circle, squares). The
horizontal axis is 1� x. The solid lines are drawn assuming
fSFSðxÞ / 1

ð1�xÞ2�a. N ¼ 106 is used.
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o

os
Pðx; sÞ ¼ � o

ox
VðxÞPðx; sÞ

þ
Ð

dx0ðwðxjx0ÞPðx0; sÞ �wðx0jxÞPðx; sÞÞ; (16)

where the jump kernel wðx0jxÞ is given by

wðx0jxÞ ¼ xð1� xÞ
ðx� x0Þ2

; (17)

and the advection (bias) term V(x) is given by

VðxÞ ¼ �P:V:
ð

dx0ðx0 � xÞwðx0jxÞ ¼ xð1� xÞ log
x

1� x0
(18)

where P.V. denotes the Cauchy principal value. It is easy to check
that Equation 16 satisfies the neutrality condition o

os hXi ¼ 0 (see
Hallatschek 2018 for the calculation). Equations of the form in
Equation (14) are sometime called differential Chapman–
Kolmogorov equations (Gardiner 2009).

To develop intuition, it is useful to interpret the different
terms in Equation 16. First, V(x) has a form of frequency-
dependent selection that enhances the major allele (with fre-
quency > 50%) and suppresses the minor allele. The apparent fit-
ness differences between the mutant and wild type is given by
the log-ratio of their frequencies. Such a selection-like effect
arises because the major allele can sample the offspring number
from PUðuÞ more deeply than the minor allele (see Hallatschek
2018). Second, in spite of this apparent bias, the neutrality of the
whole process is maintained due to rare large jumps, character-
ized by wðyjxÞ. This also means that the neutrality does not hold
if we focus on “typical” trajectories (see Figure 1). In fact, as we

show in Appendix A, the median xmed of the mutant frequency,
which is a proxy of “typical” trajectories, evolves according to

d
ds

XmedðsÞ ¼ VðXmedðsÞÞ ðwhen a ¼ 1Þ: (19)

When 1 < a < 2, using the same reasoning as the derivation
of Equation 14 and choosing s ¼ t

CaNa�1, we can obtain the follow-
ing differential Chapman–Kolmogorov equation,

o

os
Pðx; sÞ ¼ � o

ox
VðxÞPðx; sÞ

þ
Ð
jx0�xj>e

dx0ðwðxjx0ÞPðx0; sÞ �wðx0jxÞPðx; sÞÞ (20)

where

wðx0jxÞ ¼
xð1� xÞ ð1� x0Þa�1

ðx0 � xÞaþ1 when x < x0

xð1� x
� x0a�1

ðx� x0Þaþ1 when x > x0

8>>>><
>>>>:

(21)

and

VðxÞ ¼ �
ð
jx0�xj>e

dx0ðx0 � xÞwðx0jxÞ: (22)

As in Equation 16, the advection term guarantees the neutrality.
Equation 21 means that, when x < 1

2, rightward jumps occur
more frequently than leftward ones, and this tendency reverses
when x > 1

2. Noting the overall minus sign in Equation 22, this in
turn means that Veff is a bias against the minor allele (see

Figure 8 (A) Stationary distribution of the allele frequency in the Wright–Fisher model, when the mutation rate is small (h ¼ 0:1) and large (h ¼ 1:0). (B)
Stationary distribution for a ¼ 1:5, when the mutation rate is small (h ¼ 0:1) and large (h ¼ 1:0). (C) The time-series of the allele frequency in the case of
a ¼ 1:5, when the stationary distribution is bimodal (h ¼ 0:1) and unimodal (h ¼ 1:0). (D) The position of the peak near x¼ 0 of the stationary distribution
versus the mutation rate l. N ¼ 104 is used.
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Figure 1), as in the case of a¼ 1. We will later show that when
x	 1, the median trajectory is initially decaying like DXmed � �s

1
a

(Equation 2).
We note that the short-time superdiffusive behavior in

Equation 5 implies that Equation 20 cannot be simplified to a
Fokker–Planck equation. We also note that, in the limit e! 0,
two divergencies arise in Equation 20, one in the integral for
the advection velocity in Equation 22 and one in the jump inte-
gral in Equation 16. However, since both divergencies exactly
cancel, the entire right-hand side of Equation 20 is well-
defined. As shown in Appendix E, Equations 16 and 20 can also
be derived as a dual of the K-Fleming-Viot process, namely as
the adjoint operator of the backward generator (e.g., Etheridge
et al. 2010; Griffiths 2014).

Although it is difficult to study Equation 20 analytically, it is
possible to derive exact short-time and long-time asymptotics
that, combined with scaling arguments, paint a fairly compre-
hensive picture of the ensuing statistical genetics.

Short-time dynamics and fluctuations
First, we describe the transition density Pðx; sjx0; s ¼ 0Þ of
Equation 20 for small times. When 1 < a < 2, the allele fre-
quency changes due to the deterministic bias V(x) and random
occurrence of jumps, sampled from the broad distribution
in Equation 21. Since the number of jump events is enormous
ð� s

ea Þ even for small s, the generalized central limit theorem
applies, and XðsÞ is asymptotically distributed according to a
stable distribution (Gnedenko and Kolmogorov 1968). For a
general stable distribution, its analytical expression is not
available, and only its characteristic function can be expressed
analytically. As we show in Appendix F, the random displace-
ment DXðsÞ ¼ XðsÞ � x0 can be expressed as

DXðsÞ ¼ XðsÞ � x0 ¼ cðs; x0ÞZ: (23)

Here Z is sampled from the stable distribution p(z) whose charac-
teristic function heikZi �

Ð
dzeikzpðzÞ is given by

heikZi ¼ exp �jkjað1� ibðx0Þ tan
pa
2

signðkÞÞ
� �

; (24)

and the scale parameter cðs; xÞ and the skewness parameter bðxÞ
are respectively given by

cðs; xÞ � s
1
a

pðxð1� xÞa þ ð1� xÞxaÞ
2Cðaþ 1Þ sin pa

2

 !1
a

; (25)

bðxÞ � xð1� xÞa � xað1� xÞ
xað1� xÞ þ xð1� xÞa : (26)

Note that statistical properties of Z are independent of s, and
DXðsÞ depends on s via the scale parameter cðs; x0Þ. As shown in
Figure 9A, for small times, the transition density Pðx; sjx0; s ¼ 0Þ
computed from the stable distribution agrees precisely with nu-
merical simulation results in the discrete-time model. Our result
can be regarded as a counterpart of the Gaussian approximation
often employed for the Wright–Fisher diffusion (see Tataru et al.
2017 and the references therein).

Now, we study the mean and median of the allele frequency
using the short-time expression. The mean does not change in
time since hDXðsÞi ¼ cðs; x0ÞhZi ¼ 0, which is consistent with the
neutrality. On the other hand, the median changes as

DXmedðsÞ ¼ cðs; x0ÞZmedðx0Þ; (27)

where Zmedðx0Þ denotes the median of Z. Zmedðx0Þ depends on x0

via bðx0Þ (see Equation 24), and Zmedðx0Þ90 for x09 1
2. Equation 27

agrees with numerical simulations in the discrete-time model,
while XðsÞ is close to the initial frequency x0 (see the red and
black curves in Figure 9B).

The scaling property DXðsÞ / s
1
a in Equation 2 immediately

follows from Equation 27, since c / s
1
a. This scaling implies that

there is a time-dependent bias driving the median of the allele
frequency. Differentiating Equation 27 with respect to time
gives

d
ds

XmedðsÞ ¼ VeffðsÞ (28)

where the effective time-dependent bias VeffðsÞ is given by

VeffðsÞ �
ocðs; x0Þ

os
Zmedðx0Þ: (29)

Near the boundaries x¼ 0 and x¼ 1, VeffðsÞ is approximately
given by

VeffðsÞ 

�k

x
1
a
0

s1�1
a

ðx	 1Þ

þk
ð1� x0Þ

1
a

s1�1
a

ð1� x	 1Þ
;

8>>><
>>>:

(30)

where k � jZ
medðx0¼0Þj

a
p

2Cðaþ1Þ sin pa
2

� �1
a is a positive constant.

Figure 9 (A) The allele frequency distribution pðx; tjx0 ¼ 0:005Þ at generation t ¼ 5; 10; 35, for a ¼ 1:5. The solid lines denote the short-time transition
densities given by Equations 21 and 22, and the open markers denote those computed from 10,000 allele frequency trajectories in the discrete-time
model. (B) The initial dynamics of the median of the allele frequency (black). The red and blue lines denote the short-time solution in Equation 25 and
the long-time solution in Equation 35, where constants of integration and the prefactor of Equation 36 are determined by fitting to the discrete-time
model (black line) between 40 < t < 800. (C) The overall trajectory to extinction. The color scheme is the same as that in (B). In (A–C),
a ¼ 1:5; N ¼ 107; x0 ¼ 0:005 are used.
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The advection term arises from a sampling bias
Intuitively, the time-dependent bias VeffðsÞ arises from a time-
dependence of the largest sampled offspring number (Figure 10).
To see this, consider a typical trajectory of the allele frequency
starting from x. Up to a short time s, only jumps from x to y 2
½y�ðsÞ; yþðsÞ� are likely to occur, where y�ðsÞ and yþðsÞ can be esti-
mated by the extremal criterion (Krapivsky et al. 2010),

s�
ðy�ðsÞ

0
wðyjxÞdy � 1; s�

ð1

yþðsÞ
wðyjxÞdy � 1: (31)

These conditions give

y�ðsÞ �
x

1þ sð1�xÞ
a

� �1=a
; yþðsÞ �

xþ sx
a

	 �1=a

1þ sx
a

	 �1=a
: (32)

Because these small jumps cancel a part of the bias V(x) in
Equation 22, the typical trajectory is then driven by the uncan-
celed residual part of the bias V(x),

V0eff � �
ð

y2½0;y�ðsÞ�[½yþðsÞ;1�
ðy� xÞwðyjxÞdy: (33)

When x	 1, the dominant contribution to this integral is from
y 
 yþðsÞ. Using wðyjxÞ � x

ðy�xÞaþ1 from the first line of Equation 21
and yþ � x � ðsxÞ

1
a from Equation 32, the above integral can be

evaluated as V0eff � � x
ðyþ�xÞa�1 � � x

1
a

s
a�1

a
, which agrees with Veff in

Equation 30 for x	 1 (up to the factor j). When 1� x	 1, the
dominant contribution to V0eff is from y 
 y�ðsÞ and can be evalu-
ated in a similar way, reproducing Veff in Equation 30 for
1� x	 1.

One interpretation of Equation 33 is that the bias V(x) in
Equation 22 is mitigated by small jumps in a short time, and
therefore, the integration over small jumps is excluded in
Equation 33. Another interpretation is that, for typical short-time
dynamics, small jumps and the bias V(x) are relevant, and, from
the overall neutrality, the change caused by these two is equal to
the negative of that caused by large jumps, thus resulting in
Equation 33.

Allele frequency fluctuations are inconsistent with the
Wright–Fisher diffusion
In the simulations, we found that, for 1 � a < 2, allele frequency
fluctuations are inconsistent with the Wright–Fisher diffusion
and characterized by super-diffusion with diffusion exponent 2

a

(see Equation 5). This finding is readily explained by the short-
time asymptotic in Equation 23. Recalling c / s

1
a (Equation 25)

and statistical properties of Z are independent of s, we obtain

Median SD ¼ cðs; x0Þ2M½Z2� / s
2
a: (34)

This scaling can also be justified heuristically by noting that,
for 1 < a < 2, the square displacement is dominated by large
jumps. During time s, an allele frequency XðsÞ around x typically
jumps to y6 given in Equation 32. When s	 1, it is easy to see
jy6 � xj � s

1
a with x-dependent prefactors. Because the median SD

is dominated by the largest displacements, it can be evaluated as

Median SD � ðy6ðsÞ � xÞ2 � s
2
a; (35)

where s ¼ t
Tc
	 1 is assumed.

Long-time dynamics and extinction time
Above, we saw that at short times, allele frequencies carry out an
unconstrained Levy flight. This random search process, however,
gets distorted as soon as the allele frequency starts to get in reach
of one of the absorbing boundaries. Interestingly, the dynamics
then enters a universal intermediate asymptotic regime that con-
trols both the characteristic extinction time as well as establish-
ment times and fixation probabilities.

To see this, let us consider the extinction dynamics of a trajec-
tory starting from a small frequency x0 	 1 (Figure 4). At short
times, we can apply the short-time asymptotics in Equations 28
and 30. We expect Equations 28 and 30 to break down when the
displacement DXmedðsÞ computed from Equation 28 becomes
comparable to x0, which occurs at s � sshort � xa�1

0 . By taking a
coarse-grained view, the rate of the frequency change in sshort is
roughly given by

DXmed

sshort
� �x2�a

0 : (36)

This suggests that, in a long timescale (s � sshort), the median fre-
quency decreases as

d
ds

XmedðsÞ ¼ ~VeffðXmedðsÞÞ ðfor X	 1Þ; (37)

where, up to a prefactor, the frequency-dependent bias ~VeffðXÞ is
given by

~VeffðXÞ � �X2�a: (38)

In Figure 9C, it is numerically shown that the long-time trajectory
Xmedðs > sshortÞ is consistent with Equation 37. By solving
Equation 37, the median trajectory goes to extinction at sext �
xa�1

0 (Equation 3), in agreement with our simulations (Figure 4).
Note that, for 1� x	 1, the bias in Equation 38 is replaced by
~VeffðXÞ � ð1� XÞ2�a.

Figure 10 Schematic explanation of the effective time-dependent bias
VeffðsÞ. The black curve shows the jump rate wðyjxÞ in Equation 19 when
x	 1. In a time s, small jumps within the region ½y�ðsÞ; yþðsÞ� are likely to
occur, offsetting a part of the original bias V(x). VeffðsÞ is the residual part
of the bias.
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Importantly, Equations 37 and 38 can also be rigorously justi-
fied from a scaling ansatz for the transition density. After some
time, Pðx; sjx0Þ spreads broadly over the region x	 1 with a peak
at x¼ 0 (Figure 11A). As shown in Figure 11B, Pðx; sÞ is consistent
with the following scaling ansatz;

Pðx; sÞ � s�2ggðnÞ ðfor x	 1Þ; (39)

where g � 1
a�1 and gðnÞ is a function of n � x

sg. Up to an overall con-
stant, gðnÞ can be determined analytically and expressed as an in-
finite series (see Appendix F). Note that the s-dependent factor in
Equation 39 is motivated from the fact that the extent over which
the distribution spreads increases like sg. Equation 39 implies
that, conditional on establishment at s, the median frequency
increases as XmedðsÞjestablish � sg. Then, Equation 38 follows by
evaluating the bias in Equation 28 at s � ðXmedÞ

1
g and at Xmed, in-

stead of at x0.
As a consistency check of the exponent a� 1 in Equation 3, we

consider two solvable, extreme cases. First, in the limit a! 2, the
dependence on x0 in Equation 3 becomes linear. In the Wright–
Fisher model, the mean extinction time can be obtained analyti-
cally by solving the backward equation �1 ¼ xð1� xÞo

2sextðxÞ
ox2 (see,

e.g., Karlin and Taylor 1981). The solution is proportional to x0

with a logarithmic correction, sext 
 �x0 log x0. Second, when
a! 1, the mean extinction time no longer depends on x0. We can
obtain this explicitly, by solving Equation 17: Using VðXÞ ’ X log X
when X	 1, the solution is given by log log XðsÞ

log x0
¼ s. Therefore, if

we approximately define the mean extinction time sext as
XðsextÞ 
 1

N, we obtain sext 
 log log N
�log x0


 log log N, which is to
leading order independent of x0 if x0 is taken to be of order one.

Natural selection and fixation probability
One important advantage of the forward-time perspective is that
we account for natural selection by introducing an appropriate
bias favoring of the beneficial variant. Suppose that the mutant
type has a selective advantage s> 0, such that the average off-
spring number of mutants is increased by a factor of 1þ s relative
to the wild type. In time-rescaled Chapman–Kolmogorov equa-
tion, this adds the term rxð1� xÞ, where r ¼ Tcs, into the advec-
tion V(x) of Equation 20.

The key observation underlying the argument below is that
when X is sufficiently small, the selection force rxð1� xÞ 
 rX is
negligible compared to the bias ~VeffðXÞ � �X2�a in Equation 38
because, while the former is approximately linear in X, the latter
is sublinear. If the frequency happens to grow and reach a certain

value Xc, the genuine selection begins to dominate over the bias,
and the trajectory fixes with high probability (see Figure 12 for ex-
ample trajectories and Figure 13A). By using Equation 38, the
crossover point Xc can be estimated from the balance between
the selection force and the sampling bias ~VeffðXÞ,

r X ¼ �~VeffðXÞ � X2�a; (40)

which gives

Xc � r�
1

a�1 ¼ 1
N

s�
1

a�1: (41)

For X	 Xc, the dynamics are essentially neutral (described by
Equation 20), while, for X > Xc, the trajectory grows almost deter-
ministically. Therefore, the fixation probability Pfix of a beneficial
mutation can be estimated by using the neutral fixation probabil-
ity in a population of size 
NXc. Although the full dynamics in
Equation 20 is difficult to analyze, it is obvious that the neutral
fixation probability is equal to the inverse of the population size.
Therefore, we have

Pfix �
1

NXc
� s

1
a�1; (42)

which is valid for 1
N	 s

1
a�1. Equation 42 reproduces our simulation

results in Figure 5 for 1 < a < 2 and, as a! 2, also reproduces
the known result of the Wright–Fisher model, PWF

fix � 2s (up to a
prefactor).

Figure 12 Example of trajectories of the frequency of the beneficial
allele, starting from x0 ¼ 0:05, a ¼ 1:5; s ¼ 0:03, and N¼ 5000. Fixed
trajectories are colored in blue and extinct ones in gray. Here, the
crossover point Xc can be estimated as Xc � 0:2, assuming that the
proportional constant in Equation 39 is one. Once a trajectory reaches
the crossover point, it becomes fixed in high probability.

Figure 11 (A) Log plot of Pðx; sjx0 ¼ 0:01Þ at generations
t ¼ 700; 1100; 1500; 1900 computed from the discrete-time model.
N ¼ 107 and a ¼ 1:5. (B) Log–log plot of s2gPðx; sjx0 ¼ 0:01Þ versus
n ¼ x=s2g, where g ¼ ða� 1Þ�1, at t ¼ 700; 1100; 1500; 1900 (solid curves).
The dashed curve represents the analytic result of gðnÞ (see Appendix F).
The curves s2gPðx; sjx0 ¼ 0:01Þ at the different time points collapse into
gðnÞ, supporting the scaling ansatz in Equation 37.

Figure 13 (A) The crossover from the effective bias to genuine selection.
VðXÞ � �CX2�a þ rX is plotted, where C is a positive coefficient and
r > 0. Deterministically, an unstable point exists at x � Xc. (B) The
balance between the effective bias and mutation. VðXÞ � �CX2�a þ h is
plotted. Deterministically, a stable point exists at X � h1=ð2�aÞ.
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Site frequency spectrum
By using the time-dependent effective bias, we can also estimate
the behavior of the SFS fSFSðxÞ for frequent and rare variants.
While the SFS is theoretically defined in the infinite alleles model,
it can be computed from our biallelic framework (Ewens 1963):
fSFSðxÞDx is defined as the expected number of neutral derived
alleles in the frequency interval ½x� Dx

2 ; x� Dx
2 � in a sampled popu-

lation (here, the whole population). Because new mutations are
assumed to arise uniformly in time, the SFS for unlinked neutral
loci is given by the product of the total mutation rate lN and the
mean sojourn time, namely, the average time an allele spends in
the frequency interval ½x� Dx

2 ; x� Dx
2 � until fixation or extinction.

First, we consider the low-frequency end, x	 1, of the SFS
(see Cvijovi�c et al. 2018 for a similar argument). Since the SFS is
proportional to the sojourn time, trajectories whose maximum
frequencies are x or slightly larger than x dominantly contribute
to the SFS fSFSðxÞ at x. Since these trajectories typically go extinct
due to the bias, and we can roughly estimate their sojourn times
at x as the inverse of “velocity”, j~VeffðxÞj � x2�a in Equation 38.
Since the probability that a trajectory grows above a frequency x
is roughly given by �1=ðNxÞ, the SFS is proportional to

1

Nx~VeffðxÞ
/ 1

x3�a
ðfor x	 1Þ: (43)

Similarly, for the high-frequency end of the SFS, only the tra-
jectories that grow above x can contribute to fSFSðxÞ. Typically,
these trajectories go to fixation due to the bias
~VeffðxÞ � ð1� xÞ2�a. Therefore, the SFS is proportional to

1

Nx~VeffðxÞ
/ 1

ð1� xÞ2�a ðfor 1� x	 1Þ: (44)

The effect of the genuine selection on the SFS can also be
studied by using the effective bias. See Appendix G.

Bimodality of stationary distribution
Now, we turn to explaining the bimodality observed at mutation-
drift balance. We found that, when the mutation rates are small,
the stationary allele frequency distribution is not a U-shaped, as
expected from the Wright–Fisher dynamics, but M-shaped, as
shown in Figure 8. The M-shaped distribution arises from the bal-
ance between the mutational force and the effective bias (see
Figure 13B). In the Chapman–Kolmogorov equation, the muta-
tional force is given by

�hxþ hð1� xÞ 
 þh ðx	 1Þ
�h ð1� x	 1Þ;



(45)

which pushes the frequency toward the center x ¼ 1
2. On the other

hand, the effective bias, ~VeffðxÞ 
 �x2�a for x	 1 and ~VeffðxÞ 

ð1� xÞ2�a for 1� x	 1, pushes a trajectory toward the closer
boundary. Therefore, the positions where these two forces bal-
ance are approximately given by

xpeak 
 ch
1

2�a; 1� ch
1

2�a; (46)

where c is a positive constant. If h is sufficiently small, we can al-
ways find the balancing points. The presence of these two bal-
ancing points means that we can think of the allele frequency
dynamics as a two-state system, essentially analogous to a
super-diffusing particle in a double-well potential (see Figure 8C

for a realization of trajectories). This explains the bimodal shape
of the stationary distribution.

Finally, we remark that, even in the presence of natural selec-
tion, the balancing positions are still determined from the
mutation-effective bias balance provided that h	 1: while the ef-
fective bias and the mutational term are sub-linear and constant
respectively, the selection term rxð1� xÞ is linear in x when
x	 1. Thus, when h is sufficiently small, the magnitude of the se-
lection term around x ¼ ch

1
2�a; 1� ch

1
2�a is negligible, and the peak

positions are given by Equation 46.

Discussion
In this study, we analyzed the effect of power law offspring distri-
butions on the competition of two mutually exclusive alleles. Our
main reason to consider such broad offspring distributions is that
they often emerge in evolutionary scenarios that inflate the re-
productive value (Barton and Etheridge 2011) of a small set of
founders. For example, range expansions blow up the descendant
numbers of the most advanced individuals in the front of the
population, an effect that has been called gene surfing
(Hallatschek and Nelson 2008). Likewise, continual rampant ad-
aptation boosts the descendant numbers of the most fit individu-
als. The resulting allele frequency dynamics becomes
asymptotically similar to that of a population with scale-free off-
spring distributions.

In the case of narrow offspring distributions, which is predom-
inant assumption in population genetics, it is usually an excel-
lent approximation to describe the allele frequency dynamics by
a biased diffusion process, which forms the basis of powerful in-
ference frameworks (Tataru et al. 2017). If the offspring distribu-
tion is broad, however, allele frequency trajectories are disrupted
by discontinuous jumps, resulting from so-called jackpot
events—exceptionally large family sizes drawn by chance from
the offspring distribution. Our goal was to find an analytical and
intuitive framework within which we can understand the main
features of these unusual dynamics.

We found that the main counter-intuitive features can be un-
derstood and well-approximated from a competition of selection
and mutations with a time-dependent emergent sampling bias,
VeffðsÞ. The sampling bias favors the major allele and arises, be-
cause the sub-population carrying the major allele typically sam-
ples deeper into the tail of the offspring distribution than the
minor allele fraction.

In the remainder, we first summarize the unusual population
genetic patterns that can be explained by the action of these ef-
fective forces. We then discuss how broad offspring dynamics
could be detected in natural populations and what its implica-
tions are for the dynamics of adaptation. Finally, we demonstrate
that these dynamics are also ubiquitous in populations with
narrow offspring distributions, when mutational jackpots are
possible. Therefore, we believe our theoretical framework
may be taken as a general null model for populations far from
equilibrium.

Unusual dynamics
We found that the sampling bias effectively acts like time- and
frequency-dependent selection. In the absence of true selection,
Veffðx; sÞ drives the major allele to fixation, first rapidly and than
gradually slowing down with time and proximity to fixation. The
slowing down of the sampling bias near fixation also leads to an
excess of high-frequency alleles, given continual influx of neutral
mutations. This generates a high-frequency uptick in the SFS,
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which is characteristic of the tail of the offspring distribution. In
mutation-drift balance, the allele frequency distribution is M-
shaped, in contrast to the U-shape expected from the Wright–
Fisher dynamics. The peaks reflect the balance of the mutational
and sampling bias.

Non-neutral dynamics depends on whether the genuine selec-
tion force dominates over the sampling bias. The sampling bias
tends to dominate near extinction or fixation, and wanes near
50% frequency. A de novo beneficial allele will not be able to fix
unless it overcomes, by chance, the switch-point frequency at
which genuine selection becomes stronger than the sampling
bias. Finally, fluctuations in typical trajectories are getting stron-
ger over time. As a consequence, allele frequencies super-diffuse:
fluctuations grow with time more rapidly than under the Wright–
Fisher diffusion.

Detecting dynamics driven by broad offspring
distributions
The time-dependent over-dispersion is most readily detected by
plotting the median square displacement as a function of time
(see Figure 4B). Testing deviations in this statistic is an attractive
avenue for detecting deviations from the Wright–Fisher diffusion
because the signal is strong for intermediate allele frequencies,
which can be accurately measured by population sequencing. By
contrast, the time-dependent bias vanishes when an allele has
50% frequency. So, the detection of the sampling bias requires ac-
curate time series data of low frequency variants, which is diffi-
cult to obtain given sequencing errors.

It is clear that a single super-diffusing but neutral allele would
not abide by the diffusive Wright–Fisher null model and thus
might be falsely considered as an allele under selection. But im-
portantly, allele super-diffusion has an impact even on statistics
that sum over many unlinked loci. This is significant for infer-
ence methods, for instance to detect polygenic selection, which
argue that trait values follow a diffusion process, if not for an un-
derlying Wright–Fisher dynamics of the allele frequencies then
because they sum over many independent allele frequencies
(Berg and Coop 2014). However, a < 2 dynamics breaks both of
these arguments. In particular, sums of many unlinked loci tend
to non-Gaussian distributions (so-called alpha-stable distribu-
tions). Hence, for traditional inference methods based on the
Wright–Fisher diffusion or standard central limit theorem
(Tataru et al. 2017), an underlying super-diffusion process should
be ruled out.

If time series are not available, broad offspring numbers can
also be detected from the SFS (Neher and Hallatschek 2013). A
tail-tale sign of the sampling bias is a characteristic uptick at the
high-frequency tail of the SFS, which is difficult to generate by
demographic variation (Neher and Hallatschek 2013). As we have
shown, the shape of the uptick is characteristic of the tail of the
offspring distribution (the parameter a).

Implications for the dynamics of adaptation
We found that the fixation probabilities quite sensitively depends
on the broadness a of the offspring distribution (Equation 42).
Accordingly, the dynamics of adaptation, which ultimately
depends on the fixation of beneficial variants, should change
quantitatively. To estimate these modifications, we consider an
asexual population of constant size N with a broad offspring dis-
tribution with 1 < a < 2, wherein beneficial mutations occur at
the rate lB. For low mutation rates, mutations sweep one after
the other but when mutation rate are sufficiently high, multiple

mutations occur and most mutations are outcompeted by fitter
mutations. Such a situation is known as clonal interference.

We can study the effect of the exponent a on the adaptation
dynamics quantitatively by repeating the argument in Desai and
Fisher (2007), wherein the variance of offspring numbers is as-
sumed to be narrow. As discussed in Appendix H, clonal interfer-
ence should occur if

lBNs
2�a
a�1lnðNs

1
a�1Þ� 1 ðclonal interferenceÞ; (47)

where s> 0 is the fitness effect of a mutation, which we assume
to be constant. The rate R of adaptation is given by

R �
lBNs

a
a�1 ðsuccessive selective sweepsÞ

2s2lnðNs
1

a�1Þ
ðln s

lB
Þ2

ðclonal interferenceÞ :

8><
>: (48)

Note that the second line in Equation 48 reproduces Equation 5 of
Desai and Fisher (2007) in the limit a! 2. Thus, the rate of adap-
tation depends only weakly (logarithmically) on a in the clonal in-
terference regime, even though the condition for clonal
interference in Equation 47 depends on a quite sensitively.

Emergence of skewed offspring distributions in
models of range expansions
Our study can be regarded as an analysis of the population genet-
ics induced by power-law offspring distributions. The main rea-
son to consider these scale-free offspring distributions is that
they quite generally emerge in models of stochastic traveling
waves (Birzu et al. 2018). Such models are ubiquitous in popula-
tion genetics because they describe a wide range of evolutionary
scenarios, including range expansions, rampant asexual and sex-
ual adaptation as well as Muller’s ratchet (Brunet et al. 2007;
Desai et al. 2013; Kosheleva and Desai 2013; Neher and
Hallatschek 2013; Schweinsberg 2017; Birzu et al. 2018). Our
analysis should therefore apply most directly to these evolution-
ary scenarios, which we now demonstrate using a simple model
of a range expansion. We end by discussing the question of
whether some of our results may also arise in scale-rich offspring
distributions.

Birzu et al. (2018) argued that any exponent 1 � a � 2 can
emerge in a simple model of range expansions that incorporates
a tunable level of cooperativity between individuals (Figure 14A).
The model can be described by a generalized stochastic Fisher–
Kolmogorov equation

on
ot
¼ D

o2n
ox2 þ rðnÞnþ noise; (49)

for the time-dependent population density n(x, t) at position x in
a linear habitat and time t. The growth rate r(n) is assumed to be
density-dependent, with

rðnÞ ¼ r0 1� n
K

� �
1þ B

n
K

� �
; (50)

where the parameter B � 0 accounts for co-operativity among
individuals, which is also called an Allee effect. As discussed in
Hallatschek (2018), lineages in the region of the wave tip are dif-
fusively mixed within the timescale smix � 1

r ln2K
ffiffiffi
D
r

q
. This implies

that, in this microscopic model, resampling from an offspring dis-
tribution roughly occurs every smix generations. In Birzu et al.
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(2018, 2021), it was argued that depending on the strength of the
Allee effect, the offspring distributions corresponding to any of
the three distinct classes of the beta coalescent process can arise;
namely, the Bolthausen–Sznitman coalescent when B< 2, the
beta coalescent with 1 < a < 2 when 2 < B < 4, and the
Kingman coalescent when B> 4.

To demonstrate clearly that our present study can serve as a
macroscopic analysis of the traveling model, we introduce revers-
ible mutations in the traveling wave model and measured the
mutant frequency of the first N � K

k individuals from the edge of
the front. Here, k is the spatial decay rate, i.e., n � e�k~x where ~x is
the coordinate comoving with the expansion. This definition
of the mutant frequency is reasonable because only the wave
front has a skewed offspring distribution due to the founder ef-
fect. In Figure 14B, for B¼ 1 (left), 3 (middle), and 8 (right), the fre-
quency distributions in the traveling wave model are shown
when the mutation rate is small (orange jagged line) and when it
is large (blue jagged line). The corresponding distributions in the
macroscopic model are shown by black dotted lines. The station-
ary distributions in the traveling wave model agree well with
those in the macroscopic model. Especially, the transition from
the M-shaped or U-shaped distribution to the monomodal distri-
bution is consistently reproduced in the traveling wave model.
These results underscore the correspondence between the travel-
ing wave with the Allee effect and the beta coalescent process.

The above-described correspondence suggests that the spatial
area occupied by one allele type in a range expansion should be-
have statistically like the time-integral over the allele frequency
in the Cannings model. In the context of adapting (non-spatial)
populations, this quantity describes the total number of muta-
tional opportunities of a mutant lineage (Desai and Fisher 2007;
Weissman et al. 2009; Neher and Shraiman 2011). As presented in
Appendix J, the distribution of the time-integrated frequency
exhibits a scaling behavior that depends on the offspring distribu-
tion sensitively. While a full discussion is beyond the scope of
this paper, we expect that the distribution of areas serves as a
useful observable to distinguish different prototypes of traveling
waves (Birzu et al. 2018).

Broad offspring distributions with a scale: While scale-free off-
spring distributions often emerge over an intermediate time scale
(smix in the above traveling wave model), there are also species
that over single generations show broad offspring numbers and
violate the Wright–Fisher diffusion. For such species, it may be
more natural to consider offspring distribution with a character-
istic scale. In ‘sweepstake’ reproduction (Eldon and Wakeley
2006), a fixed and finite fraction of the population is replaced at
every sweepstake event (specified by the parameter W in Eldon

and Wakeley (2006)). Because W sets a characteristic scale in off-
spring numbers, power law relationships for the median of allele
frequencies as well as frequency fluctuations cannot be
expected, which we confirm in Appendix K. Nevertheless, the
qualitative features of a sampling bias can be recognized quite
clearly for sweepstake reproduction as well.

Either type of model ultimately is an approximation to true
offspring distributions, and it depends on the situation, which
one to use. As we argued, the beta-coalescent along with the
forward-in-time model described in this article is the natural
choice for range expansions, rapid adaptive process or other sce-
narios where the reproductive value of a chosen few are highly
inflated.
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article.

Funding
Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National
Institutes of Health under award R01GM115851, a National
Science Foundation CAREER Award (#1555330), a Simons
Investigator award from the Simons Foundation (#327934), RIKEN
iTHEMS Program, and JSPS KAKENHI (JP19K03663).

Conflict of interest
The authors declare that there is no conflict of interest.

Acknowledgments
The authors thank Benjamin H. Good, Daniel B. Weissman, Jiseon
Min, Joao Ascensao, Michael M. Desai, and Stephen Martis for
their helpful discussions and comments.

Literature cited
Adam DC, Wu P, Wong JY, Lau EH, Tsang TK, et al. 2020. Clustering

and superspreading potential of SARS-CoV-2 infections in Hong

Kong. Nat Med. 26:1714–1719.

Bah B, Pardoux E. 2015. The K-lookdown model with selection. Stoch

Process Appl. 125:1089–1126.

Figure 14 (A) The model of a range expanding population with two neutral alleles (green and gray). A broad offspring distribution arises dynamically in
the front region. (B) Stationary distributions of the allele frequency when mutation rate h is small (blue) and when h is large (orange). The wiggling lines
(blue/orange) are the numerical results in the traveling wave model, while the dotted lines (black) are those in the macroscopic model. The parameters
of the Allee effect B are B¼ 1 (left), 3 (middle), and 8 (right). See Appendix I for the details of the implementation of the simulation and other parameter
values.

T. Okada and O. Hallatschek | 13



Barton NH, Etheridge AM. 2011. The relation between reproductive

value and genetic contribution. Genetics. 188:953–973.

Basdevant A, Goldschmidt C. 2008. Asymptotics of the allele fre-

quency spectrum associated with the Bolthausen–Sznitman coa-

lescent. Electron J Probab. 13:486–512.

Berestycki J, Berestycki N, Limic V. 2014. Asymptotic sampling for-

mulae for K-coalescents. Ann IHP Prob Stat. 50:715–731.

Berg JJ, Coop G. 2014. A population genetic signal of polygenic adap-

tation. PLoS Genet. 10:e1004412.

Birzu G, Hallatschek O, Korolev KS. 2018. Fluctuations uncover a dis-

tinct class of traveling waves. Proc Natl Acad Sci USA. 115:

E3645–E3654.

Birzu G, Hallatschek O, Korolev KS. 2021. Genealogical structure

changes as range expansions transition from pushed to pulled.

Proc Natl Acad Sci. 118:34.

Bollback JP, York TL, Nielsen R. 2008. Estimation of 2Nes from tem-

poral allele frequency data. Genetics. 179:497–502.

Bolthausen E, Sznitman A.-S. 1998. On Ruelle’s probability cascades

and an abstract cavity method. Commun Math Phys. 197:

247–276.
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Appendix A: Analytic results in the marginal
case a ¼ 1
Although the main target of our present study is the case of
1 < a < 2, we here provide analytical results for a¼ 1, which
have not been derived before.

Site frequency spectrum in the presence of
genuine selection
The transition density for a¼ 1 in the presence of natural selec-
tion is derived in Hallatschek (2018) (see Kosheleva and Desai
2013 for neutral case). In x space, it is given by

Grðx; sjx0Þ ¼
1

2pxð1� xÞ
sin pg

cos pgþ cosh½g log erx
1�x� log erx0

1�x0
�
; (A.1)

where g � e�s and r is the selective advantage [there is an erra-
tum in Equation 38 in Hallatschek (2018)].

For the purpose of computing the SFS (or, equivalently, the
mean sojourn time), we set x0 ¼ 1=N. Since we are considering
the large N limit, the denominator of Equation A.1 can be rewrit-
ten as

cos pgþ cosh g log
erx

1� x
� log

erx0

1� x0

� �


 1
2

exp½g log
x

1� x
� rð1� gÞ þ log N� ¼ 1

2
N

x
1� x

� �g

e�rð1�gÞ:

(A.2)

Thus, the transition density for x0 ¼ 1
N can be written as

Grðx;gjx0 ¼
1
N
Þ¼ er

pNxð1� xÞ
sin pg
x

1�x erÞg:
	 (A.3)

Near the boundaries, this can be approximated as

Grðx;gjx0 ¼
1
N
Þ¼

er

pNx
sin pg
ðxerÞg ðx	 1Þ

er

pNð1� xÞ ðð1� xÞe�rÞg sin pg ð1� x	 1Þ:

8>><
>>:

(A.4)

The SFS is given by fSFSðxÞ ¼ Nl� tðxÞ, where l is the mutation
rate per generation, and t(x) is the mean sojourn time density,
which is given by

tðxÞ ¼
ð1

0
dtGrðx; sjx0 ¼

1
N
Þ¼
ð1

0

dg
g

Grðx;gjx0Þ

¼

er

pNx

ð1

0

dg
g

sin pg

ðxerÞg ðx	 1Þ

er

pNð1� xÞ

ð1

0

dg
g

sinðpgÞðð1� xÞe�rÞg ð1� x	 1Þ:

8>>><
>>>:

(A.5)

Next, we compute the integrals in Equation A.5, asymptotically
close to the absorbing boundaries (see Equation A.14 for the final
results). To evaluate Equation A.5 for x	 1, we first consider the
integral,

Ie ¼
ð1

0
dg exp f ðgÞ: (A.6)

When f ðgÞ has a sharp peak at g ¼ g
, we approximate this in-
tegral as

Ie 
 ef ðg
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

jf 00ðg
Þj

s
: (A.7)

In our case,

f ðgÞ ¼ �log g� logðeÞgþ log sin pg (A.8)

where e ¼ xer. f ðgÞ takes the maximum value at
g ¼ g
 
 1þ 1

log e
.1 At g ¼ g
; f ðg
Þ 
 �log e� 1þ log �p

log e
,2 and

f 00ðg
Þ 
 1� p2

sin 2 p
log eð Þ 
 log 2e. The saddle-point evaluation in

Equation A.7 is precise when e	 1. By using these expressions, Ie

can be evaluated as

Ie 

ffiffiffiffiffiffi
2p
p

�log e
e�1 �p

e log e
¼

ffiffiffiffiffiffi
2p
p

pe�1

e log 2e
: (A.9)

By setting e ¼ xer, we find

fSFSðx 
 0Þ � l

ffiffiffiffiffiffi
2p
p

e�1

ðxðlog xþ rÞÞ2
� l

ffiffiffiffiffiffi
2p
p

e�1

ðx log xÞ2
/ l

1

ðx log xÞ2
: (A.10)

Next, to evaluate Equation A.5 for the high-frequency end, we
consider the following integral

I0e ¼
ð1

0

dg
g

sinðpgÞeg: (A.11)

When e	 1, the integrand takes the maximum value at the
boundary g¼ 0. Thus,

I0e 

ð1

0
dg peg ¼ pð�1þ eÞ

log e

 �p

log e
: (A.12)

By setting e ¼ ð1� xÞe�r, we find

Figure A1 The SFS fSFSðxÞ=l when a¼ 1 for the selective advantage
r ¼ �2; 0; 2. fSFSðxÞ is obtained by numerically evaluating the exact
expression of t(x) in the first line of Equation A.5. As x! 0, f(x) becomes
independent of r. Near x¼ 1, while the magnitude of f(x) depends on r,
the scaling behavior (slope in the log–log plot) does not. See Equation
A.14.

1 g
 is obtained from 0 ¼ f 0ðg
Þ ¼ � 1
g
 � logðeÞ þ p

tan pg
 
 �logðeÞ þ p
tan pg
 


�logðeÞ þ 1
1�g
 :

2 Although the magnitudes of –1 and log �p
log e

are small compared to �log e,
we need to retain these two terms because fðg
Þ contributes to Ie through
efðg


 Þ.
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fSFSðx 
 1Þ � �l
er

ð1� xÞðlogð1� xÞ � rÞ � �l
er

ð1� xÞ logð1� xÞ :

(A.13)

In summary, the SFS in Equation A.5 is given by

fSFSðxÞ �
l

1

ðx log xÞ2
ðfor x	 1; e�rÞ

�l
er

ð1� xÞ logð1� xÞ ðfor 1� x	 1; erÞ:

8>><
>>: (A.14)

Note that the dependence on r disappears when x	 1. Figure A1
shows the plots of the SFS.

For comparison, we write the SFS for the Wright–Fisher model
(a � 2) (see, e.g., Crow and Kimura 1970; Evans et al. 2007);

f WF
SFS ðxÞ ¼ h

e2rð1� e�2rð1�xÞÞ
ðe2r � 1Þxð1� xÞ : (A.15)

The asymptotic forms near the boundaries are given by

f WF
SFS ðxÞ 


h
1
x
ðfor x	 1Þ

hrð1þ cothrÞð1þ ðr� 1Þðx� 1ÞÞ; ðfor 1� x	 1; jrjð1� xÞ 	 1Þ

(

where we have expanded the SFS around x¼ 1 up to the sub-
leading order. For a sufficiently strong selection (r > 1), the SFS
increases with x at the high-frequency end. However, unlike the
case of a < 2, the increase is not strong and the SFS approaches
the constant rð1þ cothrÞ as x! 1.

Dynamics of the median of allele frequencies
When a¼ 1, we can derive a simple differential equation that de-
scribed the median of trajectories. In the logit space, the transi-
tion density is given by

Gðw; qjw0Þ ¼
sin pq

2pf cos pgþ cosh½qðwþ rÞ � ðw0 þ rÞ�g (A.16)

where q ¼ e�s. The median Wmed (at a given time point q) is char-
acterized by

ðWmed

�1
Gðw; qjw0Þdw ¼ 1

2
: (A.17)

From the symmetry of cosh, the median is given by the peak of
the transition density;

Wmed ¼ �rþ 1
q

w0 þ rÞ:ð (A.18)

By differentiating Equation A.18 with respect to q and eliminating
w0, we obtain

d
dq

Wmed ¼ � 1
q2 ðw0 þ rÞ ¼ � 1

q
ðWmed þ rÞ: (A.19)

Noting that d
dt ¼ �q d

dq, we find

d
ds

Wmed ¼ Wmed þ r: (A.20)

Since the median is invariant under a coordinate transforma-
tion, the median Xmed in the x space is simply related with Wmed

via the logit transformation, log Xmed

1�Xmed ¼ Wmed. By differentiating
this with respect to time and using Equation A.20, we obtain

d
ds

Xmed ¼ Xmedð1� XmedÞðlog
Xmed

1� Xmed
þ rÞ: (A.21)

Allele frequency dynamics conditioned on
fixation
By using Bayes’ theorem, the probability distribution of the allele
frequency conditioned on fixation can be written as

Pðx; sjx0; fixationÞ ¼ Pðx; s; fixationjx0Þ �
1

Pðfixationjx0Þ
(A.22)

¼ Pðx; sjx0Þ �
PðfixationjxÞ
Pðfixationjx0Þ

: (A.23)

The fixation probability for the initial frequency x0 is given by
(see Hallatschek 2018)

Pðfixationjx0Þ ¼
x0er

1þ x0ðer � 1Þ : (A.24)

In particular, the fixation probability of a single mutant is given
by

Pðfixationjx0 ¼
1
N
Þ� 1

N1�s : (A.25)

By using Equation A.24, the conditioned probability in Equation
A.23 is computed as

Pðx; tjx0; fixationÞ ¼ 1
2pxð1� xÞ �

xer

1þ xðer � 1Þ �
1þ x0ðer � 1Þ

x0er

� sin pq

cos pqþ cosh
h
q log

erx
1� x

� log
erx0

1� x0

i
¼ 1

2px0ð1� xÞ
1þ x0ðer � 1Þ
1þ xðer � 1Þ

sin pq

cos pqþ cosh
h
q log

erx
1� x

� log
erx0

1� x0

i
:

(A.26)

Appendix B: Stationary distributions of trav-
eling wave model in the presence of natural
selection
In Figure 14 of the main text, the mutant allele is assumed be
neutral. Here, we provide the results in the case where mutants
have a fitness advantage r (Figure B1). As in the main text, sym-
metrically reversible mutations are assumed.

Appendix C: Generalized central limit
theorem
Here, we briefly summarize the generalized central limit theorem
(Gnedenko and Kolmogorov 1968; Uchaikin and Zolotarev 1999).
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Suppose that each random number ui is sampled from the Pareto
distribution PðuÞ ¼ a

uaþ1 ðu � 1Þ and consider the shifted and
rescaled random variable f;

f ¼
Pn

i¼1 ui � an

bn
; (C.1)

where an and bn are

an ¼ 0; bn ¼ pn
2CðaÞ sin pa

2

� �1=a
for 0 < a < 1;

an ¼ n log n; bn ¼
p
2

n for a ¼ 1;

an ¼
a

a� 1
n; bn ¼

pn
2CðaÞ sin pa

2

� �1=a
for 1 < a < 2;

an ¼
a

a� 1
n ¼ 2n; bn ¼ ðn log nÞ1=2 for a ¼ 2:

(C.2)

It is well-known that the distribution of f is well-approximated by
the a-stable distribution, which we denote as PaðfÞ. While an ex-
plicit expression of PaðfÞ is not available in general, the character-
istic function is given by

heisfi ¼
Ð

dfeisfPaðfÞ

�
exp½�jsjað1þ i sgnðsÞ 2

p
log jsjÞ� ða ¼ 1Þ

exp½�jsjað1� i sgnðsÞ tan
pa
2
Þ� ða 6¼ 1Þ

; for n!1:

8><
>:

(C3)

Appendix D: The transition density of an
allele frequency wNðyjxÞ and the asymptotic
dynamics for large N
Allele-frequency change in a generation is characterized by the
transition density wNðyjxÞ, which is the probability distribution of

the allele frequency y at the next generation given the current al-
lele frequency x. When N is large, the asymptotic dynamics can
be described by a time-continuous differential Chapman–
Kolmogorov equation, which is defined by an advection velocity
V(x), diffusion coefficient D(x), and jump kernel wðyjxÞ (Gardiner
2009). The triplet is obtained from the transition density wNðyjxÞ
as follows:

wðyjxÞ ¼ lim
N!1

wNðyjxÞ
dtN

VðxÞ ¼ lim
N!1

1
dtN

ð
jy�xj< e

ðy� xÞwNðyjxÞdy

DðxÞ ¼ lim
N!1

1
dtN

ð
jy�xj< e

ðy� xÞ2wNðyjxÞdy;

(D.1)

where dtN is an N-dependent timescale, corresponding to one
generation measured in units of the coalescent timescale. In the
following, we derive the transition density wNðyjxÞ and the as-
ymptotic dynamics for general a by using a similar computa-
tional technique used in Hallatschek (2018), wherein the case of
a¼ 1 is studied extensively.

As mentioned in the main text, when a � 2, the binomial sam-
pling error is negligible for large N compared to the stochasticity
coming from broad offspring number fluctuations, and we can re-
place the binomial distribution in Equation 13 of the main text
with the Dirac delta function;

wNðyjxÞ ¼
D
dðy� M

MþW
Þ
E

M;W
¼
D ðþ1
�1

dr
2p

eiðy� M
MþWÞr

E
M;W

: (D.2)

Here h�iM;W means the average over M ¼
PxN

i¼1 ui and

W ¼
Pð1�xÞN

i¼1 vi. Using the variable s ¼ r
MþW, we can rewrite wN as

Figure B1 The stationary distributions of the mutant frequency for h ¼ 0:1; 1; 5. r ¼ 0; 1; 5. r is the selection coefficient in the time-continuous
description, r ¼ sTc.
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wNðyjxÞ ¼
D Ðþ1
�1

ds
2p
ðMþWÞe�isðM�yðMþWÞÞ

E
M;W

¼ oy
Ð ds

2pis
he�isMð1�yÞþisWyÞiM;W

¼ oyWNðyjxÞ;

(D.3)

Here,

WNðyjxÞ ¼
ðþ1
�1

ds
2pis

Uð�sð1� yÞ; xNÞUðsy; ð1� xÞNÞ (D.4)

with

Uðs; nÞ ¼
D

e
is
Pn

i¼1

uiE
: (D.5)

To use the properties of the a-stable distributions in Appendix
C, we further rewrite WNðyjxÞ as follows:

WNðyjxÞ ¼
Ðþ1
�1

ds
2pis

Uð�sð1� yÞ; xNÞUðsy; ð1� xÞNÞ

¼
Ðþ1
�1

ds
2pis

*
e
�isð1�yÞ

XxN

i¼1

xi
+*

e
isy
Xð1�xÞN

i¼1

xi
+

¼
Ðþ1
�1

ds
2pis
he�isð1�yÞðbxNfþaxNÞifheisyðbð1�xÞNf0það1�xÞNÞif0

¼
Ðþ1
�1

ds
2pis

e�isð1�yÞaxNþisyað1�xÞN he�isð1�yÞbxNfifheisybð1�xÞNf0if0 :

(D.6)

When N is large, the quantities in the two brackets in the last line
can be approximated by the characteristic functions of a-stable
distribution, Equation C.3, with s! �sð1� yÞbxN and
s! sybð1�xÞN, respectively. Thus, when a 6¼ 1, Equation D.6 can be
computed as

WN yjx
	 �

¼
ðþ1
�1

ds
2pis

e�isð1�yÞaxNþisyað1�xÞN

�e�jsj
að1�yÞaba

xN 1þisgn sð Þ tan pa
2ð Þe�jsj

ayaba
ð1�xÞN 1�isgn sð Þ tan pa

2ð Þ

¼
ðþ1
�1

ds
2pis

e�jsj
afð1�yÞaba

xNþyaba
ð1�xÞNg

�e�isð1�yÞaxNþisyað1�xÞN e�ijsjasgn sð Þ tan pa
2 ð1�yÞaba

xN�yaba
ð1�xÞNð Þ

¼
ð1

0

ds
ps

e�safð1�yÞaba
xNþyaba

ð1�xÞNg

�sin½�sðð1� yÞaxN � yað1�xÞNÞ

� sa tan
pa
2
ðð1� yÞaba

xN � yaba
ð1�xÞNÞ�:

(D.7)

In the following, we evaluate the integral expression of WNðyjxÞ
and compute the transition density wNðyjxÞ from Equation D.3.

When a < 1
By using Equation C.2,

an ¼ 0; ba
n ¼ p

�
2CðaÞ sin

pa
2

�
n � can; (D.8)

we have

WNðyjxÞ ¼
Ð1
0

ds
ps

e�sacaNðð1�yÞaxþyað1�xÞÞ

�sin½�sacaN tan
pa
2
ð1� yÞax� yað1� xÞÞ�:
	

(D.9)

By setting Ncasa ¼ r; WNðyjxÞ becomes

WNðyjxÞ ¼
1
a

ð1
0

dr
pr

e�rðð1�yÞaxþyað1�xÞÞ sin½�r tan
pa
2
ð1� yÞax� yað1� xÞÞ�
	

¼ �
tan �1

tan pa
2ð Þ
�

xð1�yÞa�ð1�xÞya

�
ð1�xÞyaþxð1�yÞa

 !

pa
: (D.10)

By differentiating it with respect to y, we obtain

wNðyjxÞ ¼
xð1� xÞ sinðpaÞðð1� yÞyÞa�1

p
�

x2ð1� yÞ2a þ ð1� xÞ2y2a þ 2xð1� xÞ cosðpaÞðð1� yÞyÞa
� :

(D.11)

Note that this does not depend on N, which is consistent with the
fact that the coalescent time is OðN0Þ when a < 1.

When 1 < a < 2
By using Equation C.2,

an ¼
a

a� 1
n

ba
n ¼ Ban; where Ba �

p
2CðaÞ sin pa

2

; (D.12)

Equation D.7 becomes

WNðyjxÞ ¼
ð1

0

ds
ps

e�BaNsafð1�yÞaxþyað1�xÞg

�sin
h
� s

a
a� 1

Nðx� yÞ � sa tan
pa
2

BaNðð1� yÞax� yað1� xÞÞ
i
:

(D.13)

By changing the variable of integration as r ¼ N1=as, we have

WN yjx
	 �

¼
ð1

0

dr
pr

e�Barafð1�yÞaxþyað1�xÞg

�sin �r
a

a� 1
N1�1

a x� yð Þ � ra tan
pa
2

Ba ð1� yÞax� ya 1� xð Þ
	 �� �

:

(D.14)

By changing the variable of integration as r0 ¼ a
a�1 jx� yjr and

redefining r0 as r, we have

WNðyjxÞ ¼
ð1

0

dr
pr

e�l1ra
sinð�sgnðx� yÞN1�1

ar� l2r
aÞ; (D.15)

where

l1 ¼ Ba
a�1
a

� �a ð1� yÞaxþ yað1� xÞ
jx� yja

l2 ¼ tan
pa
2

Ba
a� 1

a

� �a ð1� yÞax� yað1� xÞ
jx� yja :

(D.16)

The transition probability wNðyjxÞ is given by

wNðyjxÞ ¼ oyWNðyjxÞ

¼ sgn x� yð Þ
oyl1

p

ð1
0

drra�1e�l1ra
sin N1�1

arþ sgn x� yð Þl2r
a

� �
�

oyl2

p

ð1
0

drra�1e�l1ra
cos N1�1

arþ sgn x� yð Þl2r
a

� �
:

(D.17)

Consider the integral
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Ja ¼
ð1

0
drra�1e�lra

eiN1�1
ar (D.18)

where l ¼ l1 � i sgnðx� yÞl2. Then, the transition probability can
be written as

wNðyjxÞ ¼ sgnðx� yÞ
oyl1

p
ImJa �

oyl2

p
ReJa: (D.19)

From Watson’s lemma, the integral Ja can be expressed as a se-
ries expansion;

Ja ¼
X1
m¼1

1
Nmða�1Þ e

ip2mað�lÞm�1 CðmaÞ
CðmÞ : (D.20)

By substituting Equation D.20 into Equation D.19 and writing
l ¼ jljeih, we obtain

wNðyjxÞ ¼
X1
m¼1

ð�jljÞm�1

Nmða�1Þ
CðmaÞ
pCðmÞ

sgnðx� yÞoyl1 sin
p
2

maþ ðm� 1Þh
� �

� oyl2 cos
p
2

maþ ðm� 1Þh
� �� �

:

(D.21)

The leading order (m¼ 1) is given by

wNðyjxÞ ¼
CðaÞ
Na�1 sgnðx� yÞ

oyl1

p
sin

pa
2
�

oyl2

p
cos

pa
2

� �

¼
N1�aaða�1

a Þ
axð1� xÞ ð1� yÞa�1

ðy� xÞaþ1 when x < y

N1�aaða�1
a Þ

axð1� xÞ ya�1

ðx� yÞaþ1 when x > y:

8>>>><
>>>>:

(D.22)

Equation 21 in the main text can be obtained by introducing
the continuous time s � t=ðCaNa�1Þ where Ca � a a�1

a

� �a
. Equation

22 follows from the neutrality d
dt hxi ¼ 0. Note that the expansion

of Equation D.20 is possible only when jx� yj is finite, i.e., when
jx� yj > e where � is an N-independent positive constant.
Although wNðyjxÞ in D.22 diverges as jx� yj ! 0, this divergence is
not a problem, because the jump term of the asymptotic dynam-
ics in Equation 20 can be obtained from wNðyjxÞ for jx� yj > e (see
Gardiner 2009).

When a¼ 2
an and bn are given by

an ¼
a

a� 1
n ¼ 2n; bn ¼ ðn log nÞ1=2: (D.23)

Equation D.7 then becomes

WNðyjxÞ ¼
ð1

0

ds
ps

e�s2fð1�yÞ2xN log xNþy2ð1�xÞN logð1�xÞNg � sinð�2sNðx� yÞÞ

¼
ð1

0

ds
ps

e
�s2fð�2xyþxþy2ÞN log Nþ

�
ð1�yÞ2x log xþy2ð1�xÞ logð1�xÞ

�
Ng
� sinð�2sNðx� yÞÞ:

By changing the variable of integration as r ¼ ðN log NÞ
1
2s,

WNðyjxÞ ¼
ð1

0

dr
pr

e
�r2fð�2xyþxþy2Þþ

�
ð1�yÞ2x log xþy2ð1�xÞ logð1�xÞ

�
ðlog NÞ�1g

� sinð�2
N

log N

� �1
2

rðx� yÞÞ



Ð1
0

dr
pr

e�r2 ð�2xyþxþy2Þ � sinð�2
N

log N

� �1
2

rðx� yÞÞ

¼ � 1
2

erf ðx� yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
logðNÞð�2xyþ xþ y2Þ

s0
@

1
A;

(D.24)

where erfðxÞ is the Gauss error function

erfðxÞ ¼ 1ffiffiffi
p
p
ðx

�x
e�t2

dt: (D.25)

By differentiating WNðyjxÞ with respect to y, we have

wNðyjxÞ ¼
N

log N

� �1
2 1ffiffiffi

p
p ð1� xÞx
ð�2xyþ xþ y2Þ3=2

e
� Nðx�yÞ2

log Nð�2xyþxþy2 Þ: (D.26)

Suppose that � is a sufficiently small but finite constant. For
jx� yj < e, wN can be approximated as

wNðyjxÞ ¼ N
log N

� �1
2 1ffiffiffi

p
p 1

ðxð1� xÞÞ1=2
e

� Nðx�yÞ2

log N

�
xð1�xÞ

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p e�

ðx�yÞ2

2r2 :

(D.27)

where 2r2 ¼ log N
N xð1� xÞ. From the symmetry y� x! �ðy� xÞ

of wNðyjxÞ, the advection term is zero. The diffusivity D is
given by

D ¼ 1
dtN

ð
jx�yj< e

dy ðx� yÞ2wNðyjxÞ ¼
1

dtN
r2 ¼ 1

dtN

log N
N

1
2

xð1� xÞ

¼ 1
2

xð1� xÞ;

(D.28)

where we have introduced the natural timescale as dtN ¼ log N
N and

used the integral approximation

ðe

�e

dD D2 1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p expð� D2

2r2 Þ¼
1ffiffiffiffiffiffi
2p
p r

ffiffiffiffiffiffi
2p
p

rerf
effiffiffi
2
p

r

� �
� 2ee�

e2

2r2

� �

 r2:

(D.29)

Finally, the jump kernel asymptotically vanishes on the time
scale dtN,

wðyjxÞ ¼ lim
N!1

wNðyjxÞ
dtN

; (D.30)

because for fixed x, y with jx� yj > e; wNðyjxÞ becomes exponen-
tially small as N becomes large.

Thus, in the large-N limit, a¼ 2 corresponds to the Wright–
Fisher diffusion for a population of effective size
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Ne ¼ N logðNÞ: (D.31)

When a > 2
In this case, since the Pareto distribution PðuÞ ¼ a

uaþ1 ðu � 1Þ has
finite mean a ¼ a

a�1 and finite variance b2 ¼ a
ða�1Þ2ða�2Þ, and the

large N limit of the allele frequency dynamics should be de-
scribed by the Wright–Fisher diffusion process. To confirm this
more generally, we consider a general distribution with finite
mean and variance, namely, consider that each individual’s off-
spring number ui is sampled from a distribution with mean a and
variance b2. Then, from the central limit theorem, the shifted and
rescaled variable

f ¼
Pn

i¼1 xi � an

bn
;where an ¼ an; bn ¼

ffiffiffi
n
p

b; (D.32)

obeys the normal distribution Nð0; 1Þ. Its characteristic function
is given by f ðsÞ ¼ expð� 1

2 s2Þ. Thus, we have

WNðyjxÞ 

ðþ1
�1

ds
2pis

e�isð1�yÞaxNþisyað1�xÞN f ð�sð1� yÞbxNÞf ðsybð1�xÞNÞ

¼
ðþ1
�1

ds
2pis

e�isð1�yÞaxNþisyað1�xÞNf ð�sð1� yÞ
ffiffiffiffiffiffiffi
xN
p

bÞf ðsy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞN

p
bÞ

¼
ðþ1
�1

ds
2pis

e�isð1�yÞaxNþisyað1�xÞNe�
1
2s2ð1�yÞ2xNb2

e�
1
2s2y2ð1�xÞNb2

:

(D.33)

By setting r ¼ N1=2s,

WNðyjxÞ ¼
ðþ1
�1

dr
2pir

e�iaðx�yÞN1=2re�
1
2b2r2ðð1�yÞ2xþy2ð1�xÞÞ

¼
ðþ1

0

dr
pr

sinð�aðx� yÞN1=2rÞe�1
2b2r2ðð1�yÞ2xþy2ð1�xÞÞ

¼ � 1
2

erf
a
ffiffiffiffi
N
p
ðx� yÞffiffiffi

2
p

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2xyþ xþ y2Þ

p
 !

:

(D.34)

Thus, we obtain

wNðyjxÞ ¼ oyWNðyjxÞ ¼
ffiffiffiffi
N
p ffiffiffiffiffiffi

1
2p

r
cxð1� xÞ

exp � c2Nðx�yÞ2
2ð�2xyþxþy2Þ

� �
ð�2xyþ xþ y2Þ3=2

:

(D.35)

where c � a=b. For the Pareto distribution,
c ¼ a

a�1

	 �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
ða�1Þ2ða�2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða� 2Þ

p
.

For jx� yj > e; wNðyjxÞ becomes exponentially small as N
becomes large, and so the jump term does not exist in the asymp-
totic dynamics; wðyjxÞ ¼ 0. For jx� yj < e, we can approximate
wNðyjxÞ as

wNðyjxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc2

2pxð1� xÞ

s
exp � c2Nðx� yÞ2

2xð1� xÞ

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pR2

p e�
ðx�yÞ2

2R2 ;

(D.36)

where R2 ¼ xð1�xÞ
c2N . From the symmetry y� x! �ðy� xÞ of wNðyjxÞ,

the advection is zero. Finally, the diffusion is evaluated as

ð
jx�yj< e

dyðx� yÞ2wNðyjxÞ ¼ R R erf
effiffiffi
2
p

R

� �
�

ffiffiffi
2
p

r
ee�

e2

2R2

 !

 R2

¼ xð1� xÞ
c2N

:

(D.37)

Thus, by re-scaling time as s ¼ t
c2N, we obtain

D ¼ xð1� xÞ; (D.38)

which corresponds to the Wright–Fisher diffusion of a population
of effective size Ne ¼ Nc2 ¼ Naða� 2Þ. Notice Ne ! 0 as a! 2, in-
dicating that the concept of the effective population size breaks
down when the variance of the offspring distribution diverges.

Appendix E: From Lambda-Fleming-Viot
Generator to differential Chapman–
Kolmogorov equation
In Appendix D, the jump density wðyjxÞ is derived from the gener-
alized Wright–Fisher sampling, Equation 13 in the main text.
Here, we present another more formal derivation of the jump
density wðyjxÞ for 1 < a < 2. See Hallatschek (2018) for the case
a¼ 1.

Jump density for general K measure
The backward generator of the K coalescent process for the bial-
lelic model (see, e.g., Etheridge et al. 2010; Griffiths 2014) is given
by

‘Gsðxjx0Þ ¼
ð1

0
ðx0Gsðxjx0 þ ð1� x0ÞkÞ � Gsðxjx0Þ

þ ð1� x0ÞGsðxjx0 � x0kÞÞ
KðdkÞ

k2 : (E.1)

This can be rewritten as a sum of two terms:

LGsðxjx0Þ ¼ Aþ B; (E.2)

where

A ¼ x0

ð1

0
ðGsðxjx0 þ ð1� x0ÞkÞ � Gsðxjx0Þ � ð1� x0Þkox0 Gsðxjx0ÞÞ

KðdkÞ
k2 ;

(E.3)

B ¼ ð1� x0Þ
ð1

0
ðGsðxjx0 � x0kÞ � Gsðxjx0Þ þ x0kox0 Gsðxjx0ÞÞ

KðdkÞ
k2 :

(E.4)

We introduce the integration variable x0 � x0 þ ð1� x0Þk for A
and x0 � x0 � x0k for B, respectively. By writing

KðdkÞ
k2 ¼ lðkÞ

k2 dk; (E.5)

A and B become
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A ¼ x0ð1� x0Þ
ð1

x0

ðGsðxjx0Þ � Gsðxjx0Þ

� ðx0 � x0Þox0 Gsðxjx0ÞÞ
l x0�x0

1�x0

� �
ðx0 � x0Þ2

dx0; (E.6)

B ¼ x0ð1� x0Þ
ðx0

0
ðGsðxjx0Þ � Gsðxjx0Þ

� ðx0 � x0Þox0 Gsðxjx0ÞÞ
l x0�x0

x0

� �
ðx0 � x0Þ2

dx0: (E.7)

Defining the jump kernel wðxjx0Þ as

wðx0jx0Þ ¼

x0ð1� x0Þ
ðx0 � x0Þ2

l
x0 � x0

1� x0

� �
ðx0 > x0Þ;

x0ð1� x0Þ
ðx0 � x0Þ2

l
x0 � x0

x0

� �
ðx0 < x0Þ;

8>>><
>>>:

(E.8)

we can formally rewrite the generator as

LGsðxjx0Þ ¼ Vðx0Þox0 Gsðxjx0Þ þ PV
ð1

0
wðx0jx0Þ½Gsðxjx0Þ � Gsðxjx0Þ�dx0;

(E.9)

where

Vðx0Þ ¼ �PV
ð1

0
dx0wðx0jx0Þðx0 � x0Þ: (E.10)

When the measure is the Beta distribution Beta ða;2� aÞ
We take the Beta ða; 2� aÞ distribution as the K measure,

which corresponds to the descendant distribution considered in
this study, �1=u1þa:

KðdkÞ
k2 ¼ lðkÞdk

k2 ¼ kþ1�að1� kÞa�1

Bða; 2� aÞ
dk

k2 ¼
k�1�að1� kÞa�1

Bða; 2� aÞ dk: (E.11)

With this measure, A and B become

A ¼ x0ð1� x0Þ
Bða; 2� aÞ

ð1

x0

dx0½Gsðxjx0Þ � Gsðxjx0Þ

� ðx0 � x0Þox0 Gsðxjx0Þ�ðx0 � x0Þ�1�að1� x0Þa�1; (E.12)

B ¼ x0ð1� x0Þ
Bða; 2� aÞ

ðx0

0
dx0½Gsðxjx0Þ � Gsðxjx0Þ

� ðx0 � x0Þox0 Gsðxjx0Þ�ðx0 � x0Þ�1�ax0a�1: (E.13)

Note that the integrals A and B are convergent for a 2 ð0; 2Þ, be-
cause, near x0 � x0, the terms inside ½� � �� are Oððx0 � x0Þ2Þ and so
the integrands are Oðjx0 � x0j1�aÞ. The jump kernel is given by

wðx0jx0Þ ¼

x0ð1� x0Þ
Bða; 2� aÞ ðx

0 � x0Þ�1�að1� x0Þa�1 ðx0 > x0Þ
x0ð1� x0Þ
Bða; 2� aÞ ðx0 � x0Þ�1�aðx0Þa�1 ðx0 < x0Þ:

8>><
>>: (E.14)

When 1 < a < 2, this density agrees with Equation 21 of the main
text (up to a proportionality constant). The advection is given by

Vðx0Þ ¼ �PV
Ð 1
0 dx0wðx0jx0Þðx0 � x0Þ

¼ x0ð1� x0Þ
Bða; 2� aÞ

ðx0�0

0
dx0ðx0 � x0Þ�ax0a�1 �

ð1

x0þ0
dx0ðx0 � x0Þ�að1� x0Þa�1Þ:

 

(E.15)

Note that, when a > 1, the limit lime!0
Ð x0�e

0 þ
Ð 1
x0þe

in Equation

E.15 does not exist, although this divergence is rather formal
since there exists a natural cutoff e � 1

N for a finite-size popula-
tion.

Appendix F: The transition density for the
differential Chapman–Kolmogorov equation
for 1<a<2
Here we derive the short-time transition density given in
Equations 23 and 24 and determine gðnÞ in the scaling ansatz
given in Equation 39.

The short-time transition density
Before discussing the CK equation in Equation 18, it is instructive
to start from the simple diffusion equation,

osPðx; sÞ ¼ Do2
xPðx; sÞ; (F.1)

with the initial condition Pðx; s ¼ 0Þ ¼ dðx� x0Þ. The solution of
this initial value problem is given by

PðDx; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð2DsÞ

p expð� Dx2

2ð2DsÞ Þ; (F.2)

which is usually derived from the Laplace-Fourier transforma-
tion. However, this solution can also be obtained by using
the central limit theorem: Equation F.1 is equivalent to a
Brownian motion where jumps X! X6a occur with rate m

2 ,
where a and m are related with D via D ¼ a2m

2 . Since n 
 ms

jumps occur in time s, the displacement is approximately given
by DXðsÞ 


Pn
i¼1 li where li ¼ 6a. Then, from the central limit

theorem, DXðsÞ is distributed according to the normal distribu-
tion with mean nhlii ¼ 0 and variance nhl2i i ¼ ðmsÞa2 ¼ 2Ds,
namely, Equation F.2. Note that, even if the diffusion constant
depends on x, the solution in Equation F.2 (with D! Dðx0Þ) is
valid in short times.

Essentially the same argument can be applied to the CK dy-
namics, except that the generalized central limit theorem
should be employed since the variance of jump sizes is diver-
gent in the case of the CK dynamics. Suppose that the initial
density is given by Pðx0; s ¼ 0Þ ¼ dðx0 � xÞ (for notational simplic-
ity, the subscript 0 on x is dropped). In the CK dynamics, the
frequency change DXðsÞ ¼ XðsÞ � x is caused by the bias V(x) in
Equation 20 and by stochastic jumps. The rate of a frequency-
increasing jump and that of a frequency-decreasing jump are
given by

WþðxÞ ¼
ð1

xþe

wðx0jxÞdx0 ¼ x
a

1� x
e

� �a

; (F.3)

W�ðxÞ ¼
ðx�e

0
wðx0jxÞdx0 ¼ 1� x

a
x
e

� �a

; (F.4)

respectively. Therefore, the expected number n of jump events in
time s is given by

n ¼ ðW� þWþÞs: (F.5)

Because randomness in the number of jump events is negligible
compared to that in jump sizes, it can be assumed that exactly n
jumps occur in time s. Then, the displacement DXðsÞ ¼ XðsÞ � x
can be written as
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DXðsÞ ¼ VðxÞsþ
Xn

i¼1

li; (F.6)

where li 2 ½�x;�e� [ ½e; 1� x� denotes the displacement due to the
i-th jump. For small s, wðyjxðs0ÞÞ 
 wðyjxÞ for 0 < s0 < s, which
means that l1; . . . ; ln are independent and identically distributed.
From Equation 19, each li is approximately sampled from the fol-
lowing power-law distribution,

PðlÞ ¼

Wþ
Wþ þW�

eaa
laþ1 ðl 2 ½þe;þ1ÞÞ

0 ðl 2 ð�e;þeÞÞ
W�

Wþ þW�

eaa

jljaþ1 ðl 2 ð�1;�e�Þ
;

8>>>><
>>>>:

(F.7)

where the factor Wþ
W�þWþ

(resp. W�
W�þWþ

) represents the probability
that a given jump is frequency-increasing (resp. frequency-
decreasing). P(l) is normalized as

Ð1
�1 PðlÞdl ¼ 1. Note that, in

Equation F.7, the original range ½�x;�e� [ ½e; 1� x� of l has been
extended to ½ð�1;�e� [ ½e;1Þ. Under this modification, the vari-
ance hxðsÞ2i is no longer well-defined. However, this modification
does not alter short-time properties of typical events, because the
presence of the boundaries at x¼ 0, 1 is not important for them.

By noting that P(l) has a divergent variance and that the num-
ber of jumps is n 
 s

ea � 1 even for small s (as e! þ0), the gener-
alized central limit theorem states that the sum

Pn
i¼1

li in Equation
F.6 obeys an a-stable distribution. The stable distribution is char-
acterized by hli; b; c given below (see, e.g., Uchaikin and Zolotarev
2011): The mean hli is

hli ¼Wþ �W�
Wþ þW�

a
a� 1

e ¼ xð1� xÞa � xað1� xÞ
xað1� xÞ þ xð1� xÞa

a
a� 1

e: (F.8)

Asymptotically, P(l) satisfies

Ð1
l Pðl0Þdl0 ¼ Wþ

W� þWþ

ea

la
� cþ

la
ðl!1Þ;

Ð l
�1 Pðl0Þdl0 ¼ W�

W� þWþ

ea

jlja �
c�
jlja ðl! �1Þ:

(F.9)

Note c� þ cþ ¼ ea. The parameters c and b are determined
from c6;

c � pðcþ þ c�Þn
2CðaÞ sin pa

2

 !1
a

¼ e
pn

2CðaÞ sin pa
2

� �1
a

¼
 

s
pðxð1� xÞa þ ð1� xÞxaÞ

2Cðaþ 1Þ sin pa
2

!1
a

(F.10)

b � cþ � c�
cþ þ c�

¼Wþ �W�
Wþ þW�

¼ xð1� xÞa � xað1� xÞ
xað1� xÞ þ xð1� xÞa : (F.11)

Then, from the generalized central limit theorem, the random
variable,

Z �
Pn

i¼1 li � nhli
c

; (F.12)

has the following characteristic function,

heikZi ¼
ð

eikzPZðzÞdz ¼e!þ0 exp½�jkjað1� ib tan
pa
2

signkÞ�: (F.13)

We can determine the characteristic function for Dx, using
Equation F.13 and the relation

DXðsÞ ¼ VðxÞsþ cZþ nhli; (F.14)

which follows from Equations F.6 and F.12. While V(x) and hli are
divergent in the limit e!þ0, we can show, by using Equation F.8 and
VðxÞ ¼ �

Ð
jx�x0 j>e

dx0ðx0 � xÞwðx0jxÞ 
 1
ea�1

1
a�1 xað1� xÞ � xð1� xÞaÞ
	

,
that these divergent terms exactly cancel out each other.
Therefore, the displacement is simplified as

DXðsÞ ¼ cZ: (F.15)

Equations 24 and 23 in the main text are the same as
Equations F.15 and F.13 (with the replacement of x! x0). By
substituting this into Equation F.13, we obtain the characteristic
function of the allele frequency XðsÞ;

heikXðsÞi ¼
ð

eikx0Pðx0; sjx0Þdx0

¼ exp½ikx0 � jcðx0Þkjað1� ibðx0Þ tan
pa
2

signkÞ�: (F.16)

The scaling ansatz for the long-time
transition density in Equation 39
Consider the initial distribution Pðx; s ¼ 0Þ ¼ dðx� x0Þ with x0 	 1.
After some time, the distribution spreads over the region x	 1
with a peak at the extinction boundary x¼ 0. As presented in
Equation 37 of the main text, up to a constant prefactor, Pðx; sÞ
takes the following form

Pðx; sÞ � s�2ggðnÞ;

where g ¼ ða� 1Þ�1 and n ¼ x
sg. Here, we present an analytic

argument to determine gðnÞ.
Equation 20 can be rewritten as

oP
os
¼
ð
jDj< e

dDðfDðx� DÞPðx� D; sÞ � fDðxÞPðx; sÞÞ

þ o

ox

ð
jDj< e

dDðfDðxÞPðx; sÞÞ; (F.17)

where fDðxÞ � wðxþ DjxÞ given by Equation 21. For x	 1; fDðxÞ is
approximately given by

fDðxÞ ¼

x

Daþ1 ðD > 0Þ

xðxþ DÞa�1

Daþ1 ðD < 0Þ
:

8><
>: (F.18)

We substitute the ansatz Pðx; sÞ � s�2ggðnÞ into the above CK
equation. The left-hand side of the CK equation becomes

LHS ¼ �2gs�2g�1gðnÞ � gs�2g�1g0ðnÞn; (F.19)

which is proportional to s�2g�1 ¼ s�
aþ1
a�1. The right-hand side is

decomposed into the integrals over D > 0 and those over D < 0.
We can show that the former is proportional to s�

aþ1
a�1, while the

latter is proportional to s�
2

a�1.3 Since the extinction time for the
initial frequency x0 	 1 is much shorter than the coalescent
timescale, we can assume s	 1, which implies that the integrals

3 For example, one of the integrals over D > 0 isÐ
D>0dDfDðxÞP ðxÞ ¼

Ð
D>0dD

x
Daþ1 s�2ggðnÞ ¼ s�

aþ1
a�1
Ð
d>0dd

n
daþ1 gðnÞ;

while one of the integrals over D < 0 isÐ
D<0dDfDðxÞP ðxÞ ¼

Ð
D<0dD

xðxþDÞa�1

Daþ1 s�2ggðnÞ ¼ s�
2

a�1
Ð
d>0dd

n
daþ1 gðnÞ;

where we have changed the integration variable from D to d ¼ D
sg.

T. Okada and O. Hallatschek | 23



over D > 0 are negligible compared to those over D > 0. By evalu-
ating the integrals over D > 0 using the scaling form of Pðx; sÞ and
comparing them with Equation F.19, we have

�gð2gðnÞ þ ng0ðnÞÞ ¼
ð1

0

dd

daþ1 ððn� dÞgðn� dÞHðn� dÞ � ngðnÞ

þ d
d
dn

ngðnÞÞÞ;ð (F.20)

where Hð�Þ is the Heaviside step function. Note that the variable
of integration has been changed from D to d ¼ D

sg, and the upper
bound in the integral has been extended into þ1, to make the
equation analytically tractable. It is convenient to express
Equation F.20 in terms of UðnÞ � ngðnÞ;

�g
UðnÞ

n
þ U0ðnÞÞ ¼

ð1
0

dd

daþ1 ðUðn� dÞHðn� dÞ � UðnÞ þ dU0ðnÞ
� �

:

(F.21)

The solution of the integro-differential equation in Equation
F.21 can be obtained as a series expansion. Assume, for small n,

UðnÞ ¼ c1n
b þ � � � ; (F.22)

where c1 is a normalization and the exponent of the leading term
is denoted by b 2 ð0; 1Þ. Here, b < 1 is required since we are con-
sidering the situation where Pðx; sÞ is monotonically decreasing in
x, while b > 0 is required to make Pðx; sÞ normalizable. By
substituting Equation F.22 into Equation F.21, we have

� bþ 1
a� 1

1

n1�b þ � � � ¼
Cð�aÞCð1þ bÞ
Cð1� aþ bÞ

1

na�b þ � � � : (F.23)

Since 1
n1�b 	 1

na�b for n	 1, in order for the two sides to be bal-
anced, the coefficient Cð�aÞCð1þbÞ

Cð1�aþbÞ needs to be zero, which is possible
only when Cð1� aþ bÞ diverges. Since 1 < a < 2 and 0 < b < 1,
we can conclude b ¼ a� 1. Therefore, the leading term of gðnÞ is
given by

gðnÞ ¼ c1

n2�a þ � � � ðn	 1Þ: (F.24)

More generally, by starting from the ansatz,

UðnÞ ¼
X1
m¼1

cmnða�1Þm; (F.25)

the coefficients c2; c3; . . . can be determined iteratively:

cmþ1 ¼ �
1þ ða� 1Þm

a� 1
Cðmða� 1ÞÞ

Cð�aÞCðmða� 1Þ þ aÞ cm ðm ¼ 1; 2; . . .Þ:

(F.26)

By using this iteratively, we can express UðnÞ as

UðnÞ ¼ c1

X1
m¼1

ð�1Þmþ1 Cðaþ 1Þ a
a�1

	 �
m�1

aða� 1ÞmCð�aÞm�1Cðmþ 1ÞCðmða� 1ÞÞ
nða�1Þm;

(F.27)

where a
a�1

	 �
m�1

is the Pochhammer symbol, ðqÞn ¼ Cðqþ nÞ=CðqÞ.
The analytic expression of gðnÞ can be obtained from this using
gðnÞ ¼ UðnÞ

n .

On the other hand, for n� 1, we expect that gðnÞ decreases in
the same way as the offspring distribution does;

gðnÞ � 1

naþ1 þ � � � ðn� 1Þ: (F.28)

Therefore, we expect there is a crossover point nc such that gðnÞ �
1

n2�a þ � � � for n	 nc and gðnÞ � 1
naþ1 þ � � � for n� nc. The scaling form

for n� nc can indeed be confirmed by considering the following
ansatz for UðnÞ,

UðnÞ ¼ c1n
a�1 þ � � � ðn < ncÞ

c0n�a0 þ � � � ðn > ncÞ
;



(F.29)

where c0 is a normalization and a0 is an exponent to be deter-
mined. Substituting this ansatz into Equation F.21, we can show
a0 ¼ a, leading to gðnÞ � 1

naþ1 þ � � � for n > nc.
Finally, we remark that, while Equation F.27 is derived as-

suming n	 1, the series converges for any n > 0. This indicates
that the scaling form gðnÞ � 1

naþ1 þ � � � for large n should directly
follow from a resummation of the infinite series in Equation
F.27. In fact, numerical evaluation of a finite truncation of the
series indicates the crossover behavior Equation F.29 (see
Figure F1).

Appendix G: Site frequency spectra in pres-
ence of selection
Here, we argue the effect of the genuine selection on the SFS by
using the effective bias when 1 < a < 2. As discussed in the
main text, there is a crossover point xc, shown in Equation 39, be-
low which the selection is negligible compared to the effective
bias (see Figure 13). Thus, we can expect that the SFS becomes in-
dependent of the selective advantage r for a sufficiently small
frequency x. Similarly, for the high-frequency end 1� x	 1, the
selection is negligible compared with the effective bias.
Therefore, we expect that fSFSðxÞ � 1

Veff ðxÞ / ð1� xÞ�aþ2 even in the
presence of natural selection. In particular, the exponent is inde-
pendent of r. Figure G1 shows the numerical results when
a ¼ 1:5. As x approaches 0, the SFS becomes independent of the
selective advantage r. For frequent variants 1� x	 1, the SFS
can be fitted well by ð1� xÞ�aþ2, while the magnitude of the SFS
increases with r. A similar result can be obtained analytically
when a¼ 1 (see Appendix A).

Figure F1 The infinite series in Equation F.27 is evaluated numerically by
truncating at m¼ 150 and using the van Wijngaarden transformation
(solid line). a ¼ 1:7 is used. The dashed blue and red lines represent the
asymptotic behaviors given in Equation F.29.
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Appendix H: Derivation of the rate of
adaptation in Equation 46 of the main text
Here, we conjecture the rate of adaptation for an asexual popula-
tion with a broad offspring distribution (1 < a < 2) in the clonal-
interference regime, using a self-consistency condition argument
described in Desai and Fisher (2007).

We assume that mutations have a fixed effect s much larger
than the mutation rate lB at which they arise. First, we consider
the dynamics of the fittest sub-population that becomes estab-
lished at the nose of the fitness wave. We can estimate the size of
the sub-population when established from the establishment
probability of a single fittest mutant;

Nest �
1

PfixðqsÞ ; (H.1)

where qs (q 2 N) is the fitness lead of the sub-population com-
pared with the mean of the whole population, and the fixation
probability is given by Equation 42, Pfix � ðqsÞ

1
a�1. In the time this

sub-population is seeded and becomes established, the mean fit-
ness should increase by s. This implies that, after its establish-
ment, this sub-population will initially grow exponentially at rate
ðq� 1Þs. The growth rate will slow down to 0 when it fixes.
Therefore, the time from establishment to fixation can be esti-
mated as

tfix �
1

ðq� 1Þs=2
ln

N
Nest
¼ 1
ðq� 1Þs=2

lnNPfixðqsÞ (H.2)

where ðq� 1Þs=2 is its average growth rate between the establish-
ment and fixation. Thus, the rate of adaptation is given by

R ¼ ðq� 1Þs
tfix

� ððq� 1ÞsÞ2

2lnNPfixðqsÞ : (H.3)

Second, we focus on successive events of establishments at the
edge of the fitness wave. We define test as the mean time interval
between two successive establishments. An established sub-
population grows like nðtÞ � Nesteðq�1Þst, from which the next event
of establishment is produced with rate nðtÞlBPfixðqsÞ. Therefore,
test can be estimated from

lBPfixðqsÞ
ðtest

0
nðtÞdt 
 1; (H.4)

which leads to test � 1
ðq�1Þs ln s

lB

h i
. Since the nose of the fitness wave

advances at a speed R ¼ s
test

, we have

R ¼ s
test
� ðq� 1Þs2

ln s
lB

: (H.5)

By comparing Equations H.3 and H.5, we obtain

q � 1þ 2lnðNPfixðqsÞÞ
ln s

lB

; R � 2s2lnðNPfixðqsÞÞ
ðln s

lB
Þ

2

: (H.6)

By substituting Pfix � ðqsÞ
1

a�1 into Equation H.6, we obtain

q � 1þ 2lnðNs
1

a�1Þ
ln s

lB

; R � 2s2lnðNs
1

a�1Þ
ðln s

lB
Þ

2

; (H.7)

where we used lnNq
1

a�1 
 lnN. In the limit a! 2, the above results
reproduce those in Desai and Fisher (2007).

The case of a¼ 1 can be discussed in a similar way. Suppose
that the population is monoclonal. The fixation probability of a
mutant is given by Pfix � N�1þs (see Equation A.25), which implies
that the establishment size is roughly given by Nest � N1�s. While
the timescale of establishment of a mutant is given by
ðlBNPfixÞ�1 ¼ ðlBNsÞ�1, the timescale of fixation is given by

Figure G1 Left: The SFS under positive selection s ¼ 0; 0:005; 0:01; 0:02, a ¼ 1:5, and N ¼ 106. Right: The SFS near x¼ 1. The straight lines are drawn
assuming SFSðxÞ / 1=ð1� xÞ2�a. The slope is almost independent of s.

T. Okada and O. Hallatschek | 25



tfix � 1
s log N

Nest
� log N. Thus, the successive selection sweeps oc-

cur if ðlBNsÞ�1 � log N, or equivalently,

lBNs log N	 1 ðsuccessive selective sweepsÞ: (H.8)

By substituting Pfix � N�1þs into Equation H.6, the rate of adapta-
tion in the clonal-interference regime is given by

R � 2s3lnN
ðln s

lB
Þ

2

: (H.9)

In the successive-sweeps regime, the adaptation rate is given
by

R ¼ slBN� PfixðsÞ � slBNs: (H.10)

Note that clonal interference becomes unlikely to occur as the
offspring distribution becomes broader. For example, when a¼ 1,
the population size needs to be N� 1041 for lB ¼ 10�4; s ¼ 0:05 to
satisfy lBNs log N� 1.

Figure H1 shows the numerical results of the adaptation rate R
versus the selection coefficient s. The parameters used in the
simulation are in the regime of clonal interference. When 1 < a,
R is approximately proportional to s2, while, when a¼ 1, R is ap-
proximately proportional to s3, which are consistent with
Equations H.6 and H.9. However, when a ¼ 1, the quantitative
agreement between the numerical result and the theoretical pre-
diction is not good, and a further investigation is needed to vali-
date Equation H.9.

Appendix I: Numerical simulations
Simulations are implemented in Cþþ with the GNU scientific
library’s random number generators. Results obtained from the
simulations are analyzed by Mathematica. The codes are freely
available upon request.

Numerical synthesis of Pareto random
variables and a-stable distribution
In order to generate the mutant frequency of the gamete pool, we need
to compute the sums of random Pareto variables,

M ¼
XNx

i¼1

ui; W ¼
XNð1�xÞ

i¼1

vi; (I.1)

where ui, vi are drawn from the Pareto distribution
PUðuÞ ¼ a=uaþ1ðu � 1Þ. One simple way to synthesize ui, vi is to

sample a number r from the uniform distribution on (0, 1) and
compute r�

1
a.

To generate the sums M, N efficiently for large N (e.g., N � 106),
we can use the generalized central limit theorem when xN and
ð1� xÞN are large. In simulations, when xN < 100, M is generated
directly by synthesizing xN random variables fuig, while, when
xN � 100, M is generated by sampling a random number f from
the a-stable distribution and then determining M ¼

P
i ui from

Equation C.1. W is generated in a similar way.
After generating M and W, the population is updated by the bi-

nomial sampling with the success probability p ¼ M
MþW (although

this sampling process can be omitted when a � 2 since the fluctu-
ations associated with the binomial sampling is negligible com-
pared to the fluctuations associated with M and N). Natural
selection and mutations are implemented by modifying the suc-
cess probability p ¼ M

MþW as

pð1þ sÞ
pð1þ sÞ þ ð1� pÞ ð1� lM!WÞ þ

ð1� pÞ
pð1þ sÞ þ ð1� pÞ lW!M; (I.2)

where lW!M is the mutation rate from the wild-type to the mu-
tant allele, and lM!W is the mutation rate in the reverse direc-
tion.

Site frequency spectrum
Since the SFS is proportional to the mean sojourn time, the SFS
can be computed numerically by generating trajectories staring
with x0 ¼ 1

N until fixation or extinction and measuring how many
times a trajectory visits a given frequency interval on average.

Numerical simulation of the model of range
expansion in the main text
We first review the numerical implementation of the range ex-
pansion model with two neutral alleles without mutations (Birzu
et al. 2018). The per capita growth rate r(n) with an Allee effect is
given by

rðnÞ ¼ r0

�
1� n

K
Þð1þ B

n
K

�
; (I.3)

where n ¼ n1 þ n2 is the sum of the two population densities, and
B is the strength of cooperativity. In each deme, there are three
types; allele 1, allele 2, and “empty.” At each time step, the config-
uration of deme x is updated by the trinomial sampling process
with

pi ¼
~ni

Kð1� rð~nÞsÞ for i ¼ 1; 2 and pempty ¼ 1� p1 � p2; (I.4)

where ~ni is the population density after migration,

~niðt; xÞ ¼
m
2

niðt; x� aÞ þ ð1�mÞniðt; xÞ þ
m
2

niðt; xþ aÞ; (I.5)

and ~n in the denominator of Equation I.4 is the sum of these den-
sities, ~n ¼ ~n1 þ ~n2, and a denotes the width of a deme. The expec-
tation value of the total density n after one time step is given by

K
X
i¼1;2

pi ¼
~n

1� rð~nÞs 

~nð1þ rð~nÞsÞ; (I.6)

which explains the denominator of Equation I.4. In the simula-
tion, a¼ 1 and s¼ 1 are used.

Figure H1 The open markers show the numerical results of R as a
function of s, while the curves show the theoretical predictions, based on
the heuristic argument. The m rate of beneficial mutations is l ¼ 10�4.
The population size is N ¼ 10100 for a¼ 1,N ¼ 1010 for a ¼ 1:5, and N ¼ 108

for the Wright–Fisher model.
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As in the standard Wright–Fisher model, a mutation process
can be introduced by using the success probabilities p0 ¼
ðp01; p02ÞT given by

p0 ¼ Up; (I.7)

where p ¼ ðp1; p2ÞT and U is a matrix representing mutational
transitions. In the case of symmetrical mutations in the main
text, U is given by

U ¼ 1� l l
l 1� l

� �
; (I.8)

This model serves as a microscopic description of our (non-
spatial) macroscopic model of the population with a broad off-
spring distribution pðU ¼ uÞ � 1

uaþ1. We can argue the relation be-
tween the parameters in the two models by comparing the
coalescent timescales. As established in Birzu et al. (2018), for a
semi-pushed wave (2 < B < 4), the coalescent timescale is given
by

Tmicro
c � N

2

ffiffiffiffiffiffiffiffiffiffi
1�cðBÞ2
p

1�
ffiffiffiffiffiffiffiffiffiffi
1�cðBÞ2
p

: (I.9)

where cðBÞ ¼ vF
v ¼ 2ð

ffiffi
B
2

q
þ

ffiffi
2
B

q
Þ�1 is the ratio of the Fisher velocity

vF ¼ 2
ffiffiffiffiffiffiffiffi
Dr0
p

to the wave velocity v ¼
ffiffiffiffiffiffiffiffi
r0D
p

ð
ffiffi
B
2

q
þ

ffiffi
2
B

q
Þ. On the other

hand, the coalescent timescale Tmacro
c in the macroscopic descrip-

tion for 1 < a < 2 is proportional to Na�1 (see Equation 15). By
comparing the exponents, a semi-pushed wave with B corre-
sponds to the macroscopic model with4

a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cðBÞ2

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cðBÞ2

q þ 1: (I.10)

For example, B¼ 3 corresponds to a ¼ 1:5. In addition, the muta-
tion rate lmicro per generation in the microscopic model and the
mutation rate lmacro per generation in the macroscopic model
should be related by lmicro � Tmicro

c � lmacro � Tmacro
c .

In the three panels (Left. Center, Right) in Figure 14B of the
main text, The following parameters are used.

• Left: B ¼ 1; l ¼ ð5� 10�4; 5� 10�5Þ; K ¼ 28000 for the micro-
scopic model, and a ¼ 1; h ¼ ð1:5; 0:15Þ for the macroscopic
model.

• Center: B ¼ 3; l ¼ ð2� 10�4; 2� 10�5Þ; K ¼ 35000 for the mi-
croscopic model, and a ¼ 1:5; h ¼ ð1:6; 0:16Þ for the macro-
scopic model.

• Right: B ¼ 8; l ¼ ð1� 10�5; 1� 10�6Þ; K ¼ 57000 for the micro-
scopic model, and the Wright–Fisher model, h ¼ ð2:4; 0:24Þ for
the macroscopic model.

In all of the three cases, the growth rate r0
s ¼ 0:01 and the migra-

tion probability m ¼ 2Ds
a2 ¼ 0:125 are used in the microscopic

model, and the population size N ¼ 105 is used in the macro-
scopic model. Note that, to compare the microscopic model with
the macroscopic model, the value of the carrying capacity K for
each case is chosen such that the size of the front population K

k,

where k is the spatial decay rate of the population density,5 ap-
proximately agrees with the population size N ¼ 105 in the mac-
roscopic model.

Appendix J: Areas swept by trajectories

J-1: A scaling argument on area distributions
Consider frequency trajectories that depart from a single mutant
x0 ¼ 1

N and are eventually absorbed either at x¼ 0 or at x¼ 1. For
each of such trajectories, we can define the area in x� s-space
swept by the trajectory (see Figure J1),

A ¼
ðsabs

0
xðsÞds; (J.1)

where sabs is the absorption time of the trajectory. While this
quantity is defined for a population without spatial structure, we
expect that it has a natural interpretation in a model of range ex-
pansion as a spatial integration over the mutant frequency (i.e.,
the abundance of the mutant type), since s in Equation J.1 is re-
lated with the spatial position of the traveling wave in the comov-
ing frame.

Here, we examine how the area A defined in Equation J.1
depends on the exponent a of the offspring distribution. The left
panel of Figure J2 shows the numerical results of the area distri-
bution p(A) for a ¼ 1; 1:5, and the Wright–Fisher model (corre-
sponding to a � 2). In a wide range of A, areas are distributed
according to pðAÞ � 1

NA1þ1
a
.

Focusing on small areas, which correspond to extinct trajecto-
ries, this power-law behavior can be rationalized again from a
scaling argument: First, by using Equation 3, a trajectory whose
maximum frequency is x
 	 1 sweeps an area roughly given by
A � x
 � sext � xa


 (see Figure J1), i.e., x
 � A
1
a. Second, from the

neutrality, the cumulative probability PrðX
 > x
Þ that a single
mutant achieves a frequency larger than x
 before absorption is
estimated as PrðX
 > x
Þ � 1

Nx

. Hence, the density pðx
Þ is given by

pðx
Þ ¼ � d
dx


PrðX
 > x
Þ � 1
Nx2


. Combining these two results, we

can estimate the area distribution p(A) as

pðAÞ � pðx
Þ
dx

dA
j
x
¼A

1
a
� 1

Nx2


ðx
Þ�aþ1j

x
¼A
1
a
� 1

N
A�1�1

a: (J.2)

When a! 2� 0 (the Wright–Fisher limit), the distribution
becomes pðAÞ � 1

N A�
3
2, which can be analytically confirmed by

solving a backward diffusion equation of the Wright–Fisher diffu-
sion (see Appendix J-2).

Figure J1 An area A swept by a trajectory that eventually goes extinct and
an area A0 swept by a trajectories that eventually gets fixed are illustrated.
sabs and s0abs are the extinction time and the fixation time, respectively.

4 Note that the definition of the parameter aH in Birzu et al. (2018) is differ-
ent from our definition of a. For 1 < a < 2, which corresponds to the
semi-pushed wave region �1 < aH < 0, the two definitions are related
by �aH ¼ a� 1.

5 Specifically, the rate k is given by k ¼
ffiffiffiffi
r0
D

p
for 0 < B < 2 and by k ¼

ffiffiffiffiffiffi
r0B
2D

q
for B � 2 (Birzu et al. 2018).
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The numerical results indicate that, when 1 � a < 2, there is
an uptick in the area distribution p(A), which comes from fixed
trajectories (see the case of a¼ 1 in the right panel of Figure J2).
The uptick becomes less pronounced as a increases. For the
Wright–Fisher model, we can analytically prove that p(A) mono-
tonically decreases with A.

J-2: Area distribution in the Wright–Fisher
model
Here, we derive an analytical result of Equation J.1 for the
Wright–Fisher diffusion process.

Consider a Langevin equation

dX
ds
¼ vðXÞ þ nðsÞ; (J.3)

with hnðsÞnðs0Þi ¼ 2DðxÞdðs� s0Þ. Assume the initial value Xðs ¼
0Þ ¼ x0 2 ð0; 1Þ and the absorbing boundaries at X¼ 0, 1. For a
given trajectory departing from x0 and ending at either one of the
boundaries, we consider the “area” defined by

A ¼
ðsabs

0
XðsÞds : (J.4)

where sabs is the absorption time.
The area distribution PðA; x0Þ for a given initial condition

Xð0Þ ¼ x0 obeys a backward equation. To show this, we discretize
the dynamics;

DX ¼ vhþW (J.5)

where h denotes a short time interval and hWiWji ¼ 2Dhdi;j. The
transition density is given by

Tðx0 þ Dxjx0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð2Dðx0ÞhÞ
p expð� ðDx� vðx0ÞhÞ2

2ð2Dðx0ÞhÞ
Þ: (J.6)

Note that

hDxix0
¼ vðx0Þh;

hðDxÞ2ix0
¼ vðx0Þhþ 2Dðx0Þh:

(J.7)

By separating a trajectory into the initial step and the remaining
part, we have

PðA; x0Þ ¼
ð

dðDxÞTðx0 þ Dxjx0ÞPðA� x0h; x0 þ DxÞ þ oðhÞ; (J.8)

By Taylor-expanding PðA� x0h; x0 þ DxÞ, we have

PðA� x0h; x0 þ DxÞ ¼ PðA; x0Þ �
oP
oA

x0hþ oP
ox0

Dx

þ 1
2

o2P
oA2 x0h2 � o2P

oAox0
x0hDxþ 1

2
oP
ox0

Dx2 þ � � �

¼ PðA; x0Þ �
oP
oA

x0hþ oP
ox0

Dxþ 1
2

oP
ox0

Dx2 þ oðhÞ:

(J.9)

Therefore, Equation J.8 becomes

PðA; x0Þ ¼ PðA; x0Þ �
oP
oA

x0hþ oP
ox0
hDxix0

þ 1
2

o2P

ox2
0

hDx2ix0
þ oðhÞ:

(J.10)

By using Equation J.7, we obtain

x0
oP
oA
¼ vðx0Þ

oP
ox0
þ Dðx0Þ

o2P

ox2
0

: (J.11)

More generally, it can be shown that, for the following in-
tegral,

~A ¼
ðT


0
dt f ðXÞ; (J.12)

the distribution Pð~A; x0Þ satisfies

f ðx0Þ
oP

o~A
¼ vðx0Þ

oP
ox0
þ Dðx0Þ

o2P

ox2
0

: (J.13)

Figure J2 Left: The area distribution p(A) for a ¼ 1; 1:5 and the Wright–Fisher model. The straight lines show the scaling-argument predictions,
pðAÞ / 1

A1þ1
a
. N ¼ 106. Right: The tail of p(A) in the large-A region.
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In the neutral Wright–Fisher model, vðx0Þ ¼ 0 and
Dðx0Þ ¼ x0ð1� x0Þ. The backward equation in Equation J.11 is
given by

oP
oA
¼ ð1� x0Þ

o2P

ox2
0

: (J.14)

From this equation, it follows that PðAjx0Þ monotonically
decreases with A0 because the spectrum of the operator o2

x0
�

ðikÞ2 is non-positive.
We can determine the area distribution p(A) analytically at

least for small A. We are interested in the invasion by a single
mutant, x0 ¼ 1

N	 1. Furthermore, for the purpose of determining
the behavior for small areas, we expect that we can ignore the
presence of the high-frequency boundary x¼ 1 and solve the
problem on the semi-infinite line x0 2 ð0;1Þ. Therefore, we con-
sider the following problem:

oP
oA
¼ o2P

ox2
0

;

PðA; x0 ¼ 0Þ ¼ gðAÞ
PðA ¼ 0; x0Þ ¼ 0 for x0 > 0

lim
x0!1

PðA; x0Þ ¼ 0

(J.15)

In our case, gðAÞ ¼ dðAÞ, because the trajectory starting from x0 ¼
0 has A¼ 0.

For a function f(A) of A, we write the Laplace transformation as

f̂ ðsÞ ¼ ‘½f ðAÞ� ¼
ð1

0
dsf ðtÞe�sA: (J.16)

By taking the Laplace transform with respect to A, we have

sP̂ðs; x0Þ ¼
o2P̂ðs; x0Þ

ox2
0

; P̂ðs; 0Þ ¼ ĝðsÞ: (J.17)

The solution is

P̂ðs; xÞ ¼ e�x0
ffiffi
s
p

ĝðsÞ: (J.18)

We take the inverse of the Laplace transformation,

PðA; x0Þ ¼ ‘�1ðe�x0
ffiffi
s
p

ĝðsÞÞ: (J.19)

From the convolution theorem, this is given by the convolution of
‘�1ðe�x0

ffiffi
s
p
Þ ¼ x0

2
ffiffi
p
p

A
3
2
e�

x2
0

4A and g(A);

PðA; x0Þ ¼
ðA

0
dA0

x0

2
ffiffiffi
p
p

A032
e�

x2
0

4A0gðA�A0Þ: (J.20)

When gðAÞ ¼ dðAÞ, we have

PðA; x0Þ ¼
x0

2
ffiffiffi
p
p

A
3
2

e�
x2
0

4A: (J.21)

Especially, when x0 ¼ 1=N, we have

PðA; x0 ¼
1
N
Þ¼ 1

2
ffiffiffi
p
p

NA
3
2

e�
1

4AN2
 1

2
ffiffiffi
p
p

NA
3
2

; (J.22)

where we have used e�
1

4AN2 
 1 since only areas larger than x0 �
ds � 1

N� 1
N ¼ 1

N2 are meaningful for a finite-size population.

Appendix K: Forward-in-time behaviors of
the Eldon–Wakeley model
Here, we present simulation results of the median allele fre-
quency and the median and mean square displacements in
the Eldon–Wakeley model (Eldon and Wakeley 2006) (see also
Der et al. 2012). As shown below, unlike our model, these
quantities do not exhibit sustained power-law behaviors, be-
cause of the existence of a characteristic size w in the off-
spring distribution.

We consider the neutral Eldon–Wakeley model, where the fol-
lowing offspring distribution PUðuÞ is given by [see Equation (7) in
Eldon and Wakeley (2006)];

PUðuÞ ¼ ð1� N�cÞdu;2 þ N�cdu;wN; (K.1)

where da;b is the Kronecker delta. w 2 ð0; 1Þ and the parameters
characterizing how large and frequent ‘sweepstakes’ are.

The limiting process as N!1 depends on c [see Equation (9)
in Der et al. (2012)]. For c > 2, the process is the same as the
Wright–Fisher diffusion, while, for c < 2, it is described by a
jump process whose backward-time generator ‘

†
is given by

L
†
Pðx; sÞ ¼ xPðxþ wð1� xÞ; sÞ � Pðx; sÞ þ ð1� xÞPðx� wx; sÞ; (K.2)

where the continuous time s is related with generations t by
s ¼ t=Nc. The first term of the generator represents a frequency-
increasing jump x! xþ wð1� xÞ with rate x, while the last one

Figure K1 Simulation results of the Eldon-Wakeley model. (A) The median frequency of the Eldon-Wakeley model (red solid) and XmedðtÞ ¼ x0e�wN�ct

(black dashed). N ¼ 103, c¼ 1, w ¼ 0:1; x0 ¼ 0:05. (B) The mean and median square displacements (blue and red curves, receptively). The black dashed
line / 1=t indicates the expectation from the Wright–Fisher (or Moran) model. N ¼ 103, c¼ 1, w ¼ 0:2; x0 ¼ 0:5.
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represents a frequency-decreasing jump x! x� wx with rate
1� x.

Figure K1 shows numerical simulation results for the median
of allele frequencies and the median/mean square displace-
ments. The median frequency for a small initial frequency x0 	 1
is well described by XmedðtÞ ¼ x0e�wN�ct (Figure K1A). This expo-
nential decay can be expected from the generator in Equation
K.2; for x	 1, frequency-increasing jumps (with rate x) are un-
likely to occur, and an allele frequency typically decreases by

�wx with rate 1� x 
 1. Thus, the median frequency in the
Eldon–Wakeley model does not exhibit a power-law behavior.

As for frequency fluctuations, while the mean SD exhibits a nor-
mal diffusion as in the Moran (or the Wright–Fisher) model, i.e.,
Mean SD / t, the median SD does not exhibit a sustained power-
law behavior (Figure K1B); in a short- and long-time scales, the me-
dian SD exhibits a normal diffusion (Median SD / t), but, for an in-
termediate timescale (t � 500� 1000 generations in the figure), it
increases more rapidly than expected from a normal diffusion.
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