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Brain network coupling associated with cognitive
performance varies as a function of a child’s
environment in the ABCD study
Monica E. Ellwood-Lowe 1✉, Susan Whitfield-Gabrieli2 & Silvia A. Bunge 1,3

Prior research indicates that lower resting-state functional coupling between two brain

networks, lateral frontoparietal network (LFPN) and default mode network (DMN), relates to

cognitive test performance, for children and adults. However, most of the research that led to

this conclusion has been conducted with non-representative samples of individuals from

higher-income backgrounds, and so further studies including participants from a broader

range of socioeconomic backgrounds are required. Here, in a pre-registered study, we ana-

lyzed resting-state fMRI from 6839 children ages 9–10 years from the ABCD dataset. For

children from households defined as being above poverty (family of 4 with income >

$25,000, or family of 5+ with income > $35,000), we replicated prior findings; that is, we

found that better performance on cognitive tests correlated with weaker LFPN-DMN cou-

pling. For children from households defined as being in poverty, the direction of association

was reversed, on average: better performance was instead directionally related to stronger

LFPN-DMN connectivity, though there was considerable variability. Among children in

households below poverty, the direction of this association was predicted in part by features

of their environments, such as school type and parent-reported neighborhood safety. These

results highlight the importance of including representative samples in studies of child

cognitive development.
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In the United States, one-fifth of children are estimated to live
below the poverty line (defined based on whether their income
is high enough to meet their basic needs, for a household of

their size1). Relative to children living just above poverty, these
children are least likely to have access to the federal social safety
net (e.g., government-provided medical care, tax credits, or food
supplements), and they are at heightened risk for poor health and
educational outcomes2,3. Compared to their peers whose families
have higher incomes, children living in poverty tend to perform
worse on tests of cognitive functioning4. However, such broad
comparisons obscure substantial variability within the group of
children from households in poverty, a large segment of whom
score on par with their higher-income peers on canonical cog-
nitive tests. Here, we seek to understand neural correlates of high
cognitive test performance in children from households in pov-
erty. We examine the neural and environmental correlates of
cognitive test performance in a sample of over 1000 children
across the United States estimated to be living in poverty based on
their household size and income.

Over the past decade, researchers have documented neural
differences between children from higher and lower SES back-
grounds in brain structure and function from an early age5–7.
However, even within this literature, children from households
living below the poverty line tend to be underrepresented in
studies. In addition, many studies compare children from higher
and lower SES backgrounds, and do not address variability within
the lower SES group. Thus, characterizing brain development
associated with high test performance in children from house-
holds living below poverty could help shift our questions away
from how these children differ from children from households
above poverty, and toward understanding mechanisms support-
ing neurocognitive performance across the spectrum of human
experience. This is particularly important given that children
living in poverty can have different experiences from those who
are typically studied in developmental cognitive neuroscience4,8,9.

Accumulating evidence suggests that the brain adapts to the
affordances and constraints of an individual’s environment,
especially in early life. Indeed, a growing number of studies have
complicated the notion that there is an ideal childhood envir-
onment, suggesting that different environments promote the
development of distinct, adaptive cognitive skills10–12. Addition-
ally or alternatively, individuals growing up experiencing different
external pressures may develop the same level of cognitive pro-
ficiency but do so via different neural mechanisms13.

In line with the hypothesis that children may achieve the same
behavioral outcome through different developmental routes,
studies examining brain function during higher-level cognitive
tasks have found qualitatively different brain-behavior relations
as a function of children’s family income. In particular, children
from households with lower versus higher household incomes
may differentially engage higher-order brain areas such as lateral
prefrontal and parietal regions to complete tasks that use working
memory, rule learning, and attention14–16. These differences in
task-related brain activation are typically thought to reflect dif-
ferences in either the cognitive mechanisms by which children
approach the task or the efficiency of neural processing.

Another approach for understanding environmental influences
on brain development is to measure brain function in the absence
of specific task demands: measuring slow-wave fluctuations in
neural activity over time while participants lie awake in an MRI
scanner. This approach, called resting-state fMRI, has revealed
temporal coupling—so-called functional connectivity—among
anatomically distal brain regions that form large-scale brain
networks17. Cognitive networks typically become more cohesive
and segregated from one another across development18,19. Pat-
terns of temporal coupling within and across resting-state

networks reflect regions’ prior history of co-activation, offering
insight into individuals’ recent thought pattern20. Thus, resting-
state fMRI can be leveraged to assess how everyday experience
shapes brain networks.

Several large-scale brain networks have been linked to higher-
level cognition. In particular, the lateral frontoparietal network
(LFPN) is consistently activated in higher-level cognitive tasks,
such as those using executive functions or reasoning21. Regions in
the LFPN are more active during the performance of cognitively
demanding tasks than during rest periods22. In contrast, regions
in the default mode network (DMN), including regions in the
medial frontal and medial parietal areas, are consistently de-
activated during focused task performance. These regions have
been implicated in unconstrained, internally directed thought23,
as well as during the performance of tasks that require intro-
spection, mentalizing about others, or other mentation outside of
the here-and-now24.

Thus, LFPN and DMN have often been characterized as
opponent networks. Elevated DMN activation during attention-
demanding tasks has been associated with lower and more
inconsistent cognitive test performance among adults25–27.
Similarly, weaker resting-state connectivity between LFPN and
DMN, and stronger connectivity among LFPN regions, have been
associated with better cognitive test performance26,28–30. Toge-
ther, these findings suggest that, in order to complete a cogni-
tively demanding task, individuals must focus narrowly on the
task at hand while inhibiting internally-directed or self-referential
thoughts23,27,31,32.

This conclusion that separation between LFPN and DMN is
better for cognitive performance has been bolstered by fMRI
research in typically developing children, both in terms of age-
related changes and individual differences. First, there is evidence
that the LFPN and DMN functionally segregate during childhood.
Key nodes in the LFPN and DMN appear positively correlated in
middle childhood, anti-correlated in adolescence, and more
strongly anti-correlated during young adulthood33. Further, as
with adults, children ages 10–13 who showed less coupling than
their same-age peers tended to have higher cognitive test scores34.
Tighter coupling between key nodes in these networks at age 7
has even been shown to predict increased attentional problems
over the subsequent four years35. The conclusion drawn from
these studies is that it is adaptive for LFPN and DMN to become
decoupled—or even negatively coupled—during the performance
of a cognitively challenging task and that the development of this
dissociation may promote a stronger focus on externally
directed tasks.

Despite this coherent body of findings regarding LFPN and
DMN and their interactions, several points bear mentioning.
First, there is evidence that LFPN and DMN interact during the
performance of tasks that benefit from internally directed cog-
nition, or mentation outside of the here-and-now24,36–38. Second,
because the vast majority of fMRI studies involve samples with
participants from relatively high SES backgrounds, we do not
know whether the reported brain-behavior relations are universal.
Indeed, there is evidence that children and adolescents living in
socioeconomically disadvantaged neighborhoods show differ-
ences in resting-state connectivity patterns, some of which cor-
relate with anxiety symptomatology39. Further, changes in family
income in adolescence have been associated with changes in
DMN connectivity40. It is important to understand both how
these differences arise, and whether or how they are behaviorally
relevant.

Drawing from a large behavioral and brain imaging dataset
including over 10,000 children across the United States (ABCD
Study41), we asked whether the patterns of connectivity that are
adaptive among children from higher-SES backgrounds are also
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associated with high cognitive test performance in children from
households living in poverty. Specifically, in a set of pre-registered
analyses, we tested whether characteristics of LFPN and DMN
connectivity were associated with cognitive test performance for
over 1000 children from this larger dataset who were estimated to
be living in poverty. These children had a total family income
below $35,000 (below $25,000 for children in families of 4 or
less42), which differs from the sample composition of most prior
studies in terms of SES. We sought to assess children’s perfor-
mance on higher-level cognitive tasks that did not task verbal
skills, given well-established SES differences in verbal
performance16. Thus, we combined measures of children’s
abstract reasoning (Matrix reasoning task), inhibitory control
(Flanker task), and cognitive flexibility (Dimensional Change
Card Sort task). This dataset had a tight age range, from 9 to10
years, minimizing variance related to age differences.

Given prior findings based largely on higher-SES children and
adults, we predicted that weaker LFPN-DMN between-network
connectivity and stronger within-network LFPN (i.e., LFPN-
LFPN) connectivity would be related to higher cognitive test
performance in children living in households in poverty. Alter-
natively, however, these children might show different brain-
behavior associations in comparison to those seen in the prior
literature, given different early experiences. In line with theories
that children could develop the same cognitive outcomes through
alternate developmental trajectories, one might expect that higher
cognitive test scores would be associated with different patterns of
network connectivity among children from households in poverty
compared to findings from children from higher SES back-
grounds in previous studies. Indeed, our analyses revealed a dif-
ferent pattern in children in households in poverty than had been
observed in prior studies of children from higher SES back-
grounds. As a result, we conducted follow-up analyses involving
children from households with higher incomes in this sample to
test whether this analysis would replicate prior findings and
confirmed that it did.

In the second set of pre-registered analyses, we analyzed
demographic variables to better understand features of children’s
environments which might explain variability both in their cog-
nitive test performance and in the relation between LFPN-DMN
connectivity and cognitive test performance. We looked at a set of
29 variables that encompass home, school, and neighborhood
contexts to see whether they could predict variability in test
performance in children living in poverty in this sample. We also
included interactions between LFPN-DMN connectivity and each
of these variables, to see if patterns of brain-behavior relations
could be explained by any particular set of environmental
variables.

Results
We identified 1,034 children between ages 9 and 10 with usable
data on cognitive test performance, resting-state fMRI, and
demographic characteristics, whose households were likely to be
below the poverty line at the time the data were collected
(2016–2018), based on their self-reported household income
bracket and their household size. We identified an additional
5,805 children from the same study sites who had usable data on
the same measures and whose households were likely to be above
the poverty line. Participant information is displayed in Table 1
and Supplementary Table 1.

Children’s scores on the three cognitive tests (Matrix reason-
ing, Flanker task, and Dimensional Change Card Sort task) were
moderately correlated with each other, r= 0.23–0.43 in the whole
sample, r= 0.25–0.39 for the below-poverty group. We created
summary cognitive test scores by summing children’s

standardized scores on all three tests, as pre-registered. We first
tested whether there was an association between income and
cognitive test scores, using a linear mixed-effects model with a
random intercept for the study site. For the purposes of com-
parison to prior studies, income was operationalized (for this
analysis only) as a pseudo-continuous variable, using the median
income level in each income bracket. Results replicated prior
studies (e.g.,43–45): on average, children whose families had higher
incomes tended to perform better on cognitive tests, B= 0.008,
SE= 0.0004, p < 0.001, r= 0.24, a moderate effect size, though it
accounts for only 6% of the variance in children’s cognitive test
scores. As shown in Fig. 1, however, there was large individual
variability in cognitive test scores within each income bracket. It
is this individual variability we sought to explore further.

LFPN-DMN connectivity. LFPN-DMN connectivity was defined
as the average correlation of pairs of each ROI in LFPN with each
ROI in DMN (each z-transformed; see Methods). Working from
our pre-registered analysis plan (https://aspredicted.org/
blind.php?x=3d7ry9), we tested the relation between LFPN-
DMN connectivity and nonverbal cognitive test performance in
the children from households below-poverty. We used linear
mixed-effects models to test the association between cognitive test
performance and LFPN-DMN connectivity, controlling for chil-
dren’s age and scanner head motion, with a random intercept for
study site (see Methods). Contrary to previously published results,
we did not find a negative association between LFPN-DMN
connectivity and test performance. In fact, the estimated direction
of the effect was positive, though this was not statistically

Table 1 Participant characteristics.

Above poverty
(n= 5805)

Below poverty
(n= 1034)

p-test

Age in months (mean (SD)) 119.44 (7.54) 118.89 (7.50) 0.032
Sex at birth (%) 0.055
Other/did not disclose 0 (0.0) 1 (0.1)
Female 2913 (50.2) 511 (49.4)
Male 2892 (49.8) 522 (50.5)
Primary caregiver in study (%) <0.001

Biological mother 4904 (84.5) 920 (89.0)
Biological father 645 (11.1) 54 (5.2)
Adoptive parent 137 (2.4) 18 (1.7)
Custodial parent 43 (0.7) 23 (2.2)
Other 76 (1.3) 19 (1.8)
Site (de-identified) (%) <0.001
site02 429 (7.4) 19 (1.8)
site03 285 (4.9) 130 (12.6)
site04 369 (6.4) 122 (11.8)
site05 203 (3.5) 42 (4.1)
site06 395 (6.8) 16 (1.5)
site07 170 (2.9) 42 (4.1)
site08 177 (3.0) 14 (1.4)
site09 250 (4.3) 24 (2.3)
site10 297 (5.1) 101 (9.8)
site11 224 (3.9) 67 (6.5)
site12 298 (5.1) 73 (7.1)
site13 361 (6.2) 61 (5.9)
site14 434 (7.5) 15 (1.5)
site15 127 (2.2) 85 (8.2)
site16 820 (14.1) 70 (6.8)
site18 208 (3.6) 19 (1.8)
site20 422 (7.3) 76 (7.4)
site21 314 (5.4) 54 (5.2)
site22 22 (0.4) 4 (0.4)
RSfMRI mean framewise
displacement (mean (SD))

0.19 (0.15) 0.23 (0.18) <0.001

LFPN-DMN connectivity (mean
(SD))

0.058 (0.06) 0.061 (0.06) 0.061

LFPN-LFPN connectivity (mean
(SD))

0.21 (0.07) 0.21 (0.08) 0.286

Matrix reasoning raw score
(mean (SD))

18.67 (3.51) 16.35 (3.89) <0.001

Flanker raw score (mean (SD)) 95.34 (8.03) 91.92 (10.24) <0.001
Card sort raw score (mean
(SD))

94.09 (8.58) 89.83 (9.79) <0.001

Plain text: Demographic information; italics: Brain and cognitive variables.
Demographic information in plain text; brain and cognitive variables italicized. LFPN Lateral
frontoparietal network. DMN Default mode network. RSfMRI Resting state functional magnetic
resonance imaging. P-values without correction obtained from two-sided t-tests, calculated
using the tableone package in R.
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significant, B= 2.11, SE= 1.12, t(1028)= 1.88; χ2(1)= 3.52,
p= 0.060. This numerically positive association was still observed
when using a robust linear mixed-effects model, which detects and
accounts for outliers or other sources of contamination in the data
that may affect model validity, B= 1.78, SE= 1.09, t= 1.64. Thus,
this unexpected pattern was not driven by outliers. This effect was
most pronounced for Matrix Reasoning and least evident for
Flanker, but the estimate was positive for all three tests (see
Supplement S4). It was also observed for the NIH Toolbox Fluid
Cognition composite score (see Supplement S4).

Given this unexpected result, we next explored whether the
expected association between LFPN-DMN connectivity and test
performance was present in children from higher-income
households in the larger dataset. To this end, we analyzed the
5,805 children from the same study sites who comprised our
above-poverty group. Consistent with prior studies25,34,35, these
children showed a negative association between LFPN-DMN
connectivity and cognitive test performance, B=−1.41, SE=
0.45, t(5794)=−3.14; χ2(1)= 9.85, p= 0.002. A direct compar-
ison between the samples confirmed that the association between
LFPN-DMN connectivity and test performance differed as a
function of whether or not children were from households in
poverty, χ2(1)= 8.99, p= 0.003 (Fig. 2). For the above-poverty
group, having higher LFPN-DMN connectivity appeared to be a
risk factor for low cognitive test performance, while for the
below-poverty group it tended to be associated with higher
performance. Several follow-up tests confirmed the reliability of
this dissociation, including a bootstrapping procedure, permuta-
tion testing, and tests to ensure that results were not driven by
differences in head motion, age, or the specific cognitive measures
selected (see Supplement S6–S9).

LFPN-LFPN connectivity. LFPN-LFPN connectivity was defined
as the average correlation of each ROI pair within LFPN (each z-
transformed; see Methods). Following our pre-registration, using
linear mixed effects models, we next tested whether children from
households in poverty would show the positive correlation
between LFPN within-network connectivity and cognitive test
performance that has previously been documented. The relation
between LFPN-LFPN connectivity and test scores was not sig-
nificant for the below-poverty group, B= 0.24, SE= 0.87,
t(1028)= 0.28; χ2(1)= 0.08, p= 0.783, or for the children from
households above-poverty in the larger study, B= 0.34, SE=
0.36, t(5797)= 0.94; χ2(1)= 0.89, p= 0.346. Thus, the strength
of resting-state functional connectivity within the LFPN network
was not a predictor of cognitive performance in this large sample
of 9-to-10-year-olds. As a control for this a priori within-network
analysis for LFPN, we conducted an exploratory analysis inves-
tigating DMN-DMN connectivity; it exhibited a non-significant
interaction with poverty status, χ2(1)= 2.78, p= 0.096.

Environmental variables. To further explore the dissociation
observed for LFPN-DMN connectivity, we next asked whether
features of children’s environments might explain why the brain-
behavior link differed as a function of poverty status. Even within
a particular income group, different children are exposed to very
different experiences in their homes, neighborhoods, and schools.
We considered 29 demographic variables chosen to reflect fea-
tures of children’s home, school, and neighborhood environments
(Supplement S1, 2). To test whether any of these variables could
explain the observed group interaction, we performed Ridge
regression. Specifically, we used nested cross-validation to predict
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studies, higher income is associated with higher cognitive test performance (R= 0.24); however, it is important to acknowledge this substantial variability
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cognitive test performance from an interaction between LFPN-
DMN connectivity and these demographic variables, in addition
to the main effects of each of these variables. Briefly, Ridge
regression is a regularization technique that penalizes variables
that do not contribute to model fit, thus giving more weight to the
most important variables. This approach allows for the inclusion
of many variables in a model while reducing the chances of
overfitting, and deals with issues of multicollinearity. We pre-
registered this second step of analyses prior to examining the data
further (https://aspredicted.org/blind.php?x=tg4tg9), given the
substantial analytic flexibility possible with such a large set of
variables.

We trained our model in a training set of two-thirds (N= 670,
after removing missing data) of the children from households
defined as in poverty, using 5-fold cross-validation. Next, we
tested whether these demographic and neural model parameters
could be used to predict cognitive test scores in the held-out test
set: the remaining one-third (N= 329) of children from house-
holds defined as being in poverty. Indeed, we found that our
model performed above chance (cross-validated R2CV > 0; see
Supplement S11), explaining 4% of the variance in children’s
cognitive test scores in this held-out sample. While 4 percent is
small, it is on par with the effect of family income on test scores

across the full sample (6%). Additionally, it is a pure indicator,
unlike the R2 of models that have been fit to the data themselves
and are thus likely to be inflated. Most importantly, this
prediction is based on a socioeconomically restricted sample of
children: those with a total family income below $35,000 (below
$25,000 for children in families of 4 or less).

As shown in Table 2, individual, home, neighborhood, and
school variables helped to predict cognitive test scores among
children living in poverty. Critically, we found that several
characteristics of children’s experiences interacted with LFPN-
DMN connectivity to predict these test scores. Specifically,
variables related to school type, neighborhood safety, child’s race,
and parents’ highest level of education contributed to model fit
(see Table 2). To better understand these results, we plotted the
effects for the factors showing significant interaction effects
(Fig. 3). Visualizing the interaction for neighborhood safety
revealed that children living in safer neighborhoods, based on
parent-reported neighborhood safety, showed a negative relation
between LFPN-DMN connectivity and test performance, whereas
those who lived in neighborhoods considered less safe based on
parent-reported neighborhood safety showed a positive relation.
With regard to schooling, the relation between LFPN-DMN
connectivity was more positive for children attending public
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Fig. 2 Relations between resting state network metrics and cognitive test score residuals, for children living above poverty (dark blue) and below
poverty (light blue). Mixed models include fixed effects for age and motion and a random effect for study site. Data are presented as mean values+ /−95%
confidence intervals for a linear model, calculated and displayed using the geom_smooth function in ggplot. A Children in households above poverty show an
expected, negative, relation between LFPN-DMN connectivity and test performance, B=−1.41, SE=0.45; p=0.002, while children in households below poverty
show the opposite pattern, B= 2.11, SE= 1.12; p=0.060, interaction: X2(1)= 8.99, p=0.003. B Children across the sample show a non-significant positive
relation between LFPN-LFPN within-network connectivity and test performance, above poverty: B=0.34, SE=0.36; p=0.346; below poverty: B=0.24,
SE=0.87; p=0.783; interaction: X2(1)=0.0005, p=0.982. Networks functionally defined using the Gordon parcellation scheme; on left, lateral frontoparietal
network (LFPN) is shown in yellow and default mode network (DMN) shown in red, figures adapted from110 and reprinted by permission from Oxford University
Press and the authors.
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Table 2 Estimated coefficients from Ridge regression predicting children’s cognitive test scores, when controlling for fixed
effects of age and motion and random effects of study site, for all children from households below the poverty line.

Estimate Scaled estimate Std. Error (scaled) t-value (scaled) Pr(>|t | )

(Intercept) 0.12 NA NA NA NA
Black race −0.10 −1.46 0.28 5.29 0.000
Parents’ highest level of education (years) 0.05 1.53 0.32 4.76 0.000
Census: % of people over age 25 with >= high school diploma 0.03 1.06 0.29 3.69 0.000
White race 0.06 0.98 0.29 3.42 0.001
Asian race 0.37 1.06 0.33 3.23 0.001
Census: % of labor force aged >=16 y unemployed −0.02 −0.77 0.28 2.75 0.006
Census: % of families below the poverty level −0.02 −0.70 0.26 2.71 0.007
Parent ethnic identification 0.03 0.87 0.33 2.68 0.007
Youth-reported school disengagement −0.02 −0.81 0.31 2.61 0.009
Census: income disparity −0.02 −0.67 0.26 2.57 0.010
LFPN-DMN x Public school 0.27 0.53 0.22 2.41 0.016
LFPN-DMN x Parent-reported neighborhood safety −0.19 −0.67 0.29 2.35 0.019
Census: estimated lead risk −0.02 −0.60 0.28 2.17 0.030
LFPN-DMN xMixed race 0.74 0.65 0.31 2.07 0.038
Third generation American −0.04 −0.52 0.25 2.04 0.042
LFPN-DMN x Parents’ highest level of education 0.15 0.52 0.27 1.90 0.057
LFPN-DMN 0.18 0.34 0.20 1.72 0.085
LFPN-DMN x Black race −0.28 −0.43 0.25 1.70 0.089
LFPN-DMN x non-Hispanic 0.20 0.38 0.22 1.67 0.094
Mixed race 0.05 0.52 0.31 1.66 0.096
LFPN-DMN xWhite race 0.31 0.46 0.28 1.61 0.107
LFPN-DMN x Not in school −3.15 −0.48 0.31 1.54 0.123
LFPN-DMN x Census: % of occupied units without complete plumbing 0.16 0.49 0.32 1.54 0.124
Parent never married −0.03 −0.44 0.29 1.53 0.125
First generation American 0.03 0.38 0.27 1.40 0.160
LFPN-DMN x Hours/week spent at another household −0.14 −0.46 0.33 1.39 0.165
Second generation American 0.04 0.40 0.31 1.29 0.197
LFPN-DMN x Parent self-reported intrusive behavior 0.15 0.39 0.31 1.27 0.206
Parent-reported neighborhood safety 0.01 0.37 0.31 1.18 0.238
LFPN-DMN x First-generation American 0.26 0.32 0.27 1.17 0.243
LFPN-DMN x Parent ethnic identification 0.12 0.37 0.32 1.15 0.250
Native American/Alaska Native 0.10 0.36 0.32 1.12 0.261
Parent married 0.02 0.33 0.30 1.11 0.266
LFPN-DMN x Census: % of people over age 25 with >= a high school diploma 0.08 0.29 0.26 1.11 0.269
LFPN-DMN x Youth born outside U.S. 0.83 0.36 0.33 1.09 0.274
LFPN-DMN x Private school −0.70 −0.35 0.32 1.09 0.278
Other race −0.04 −0.33 0.31 1.07 0.286
LFPN-DMN x Parent separated/divorced 0.25 0.31 0.29 1.06 0.288
LFPN-DMN x Youth-reported school involvement 0.10 0.30 0.29 1.05 0.294
LFPN-DMN x Second-generation American −0.44 −0.32 0.31 1.02 0.308
Youth-reported parental acceptance −0.01 −0.30 0.31 0.97 0.333
Any siblings −0.02 −0.30 0.33 0.90 0.366
Other school setting 0.08 0.29 0.32 0.89 0.372
LFPN-DMN x People living in home −0.06 −0.27 0.31 0.87 0.387
LFPN-DMN x Third-generation American 0.10 0.19 0.23 0.86 0.392
LFPN-DMN x Youth-reported school disengagement −0.09 −0.26 0.31 0.85 0.397
Parent widowed −0.06 −0.27 0.33 0.81 0.418
Not in school −0.11 −0.25 0.31 0.80 0.425
Home school −0.16 −0.22 0.30 0.73 0.463
LFPN-DMN x Financial stress −0.05 −0.22 0.31 0.73 0.468
Parent separated/divorced 0.02 0.22 0.31 0.72 0.471
Census: adult violent crime reports 0.01 0.20 0.27 0.72 0.472
LFPN-DMN x home school −2.82 −0.21 0.30 0.71 0.478
Youth-reported supportive school environment −0.01 −0.21 0.30 0.70 0.483
LFPN-DMN x Asian race 0.44 0.21 0.31 0.70 0.487
LFPN-DMN x Census: income disparity 0.05 0.16 0.23 0.70 0.487
Census: uniform crime reports 0.01 0.19 0.28 0.68 0.498
LFPN-DMN x Youth-reported parental monitoring −0.06 −0.21 0.31 0.67 0.503
LFPN-DMN x Any siblings 0.15 0.20 0.30 0.65 0.517
Hours/week spent at another household −0.01 −0.21 0.34 0.63 0.526
LFPN-DMN x Native American/Alaska Native 0.51 0.19 0.32 0.59 0.553
LFPN-DMN x Youth-reported family conflict 0.06 0.18 0.31 0.58 0.565
LFPN-DMN x School for behavioral/emotional problems −2.37 −0.20 0.35 0.57 0.566
LFPN-DMN x Youth-reported supportive school environment 0.05 0.17 0.30 0.56 0.578
LFPN-DMN x Parent married 0.11 0.16 0.28 0.55 0.580
LFPN-DMN x Census: adult violent crime reports −0.06 −0.15 0.27 0.55 0.581
School for behavioral/emotional problems 0.10 0.18 0.35 0.51 0.612
LFPN-DMN x Census: estimated lead risk 0.04 0.13 0.25 0.50 0.616
Youth-reported school involvement 0.00 −0.14 0.30 0.49 0.625
People living in home 0.00 −0.15 0.31 0.48 0.633
Private school −0.02 −0.15 0.32 0.48 0.634
Child born outside U.S. −0.03 −0.15 0.33 0.46 0.648
LFPN-DMN x Census: uniform crime reports −0.05 −0.13 0.28 0.45 0.650
LFPN-DMN x Other race −0.17 −0.13 0.31 0.44 0.661
Youth-reported parental monitoring 0.00 −0.13 0.32 0.42 0.671
Parent self-reported aggressive behavior 0.00 0.12 0.29 0.42 0.673
Youth-reported family conflict 0.00 −0.12 0.32 0.39 0.695
LFPN-DMN x Charter school −0.16 −0.11 0.31 0.37 0.710
Financial stress 0.00 0.11 0.33 0.35 0.726
LFPN-DMN x Head motion 0.03 0.09 0.30 0.30 0.763
LFPN-DMN x Parent never married 0.05 0.07 0.27 0.26 0.795
LFPN-DMN x Parent self-reported withdrawn behavior 0.02 0.08 0.30 0.25 0.802
Head motion 0.00 0.07 0.33 0.21 0.835
LFPN-DMN x Parent self-reported aggressive behavior 0.02 0.06 0.29 0.19 0.847
Hispanic ethnicity 0.00 0.05 0.24 0.19 0.849
Non-hispanic ethnicity 0.00 −0.05 0.24 0.19 0.849
Parent self-reported intrusive behavior 0.00 0.06 0.31 0.19 0.852
Age 0.00 0.06 0.33 0.17 0.865
Public school 0.00 0.05 0.29 0.17 0.868
LFPN-DMN x Parent widowed −0.18 −0.05 0.33 0.17 0.869
LFPN-DMN x Census: % of families below the poverty level 0.01 0.04 0.23 0.16 0.870
Census: % of occupied units without complete plumbing 0.00 0.05 0.33 0.16 0.873
LFPN-DMN x Youth-reported parental acceptance 0.01 0.04 0.30 0.13 0.900
Parent living with partner 0.00 0.03 0.32 0.11 0.914
LFPN-DMN x Parent living with partner −0.04 −0.03 0.31 0.10 0.919
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schools than those attending other types of schools (predomi-
nantly charter, N= 79, and private, N= 40).

Finally, we conducted a confirmatory factor analysis to test
whether the demographic variables could be split into individual
and home, neighborhood, and school factors based on our a
priori categorization. This categorization did not meet our pre-
registered criteria for a good model fit (our CFI, 0.11, was
considerably lower than 0.9); as a result, we did not continue with
this portion of the analysis. Thus, our data-driven approach
provided insights that would have been missed by simply
categorizing variables based on our prior assumptions about
classes of life experiences.

Exploratory network associations. Given the differential relation
between network connectivity and test performance as a function
of the socioeconomic status of the household, we sought to
ascertain whether this effect was specific to the LFPN-DMN, or
whether there was a more general difference regarding con-
nectivity between networks. Further, we sought to better under-
stand the phenomenon at a conceptual level by assessing the
plausibility of several accounts regarding what might constitute
adaptive thought patterns for children contending with extremely
challenging circumstances. Therefore, we ran several exploratory
analyses involving two additional brain networks, selected for the
reasons discussed below. Due to the exploratory nature of these
analyses, we focus on the general patterns of effects as potentially
valuable for guiding future research.

The first additional network in which we tested for effects of
poverty status was the cingulo-opercular network (CON), also
referred to as the salience network. The CON has been
hypothesized to play a role in coordinating the engagement of
the LFPN and DMN networks46,47. Therefore, we sought to test
for differential effects of coordination between the CON and
these networks as a function of poverty. We found that weaker

LFPN-CON connectivity was associated with better test perfor-
mance for both groups, with little evidence of interaction
(Fig. 4A). Thus, a dissociation between these networks appears
to be generally adaptive at this age. By contrast, DMN-CON
connectivity had no main effect on cognitive test performance,
but it showed a possible interaction with poverty status (Fig. 4B).
Specifically, weaker DMN-CON connectivity was directionally
associated with better test performance for children from
households defined as below poverty, while stronger DMN-
CON connectivity appeared more adaptive for children from
households defined as above poverty. Thus, the DMN is more
tightly linked to LFPN and, perhaps, less tightly linked to CON.
However, it seems unlikely that a DMN-CON interaction is the
key driver of the LFPN-DMN interaction we have uncovered, as
the latter effect was stronger. Nonetheless, further research in this
population relating these three brain networks to a broader set of
cognitive measures is warranted.

The other network we investigated was the retrosplenial
temporal network (RTN), which is critical for long-term
declarative memory48,49. Regions in the RTN interact with the
LFPN during performance of episodic memory tasks involving
externally-presented stimuli50,51, but with the DMN during
autobiographical memory retrieval38,52,53 and at rest54, that is,
during internally directed thought. We reasoned that if children
from households defined as below poverty that perform well on
cognitive tests rely more on their autobiographical memory than
do others when facing cognitive challenges, LFPN-RTN con-
nectivity might be positively related to test performance in this
sample. Contrary to this prediction, however, we found
that weaker LFPN-RTN connectivity and DMN-RTN connectiv-
ity were associated with better test performance in both the
below- and above-poverty samples (Fig. 4C, D). Thus, these
exploratory analyses involving the CON and RTN networks
may suggest specificity in the observed LFPN-DMN interaction
effect.

Fig. 3 Interactions between demographic variables and lateral frontoparietal-default mode network (LFPN-DMN) connectivity in predicting cognitive
test scores, for children in households below poverty. The majority of non-public schools were charter and private schools. In addition, only white and
Black/African American race are displayed as these were the most represented in the current sample. Data are presented as mean values+/− 89% level
confidence intervals for predicted effects, calculated and displayed using the sjPlot package in R135.

Table 2 (continued)

Estimate Scaled estimate Std. Error (scaled) t-value (scaled) Pr(>|t | )

LFPN-DMN x Hispanic ethnicity −0.02 −0.03 0.26 0.10 0.920
LFPN-DMN x Age 0.01 0.02 0.32 0.07 0.946
LFPN-DMN x Other school setting 0.03 0.01 0.32 0.03 0.976
LFPN-DMN x Census: % of labor force aged >= 16 y unemployed 0.00 −0.01 0.25 0.02 0.981
Charter school 0.00 −0.01 0.30 0.02 0.982
Parent self-reported withdrawn behavior 0.00 0.00 0.30 0.00 0.997

Plain text: main effects; italics: interactions with and main effect of LFPN-DMN connectivity.
Interactions with and main effect of lateral frontoparietal-default mode network (LFPN-DMN) connectivity italicized.
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Discussion
Prior research in both adults and children suggests that, in order
to perform well on cognitively demanding tasks, the LFPN must
operate independently from the DMN33–35, suggesting that it is
optimal for individuals engaged in a cognitively demanding task
involving externally presented stimuli to focus narrowly on this
task while inhibiting internally-directed or self-referential
thoughts23,27,31,32. However, most of the research that led to
this conclusion has been conducted with non-representative
samples of individuals from higher-income backgrounds.

In this study, we tested the relation between patterns of brain
connectivity and nonverbal cognitive test performance for over
1,000 children in a US sample estimated to be living in poverty.
Although these children scored lower on average than their peers
in higher-income households from the same study sites, there was
large variability. Indeed, many of the children from below-
poverty households scored as high as or higher than children
whose family incomes were considerably higher. In contrast to
prior studies showing a negative correlation between LFPN-DMN
connectivity and cognitive performance—that was replicated in
our study in the group of children from above-poverty house-
holds—our group of children from households below-poverty
showed a non-significant positive relationship between cognitive
performance and functional connectivity between these networks,
resulting in significant group interaction.

Confirming the reliability of this dissociation, both a boot-
strapping analysis and permutation testing showed that models
trained on the data from the children from households above
poverty were poor at predicting test performance for the children
from households below poverty. Importantly, the most salient
difference between children from households below and above

poverty in our analyses was not overall brain connectivity, but
rather the relation between connectivity and cognitive
performance.

One interpretation of this interaction is that the relation
between LFPN-DMN connectivity and test performance depends
in part on children’s experiences. It may be optimal under some
circumstances to engage in thought patterns that more frequently
co-activated the LFPN and DMN37,55,56. For example, while the
DMN is generally thought to be suppressed during goal-directed
tasks, it is in fact active during a variety of goal-directed tasks that
require internal mentation, or projection outside of the here-and-
now24,38. We return to this point later in the Discussion.

In contrast to our findings with LFPN-DMN connectivity, we
found no significant association between within-network LFPN
connectivity and test performance—either in the children in
households below or above poverty. These results were unex-
pected, given prior studies reporting that connectivity within the
LFPN is positively related to cognitive test performance in both
adults and children34,57–59. Of particular relevance to this study,
Sherman and colleagues found that for 10-year-olds, higher IQ
test performance was correlated with higher connectivity between
the dorsolateral prefrontal cortex and the posterior parietal cortex,
two hub regions of the LFPN. One reason for the non-significant
effect in our study may be that we examined connectivity within
the LFPN as a whole, rather than looking at particular regions or
subnetworks within LFPN. Thus, the entire network might not be
developed enough by ages 9–10 years to see this relationship on a
global scale.

To better characterize the positive relation between LFPN-
DMN and test performance among the children from households
below poverty, we examined a number of environmental variables
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Fig. 4 Exploratory analyses with the CON (A–B) and RTN (C–D). As in Fig. 2, plots show relations between resting state network metrics and cognitive
test score residuals, for children in households above poverty (dark blue) and below poverty (light blue). Models include fixed effects for age and motion
and a random effect for study site. Data are presented as mean values+ /− 95% confidence intervals for a linear model, calculated and displayed using the
geom_smooth function in ggplot. Networks functionally defined using the Gordon parcellation scheme; lateral frontoparietal network (LFPN) shown in
yellow, default mode network (DMN) shown in red, cingulo-opercular network (CON) shown in purple; retrosplenial temporal network (RTN) shown in off-
white; figures adapted from110 and reprinted by permission from Oxford University Press and the authors. A Weaker LFPN-CON connectivity was
associated with better test performance for both groups, with little evidence of an interaction (main effect: B=−1.14, SE= 0.45, t(6824)=−2.53;
X2(1)= 11.76, p= 0.001; interaction: B=−1.42, SE= 1.03, t(6824)=−1.37; X2(1)= 1.87, p= 0.171). B DMN-CON connectivity was not consistently
associated with test performance, though it was directionally positive for children in households above poverty and negative for children in households
below poverty (main effect: B= 0.47, SE= 0.38, t(6823)= 1.24; X2(1)= 0.27, p= 0.601; interaction: B=−1.66, SE= 0.88, t(6823)=−1.88; X2(1)= 3.53,
p= 0.060). C, D Weaker LFPN-RTN connectivity and weaker DMN-RTN connectivity were both associated with better test performance, with little
evidence of an interaction (C: LFPN-RTN main effect: B=−0.90, SE= 0.36, t(6829)=−2.54; X2(1)= 7.13, p= 0.008; LFPN-RTN interaction: B= 0.23,
SE= 0.84, t(6829)= 0.27; X2(1)= 0.08, p= 0.784; D: DMN-RTN main effect: B=−0.99, SE= 0.32, t(6826)=−3.14; X2(1)= 16.24, p < 0.001; DMN-
RTN interaction: B=−0.95, SE= 0.75, t(6826)=−1.27; X2(1)= 1.61, p= 0.205).
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on which we expected the group to vary60,61. Moreover, experi-
ences that are on average associated with worse cognitive out-
comes (such as being deprived of caregiver support in early life)
can, under some circumstances, produce better cognitive
outcomes62, suggesting there may be different routes to achieving
high cognitive performance in these cases. Thus, we predicted
that differences in environmental influences among children from
households below poverty would explain whether strong LFPN-
DMN connectivity was adaptive or maladaptive for cognitive test
performance.

Our analyses suggested that demographic variables could not
be well fit a pre-determined factor structure based on variables
relating to the individual, home, neighborhood, and school;
therefore, we took a data-driven approach to examine the effects
of environmental variables. Because many of these variables are
correlated with each other, we adopted an analytic approach—
Ridge regression—that allows for collinearity. The results showed
that within the population of children from households below
poverty, variation in their environments was predictive of their
cognitive test performance. We note, however, that this clearly
not deterministic; a model trained on two-thirds of the children
from households below-poverty explained 4% of the variance in
the held-out third, suggesting these variables accounted for a
small amount of variance overall.

The most predictive variables in the model may reflect struc-
tural barriers that families face, including access to resources and
institutions, such as high-quality schools, jobs, and healthcare,
stable housing in safe neighborhoods, and experiences of racism
within these systems63–68. However, the results of this data-
driven analysis also raised the possibility that being raised by
parents with strong ethnic identification may provide a psycho-
logical buffer, in line with other research69–73.

Notably, we found—in addition to these main effects of
demographic variables—several interactions between these vari-
ables and LFPN-DMN connectivity that predicted cognitive
performance. While Ridge regression precludes us from drawing
strong conclusions about the importance of specific variables, we
highlight those that contributed significantly to model fit. For
example, children from households below-poverty who attended
public schools, lived in subjectively more dangerous neighbor-
hoods as assessed by parental reports, and were Black (the next
best represented racial group after the white race in our sample
below poverty) were more likely to show a positive relation
between LFPN-DMN connectivity and test performance.

We considered several possible accounts of the current find-
ings. One possibility is that in order to contend with structural
barriers, children experiencing poverty need to monitor their
environments (vigilance), as well as their own behavior or per-
formance (self-monitoring), to a greater degree than do other
children. This hypothesis stems from research showing that
individuals living in poverty are more likely to experience threat
in the physical domain (e.g., neighborhood safety74) or in the
social domain (e.g., racism65,75); they are also likely to receive less
direct feedback or instruction in crowded or underfunded public
schools76,77 and at home78. Additionally or alternatively, children
in households in poverty may benefit from thinking more about
the past or the future—that is, drawing more on autobiographical
memory and future-oriented thinking and planning38—or the
type of productive mind-wandering that fuels creative
insights37,79,80. Future research could investigate the possibility
that leveraging internally guided cognition is a mechanism of
resilience for children from households in poverty. As a first step,
one could assess whether children from households in poverty
with stronger LFPN-DMN connectivity also show heightened
self-monitoring, vigilance, autobiographical memory, and/or
creative problem-solving.

Based on the available dataset, we explored the plausibility of
these hypotheses by focusing on brain networks that have been
associated with monitoring or declarative memory. Specifically,
we explored associations of test performance with DMN/LFPN
and (1) the CON, to probe whether differences in monitoring and
vigilance are likely to play a role; and (2) retrosplenial temporal
network (RTN), to assess the plausibility of an account involving
autobiographical memory or planning.

While relations with RTN and test performance did not dis-
tinguish the children from below- and above-poverty households,
we observed a potential interaction between DMN-CON con-
nectivity and poverty status in its association with test perfor-
mance. Weaker DMN-CON was directionally associated with
better test performance for children from households below-
poverty, and worse for children from households above poverty.
Although this trend-level group interaction involving the CON is
unlikely to be the key driver of the LFPN-DMN interaction, it
does lend credence to the possibility that monitoring oneself and
one’s social environment may be one mechanism through which
children in households in poverty ultimately score highly on
cognitive tests. It is also in line with work suggesting that CON
plays a critical role in switching between LFPN and DMN
activation46, that connectivity between the three networks chan-
ges across age81, and that some social cognitive processes rely on
all three networks82.

While our study benefited from the ABCD dataset’s rich
objective measures of a child’s environment, other potential
environmental and individual-level variables should be considered
in future research16,83,84. Future research could also benefit from a
more sensitive measure of poverty. Because the publicly available
dataset did not specify which of the 19 study sites corresponded to
which American city, as this was treated as protected information,
we determined a cut-off for our poverty threshold based on cost-
of-living across study sites. Because cities across the United States
vary substantially in cost-of-living, we selected a stringent cutoff
for the poverty line. Thus, there are almost certainly families in the
above-poverty group in our study that in practice may be con-
sidered below-poverty. In addition, it is important to note that
children’s performance on cognitive tests can fluctuate from day
to day for a variety of reasons85,86, including motivation87, that is
a likely source of noise in our models.

Further, while we focused on three tests of non-verbal cognitive
test performance, future studies should examine a broader range
of cognitive systems, as these may be differentially affected by the
environment88. For example, experiences of threat and depriva-
tion have distinct effects on medial and lateral prefrontal cortex
development, respectively;89 these effects may be mediated in part
by lower-level visual and attentional processes90. Clearly, there is
a need for research that investigates the mechanisms through
which the environment affects specific neural and cognitive sys-
tems, particularly given that much of this environmental variation
is still within the range of experiences that is typical91. Overall,
these results suggest that different patterns of brain activation for
children living in poverty do not imply a deficit92. An important
next step will be to follow these children longitudinally to see how
LFPN-DMN connectivity and its relation with cognitive test
performance changes across adolescence.

Another important area of research is to look beyond the
canonical cognitive tasks used in the present study to identify
assessments or testing contexts for which children living in
poverty might be particularly adapted to excel93. Doing so might
reveal that some children who underperformed on the cognitive
measures in the current study have strengths in other domains as
a result of adaptation to their environments.

This study opens several questions about the neural under-
pinnings of these findings that should be further examined. Given
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individual variability in network topography94, future studies
should examine whether this variability contributes to our find-
ings and examine alternative parcellation schemes. In addition,
LFPN and DMN are both summary network measures; there
could be qualitative differences in node-to-node connectivity, or
smaller interactions between sub-networks, that we are not cap-
turing in the current study55,95–97. Moreover, it would be helpful
to look at children’s task-based activation and functional con-
nectivity to examine whether children in households in poverty
are more likely to activate DMN during neutral, externally driven
cognitive tasks outside of their daily environments. Finally, given
that these metrics only explain a small amount of variance, it is
important to look at the contribution of other neural indices.

Given that the structures that govern academic success have
been largely created around the needs of middle- and upper-
middle-income families, understanding the strengths of families
in poverty—and how children thrive in spite of these structural
barriers—is critical98–101. Altogether, these results highlight the
substantial variability of experiences of children in households in
poverty, who are almost always treated as a single, homogenous
group in developmental cognitive neuroscience studies and
compared to children from higher-SES backgrounds92. Moreover,
they suggest that our field’s assumptions about the general-
izability of brain-behavior relations are not necessarily correct.
Looking beyond convenience samples of children will ultimately
lend more insight into the neural underpinnings of cognition, and
may show that there are not universally optimal behavioral or
neural profiles. Not only would this advance benefit develop-
mental cognitive neuroscience as a field, but it may ultimately
allow us to better serve disadvantaged youth.

Methods
Analysis plans were pre-registered prior to data access (https://aspredicted.org/
blind.php?x=3d7ry9, https://aspredicted.org/blind.php?x=tg4tg9) and analysis
scripts are openly available on the Open Science Framework (https://osf.io/hs7cg/?
view_only=d2acb721549d4f22b5eeea4ce51195c7). The original data are available
with permissions on the NIMH Data Archive (https://nda.nih.gov/abcd). All
deviations from the initial analysis plan are fully described in the Supplement S12.

Participants. Participants were selected from the larger, ongoing Adolescent Brain
Cognitive Development (ABCD) study, which was designed to recruit a cohort of
children who closely represented the United States population (http://
abcdstudy.org; see102). This study was approved by the Institutional Review Board
at each study site, with centralized IRB approval from the University of California,
San Diego. Informed consent and assent were obtained from all parents and
children, respectively. We planned to restrict our primary analyses to children
whose households fell below the poverty line on the supplemental poverty measure,
which takes into account regional differences in cost-of-living42. For example,
while the federal poverty level in 2018 was $25,465 for a family of four, the
supplemental poverty level in Menlo Park, CA—one of the ABCD study sites—was
estimated to be over $37,000 around the same time period. However, upon
reviewing the data after our pre-registration, we found that the study site in the
ABCD data was de-identified for privacy reasons, and as a result, we could not use
study site-specific poverty cut-offs. Instead, we estimated each child’s poverty status
based on their combined family income bracket, the number of people in their
home, and the average supplemental poverty level for the study sites included in
the sample.

Based on these factors, we considered children to be in households in poverty if
they were part of a family of 4 with a total income of less than $25,000, or a family
of 5 or more with a total income of less than $35,000. We made this determination
by comparing children’s combined household income to the Supplemental Poverty
Level for 2015–2017 averaged across study sites42. We excluded children who did
not provide information about family income and complete data on all three
cognitive tests, and/or if their MRI data did not meet ABCD’s usability criteria (see
below). In addition, due to a scanner error, we excluded post-hoc all children who
were scanned on Philips scanners. This left us with 1034 children identified as
likely to be living below poverty (6839 across the whole sample). Table 1 provides a
breakdown of sample demographics.

Cognitive test performance. Children’s performance was measured on three non-
verbal cognitive tests. Specifically, children completed two tests from the NIH
Toolbox (http://www.nihtoolbox.org): Flanker, a measure of inhibitory control103,

and Dimensional Change Card Sort (DCCS), a measure of shifting104; and the
Matrix Reasoning Task from the Wechsler Intelligence Test for Children-V
(WISC-V), a measure of abstract reasoning105. Children completed these tests
using an iPad synchronized for use with an iPad being controlled by the
experimenter106. These tests were chosen because they all tax higher-level cognitive
skills while having relatively low verbal task demands. We created a composite
measure of performance across these three domains by creating z-scores of the raw
scores on each of these tests and summing them, as pre-registered; the tests were
moderately correlated, 0.23 < r < 0.43, in the whole sample.

MRI scan procedure. Scans were typically completed on the same day as the
cognitive battery, but could also be completed at a second testing session. After
completing motion compliance training in a simulated scanning environment,
participants first completed a structural T1-weighted scan. Next, they completed
three to four five-minute resting-state scans, in which they were instructed to lay
with their eyes open while viewing a crosshair on the screen. The first two resting-
state scans were completed immediately following the T1-weighted scan; children
then completed two other structural scans, followed by one or two more resting-
state scans, depending on the protocol at each specific study site. All scans were
collected on one of three 3 T scanner platforms with an adult-size head coil.
Structural and functional images underwent automated quality control procedures
(including detecting excessive movement and poor signal-to-noise ratios) and
visual inspection and rating (for structural scans) of images for artifacts or other
irregularities;107 participants were excluded if they did not meet quality control
criteria, including at least 12.5 min of data with low head motion during data
collection (framewise displacement < 0.2 mm).

Scan parameters. Scan parameters were optimized to be compatible across
scanner platforms, allowing for maximal comparability across the 19 study sites.
All T1-weighted scans were collected in the axial position, with 1mm3 voxel
resolution, 256 × 256 matrix, 8 degree flip angle, and 2x parallel imaging. Other
scan parameters varied by scanner platform (Siemens: 176 slices, 256 × 256 FOV,
2500 ms TR, 2.88 ms TE, 1060 ms TI; Philips: 225 slices, 256 × 240 FOV, 6.31 ms
TR, 2.9 ms TE, 1060 ms TI; GE: 208 slices, 256 × 256 FOV, 2500 ms TR, 2 ms TE,
1060 ms TI). All fMRI scans were collected in the axial position, with 2.4 mm3

voxel resolution, 60 slices, 90 × 90 matrix, 216 × 216 FOV, 800 ms TR, 30 ms TE, 52
degree flip angle, and 6-factor MultiBand Acceleration. The motion was monitored
during scan acquisition using real-time procedures to adjust scanning procedures
as necessary (see41); this prospective motion correction procedure significantly
reduces scan artifacts due to head motion107.

Resting-state fMRI processing. Data processing was carried out using the ABCD
pipeline and carried out by the ABCD Data Analysis and Informatics Core107. T1-
weighted images were corrected for gradient nonlinearity distortion and intensity
inhomogeneity and rigidly registered to a custom atlas. They were run through
FreeSurfer’s automated brain segmentation to derive white matter, ventricle, and
whole-brain ROIs. Resting-state images were first corrected for head motion,
displacement estimated from field map scans, B0 distortions, and gradient non-
linearity distortions, and registered to the structural images using mutual infor-
mation. Initial scan volumes were removed, and each voxel was normalized and
demeaned. The signal from estimated motion time courses (including six motion
parameters, their derivatives, and their squares), quadratic trends, and meantime
courses of white matter, gray matter, and whole brain, plus first derivatives, were
regressed out, and frames with greater than 0.2 mm displacement were excluded.
While the removal of whole-brain signal (global signal reduction) is controversial
in the context of interpreting anti-correlations108,109, we note that we are able to
replicate prior studies showing that a more negative link between our networks of
interest is related to test performance in our higher-income sample (see Results),
lending credence to the inclusion of this step in the analysis pipeline for our
purposes.

The data underwent temporal bandpass filtering (0.009–0.08 Hz). Next,
standard ROI-based analyses were adapted to allow for analysis in surface space107.
Specifically, time courses were projected onto FreeSurfer’s cortical surface, upon
which 13 functionally-defined networks110 were mapped and time courses for
FreeSurfer’s standard cortical and subcortical ROIs extracted111,112. Correlations
for each pair of ROIs both within and across each of the 13 networks were
calculated. These were z-transformed and averaged to calculate within-network
connectivity for each network (the average correlation of each ROI pair within the
network) and between-network connectivity across all networks (the average
correlation of pairs of each ROI in one network with each ROI in another
network). Here, we examined only within-network connectivity for LFPN and
between-network LFPN-DMN connectivity.

Altogether, the process for curbing potential contamination from head motion
was three-fold. First, there was real-time head motion monitoring and correction,
as described above, and a thorough and systematic check of scan quality in
collaboration with ABCD’s Data Analysis and Informatics Center. Second, the
signal from motion time courses was regressed out during preprocessing, and
frames with greater than 0.2 mm of framewise displacement were excluded from
calculations altogether, as were time periods with less than five contiguous low-
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motion frames. Third, a final censoring procedure was employed to identify
potential lingering effects of motion by excluding any frames with outliers in spatial
variation across the brain107. In combination, these procedures reduce motion
artifacts to the extent possible113.

Analysis. Analyses were performed using R version 3.6.0114. We performed two
separate linear mixed-effects models using the lme4 package115 to test the relation
between cognitive test scores and (1) LFPN-DMN connectivity, and (2) LFPN
within-network connectivity. In our initial pre-registration, we did not consider the
nested structure of the data or potential confounds. To determine whether to
include these in our model in a data-driven fashion, we tested whether each of the
following variables contributed significantly to model fit: (1) nesting within study
site, (2) nesting within families, (3) child age, and (4) mean levels of motion in a
resting-state scan. All except (2) contributed to model fit at a level of p < 0.01 and
were thus retained in final models. We note that our reported results are similar
when we perform simple linear regression with no covariates, exactly as pre-
registered. In addition, results are similar when including all of the covariates in the
ABCD study’s default LMM package (https://deap.nimhda.org/) – specifically,
when adding fixed effects of race, sex, and parent marital status to the same
model above. To determine the significance of our neural connectivity metrics, we
tested whether these contributed to model fit. In all cases, we compared
models without the inclusion of the variable of interest to models with this
variable included and calculated whether the variable of interest contributed sig-
nificantly to model fit, using the ANOVA function for likelihood ratio test model
comparison.

In our second set of analyses, we sought to explore the unexpected results from
our first set of analyses by asking whether certain environmental variables
determine whether LFPN-DMN connectivity is positively or negatively associated
with cognitive test performance across individuals. To do this, we gathered 31
environmental variables of interest, spanning home, neighborhood, and school
contexts. Upon examining the data, we learned that three of these were not
collected at the baseline visit and thus could not be included. Moreover, we made
the decision to include ethnicity separate from race, as it was collected, to retain
maximal information. The final 29 environmental variables are listed in the
Supplement S1. In preparation for our subsequent analyses, we mean-centered and
standardized these variables in the larger dataset to allow for potential comparisons
across the children from high- and low-income households. Levels of each factor
variable were broken down into separate dummy-coded variables for inclusion in
factor and ridge analyses. When data were missing, they were interpolated using
the mice package in R116.

We first performed confirmatory factor analysis using the lavaan package in
R117 to see whether individual and home, neighborhood and school variables can
be separated into distinct factors. If this achieved adequate fit (significantly better
fit than a single-factor model and CFI > 9), we planned to perform a linear mixed-
effects model to test the association of cognitive test performance with an
interaction between LFPN-DMN connectivity and each factor score.

We next performed a ridge regression using the glmnet package in R118. This
analysis technique penalizes variables in a model that have little predictive power,
shrinking their coefficient closer to zero, thus allowing for the inclusion of many
potential predictors while reducing model complexity. These models also include a
bias term, reducing the chances of overfitting to peculiarities of the data, a common
pitfall of ordinary least squares regression. Finally, ridge regression also deals well
with multi-collinearity in independent variables; in contrast to alternatives such as
Lasso, if two variables are highly correlated and both predictive of the dependent
variable, coefficients of both will be weighted more heavily in a ridge.

We fit ridge regressions predicting cognitive test score residuals, that partialled
out the covariates included in our basic linear mixed-effects models (random
intercept for study site, fixed effects for age and motion), from an interaction
between LFPN-DMN connectivity and each environmental variable of interest.
This analysis used nested cross-validation. Specifically, we first split the data into a
training (2/3) and testing (1/3) set. We created test score residuals in the training
and testing sets separately to avoid data leakage119, after rescaling the testing data
by the training data. We then tuned the parameters of the ridge regression on the
training set using 5-fold cross-validation. Ultimately, we used the best-performing
model to predict cognitive test scores in the held-out testing set and assessed model
fit using R2 cross-validated. An R2CV above 0 indicates that the model performed
above chance; otherwise, it will be below 0. We evaluated the significance of specific
variables in our model by plugging in the lambda parameter from the best-
performing model to the linear ridge function in the ridge package in R120, on the
whole sample of children from households in poverty.

Robustness analyses. We did several additional analyses to test the robustness of
our results. First, we repeated our primary analyses as robust linear mixed-effects
models, using the robustlmm package in R121. These models detect outliers or other
sources of contamination in the data that may affect model validity, and perform a de-
weighting procedure based on the extent of contamination introduced. Next, we
performed a bootstrapping procedure intended to probe how frequently the parameter
estimate observed in the children from households below poverty alone would be
expected to be observed in a larger population of children from households above
poverty (Supplement S6). We also performed a permutation procedure to examine the

extent to which the model parameters from the children from above-poverty house-
holds alone could explain the data in the children from households below-poverty
(Supplement S7). Finally, given that the children from households below-poverty had
significantly more motion than children living above poverty, we repeated our primary
analyses with only those children who met an extremely stringent motion threshold of
0.2mm (Supplement S8), and those who provided the most frames of usable data
(Supplement S9).

Additional R packages used for data cleaning, analysis, and visualization
include: dplyr122; ggplot2123; car124; corrplot125; MuMIn126; tidyr127;
summarytools128; finalfit129; fastDummies130; caret131; scales132; foreign133;
MASS134; sjPlot135; tableone136; gtools137.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw and processed data used for these analyses are available in the ABCD Data
Repository in the National Institute of Mental Health (NIMH) Data Archive Collection
#2573 (https://nda.nih.gov/abcd). To obtain permission to these data, users must create
an account through the NIMH Data Archive and follow the instructions on the website
to gain access.

Code availability
All analysis scripts used for the current study are publicly available on the Open Science
Framework (https://osf.io/hs7cg/?view_only=d2acb721549d4f22b5eeea4ce51195c7).
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