Skip to main content
. 2021 Dec 10;11:23782. doi: 10.1038/s41598-021-03293-w

Table 1.

Summary of existing ML-based models for thermophilic protein prediction.

Author (year) Classifier a Features b Evaluation strategyc Web server availabilityd
Zhang et al.31 PLS AAC 5CV/IND No
Zhang et al.32 LogitBoost AAC 5CV/IND No
Gromiha et al.27 NN AAC 5CV/IND No
Montanucci et al.21 SVM AAC, DPC 5CV Not accessible
Lin et al.20 SVM AAC, GGAC Jackknife Yes
Wang et al.24 SVM AAC, DPC, PCP, CTD 5CV No
Nakariyakul et al.28 SVM AAC, DPC 5CV/IND No
Zuo et al.33 KNN AAC Jackknife Not accessible
Wang et al.30 SVM AAC, GGAC 5CV/IND No
Fan et al.25 SVM AAC, pka, PSSM 10CV/IND No
Tang et al.29 SVM k-mer 5CV No
Feng et al.26 SVM ACC, DPC, PCP,RAAC 10CV/IND No
Charoenkwan et al. (this study) SCM DPS 10CV/IND Yes

aKNN k-nearest neighbor, NN neural networks, PLS partial least-square regression, SVM support vector machine.

bAAC amino acid composition, CTD composition-transition-distribution, DPC dipeptide composition, DPS dipeptide propensity scores, GGAP g-gap dipeptide composition, k-mer fragment-based technique, pka acid dissociation constant, PCP physicochemical properties, PseACC pseudo amino acid composition, PSSM position specific scoring matrix, RACC reduce amino acid composition, TC tripeptide composition.

c5CV fivefold cross-validation, 10CV tenfold cross-validation, jackknif jackknife cross-validation, IND independent test.

dNot accessible: the webserver was not functional during the preparation of this manuscript.