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Towards organoid culture without Matrigel
Mark T. Kozlowski 1✉, Christiana J. Crook 2,3,4 & Hsun Teresa Ku 2,3

Organoids—cellular aggregates derived from stem or progenitor cells that recapitulate organ

function in miniature—are of growing interest in developmental biology and medicine.

Organoids have been developed for organs and tissues such as the liver, gut, brain, and

pancreas; they are used as organ surrogates to study a wide range of questions in basic and

developmental biology, genetic disorders, and therapies. However, many organoids reported

to date have been cultured in Matrigel, which is prepared from the secretion of Engelbreth-

Holm-Swarm mouse sarcoma cells; Matrigel is complex and poorly defined. This complexity

makes it difficult to elucidate Matrigel-specific factors governing organoid development. In

this review, we discuss promising Matrigel-free methods for the generation and maintenance

of organoids that use decellularized extracellular matrix (ECM), synthetic hydrogels, or gel-

forming recombinant proteins.

Organoids are multicellular structures derived from stem and progenitor cells that mimic
the function and spatial organization of organs1. Organoids recapitulate important
organ functions in vitro while remaining small in size and often free of interfering cell

types such as vascular, nerve, or other undesired epithelial cells. For these reasons, organoids are
used to study organ development2 and model various diseases such as cancers3, neural
disorders4, and autism5; they are also used as pharmaceutical testing platforms6, model systems
for CRISPR-CAS9-mediated treatment of genetic diseases7, and replacement organs for
transplantation8,9. It is possible to culture organoids from induced pluripotent stem cells
(iPSCs)10 or adult stem cells from patient tissues11, which may lead to personalized medicine.
The wide range of clinical applications of organoids is the subject of a recent review by Drost and
Clevers12. Many excellent reviews have been published about different organoid types, such as
heart13,14, brain15–17, liver18,19, kidney20–22, pancreas23–25, and female reproductive tract26.

Many organoids have been cultured in Matrigel, a material derived from the secretion of
Engelbreth–Holm–Swarm mouse sarcoma cells and enriched for extracellular matrix (ECM)
proteins27. In an early report of organoid culture, Sato and colleagues grew murine intestinal
Lgr5+ stem cells in high concentrations of Matrigel supplemented with the growth factors WNT,
Noggin, R-spondin, and EGF28. This culture system has been widely adapted for other organs
such as the colon, stomach, and liver29–33. Related methods have been used to construct
simulated versions of the inner ear34 and pancreas35–39, and the similarities between pancreatic
and liver-organoid-generating cells suggest that methods used for making liver organoids may be
applicable to the pancreas40. The many organoid-specific applications of Matrigel-based culture
methods have been thoroughly discussed elsewhere41–43.

Despite its versatility and affordability, Matrigel is extremely complex; proteomic analysis
shows that it contains more than 1800 unique proteins44. The undefined nature of Matrigel
makes it difficult to identify the signals necessary for organoid structure and function; this
difficulty is compounded by lot-to-lot variations of Matrigel45–48. Furthermore, Matrigel may
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not contain all of the necessary components for proper organoid
formation; gut organoids cultured in Matrigel lack the char-
acteristic architecture of mammalian intestines, which could be
due to a sub-optimal amount of laminin-511 and the absence of
other cell types such as mesenchymal cells49,50. Finally, it has
become increasingly clear that the mechanical properties in three-
dimensional (3D) culture systems can have large effects on cell51,
organoid52, tissue53, and organ development54,55. The mechanical
properties, such as elastic modulus, pore size, stress relaxation,
and creep56–59, cannot be easily separated from the chemical cues
in the Matrigel-based culture systems. Furthermore, the
mechanical properties of Matrigel samples are heterogeneous;
local regions of such gels have been found to exhibit elastic
moduli several times higher than the average modulus of the
sample60,61. Finally, the fact that Matrigel is originated from
mouse cells hampers its use in human clinical transplantation due
to potential immunogenicity18.

Given these limitations, there is an emerging need to develop
Matrigel-independent organoid culture methods. In this review,
we discuss recently-developed Matrigel-free techniques for the
culture of organoids. We will review undefined matrices, focusing
on ECM derived from decellularized tissues and collagen, and
defined matrices, including synthetic polymer hydrogels and
engineered ECM proteins (Fig. 1). Table 1 summarizes the
advantages and disadvantages of each category of material.
Table 2 summarizes studies that discuss the effects of elastic
modulus on the organoid formation of various tissues.

Organoid culture in decellularized ECM and other naturally-
derived proteins
In organ development, ECM proteins provide signaling cues,
serve as an adhesive substrate, and sequester growth factors
(Fig. 2)62. In order to accurately recapitulate the composition,

structure, and vascularization of native ECM in organ develop-
ment, some organoids have been grown in decellularized ECM
from human or animal donors. The methods of decellularization
used are dependent on the target tissue and not readily general-
izable; a number of these methods have been reviewed
elsewhere63. While xenogeneic ECM has the potential to cause
immune responses, this risk can be greatly reduced by using
proper preparation techniques64; similar ECM scaffolds derived
from animals are FDA-approved for clinical applications such as
heart valve replacement, facial reconstruction, and osteopathic
implants62,65. Decellularized ECM may also provide additional
cues that promote regeneration of damaged tissue, ultimately
supporting the organoid transplant and promoting its function66.
Decellularization approaches have been demonstrated for human
kidney67, murine kidney67,68, murine heart69,70, human and
porcine lung71, and porcine testicular72 tissues, with each type
posing unique challenges. To illustrate some of these challenges
and methods, we will focus on the decellularization of the liver,
gut, and pancreas.

Liver organoids grown in decellularized ECM. Liver-specific
ECM can be obtained from a surgically resected portion of a
patient’s damaged liver, or from livers unsuitable for transplan-
tation. Lin and colleagues reported that liver tissue decellular-
ization supported growth and maintenance of rat hepatocytes;
however, this method relied on mechanical disruption of resected
tissue, which resulted in the loss of organ architecture and vas-
cular networks73. In contrast, Baptista and colleagues perfused
Triton X-100 and ammonium hydroxide through a ferret hepatic
vascular network to remove cells. This method preserved the
underlying ECM and vasculature while retaining most of the
glycosaminoglycans, collagens, and elastins. The decellularized
material could be colonized by human fetal liver and endothelial

Fig. 1 Methods of making organoids without Matrigel. Replacing the undefined medium of Matrigel is a major goal of organoid culture. We will discuss
three main alternative media: (a) decellularized extracellular matrix and other derived proteins, (b) synthetic hydrogels, which generally incorporate cell-
adhesive domains or proteolytic degradation sites, and (c) gel-forming recombinant peptides. Adding multipotent cells to these matrices enables the
growth of organoids, which are potentially applicable as transplants, drug-testing platforms, personalized medicine, and means to understand organ
development.
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cells to produce a functioning organoid74. An illustration of the
method of Baptista and coworkers is shown in Fig. 3. The liver
can also be decellularized, ground into powder, and redissolved.
Lee and colleagues used this approach with rat liver ECM to
promote the differentiation of human adipose-derived stem cells
into functional hepatocytes75. More recently, Saheli and collea-
gues seeded sheep liver ECM gel with a combination of human
hepatocarcinoma cells, mesenchymal stem cells, and umbilical
cord stem cells; the resulting tumor organoids had greater
hepatocyte function than tumor organoids grown in comparable
collagen I-based culture76. Lewis and colleagues observed that
growing murine small cholangiocytes (a committed progenitor
cell type) in porcine liver ECM gel resulted in the formation of
complex, branching structures similar to biliary ducts, and these
cells also secreted small amounts of bile. In contrast, cholangio-
cytes cultured in Matrigel formed cysts while those in collagen I
proliferated and spread in all directions without spontaneously
forming structures77. Thus, Matrigel alone does not provide all of
the needed factors for small cholangiocyte differentiation,

whereas a decellularized liver ECM gel appears to be a better
alternative.

Gut organoids grown in decellularized ECM. Decellularized
matrices have also been used for the growth of human intestinal
organoids (HIOs) derived from pluripotent stem cells (PSCs), as
well as enteroids derived from adult crypt stem cells78. Finkbeiner
and colleagues found that undifferentiated human embryonic
stem cells (ESCs) could not directly differentiate into HIOs in a
decellularized porcine intestinal ECM. However, pre-
differentiated HIOs were able to seed onto decellularized por-
cine intestinal ECM and form correct spatial orientation-
mimicking intestine79. Giobbe and colleagues developed a
method for decellularizing the porcine small intestine to form an
intestinal ECM gel similar to the liver ECM gels discussed in the
previous section. The porcine intestinal ECM gel was able to
support the formation of enteroids from murine Lgr5+ crypt
cells, and from human pediatric stomach and intestinal crypts.
The authors were also able to achieve mechanical control of the
ECM gel by incorporating poly-acrylamide to achieve different
stiffness for two-dimensional (2D) culture of human and mouse
enteroids, which may be important for future research. This
intestinal ECM gel is also applicable to grow organoids from the
liver, stomach, and pancreas80.

Decellularized ECM from the pancreas. Decellularized ECM has
been prepared from various pancreatic cell sources, such as adult
human pancreas81 and porcine pancreas82. Using mass spectro-
metry, Bi and colleagues found major differences in protein
compositions comparing decellularized rat pancreatic extra-
cellular matrix to Matrigel; Matrigel contains lower levels of
collagen V than are normally present in pancreatic ECM. By
coating plates with Matrigel plus commercially available collagen
V, the authors were able to enhance endocrine differentiation of
human iPSCs in 2D culture, compared to Matrigel alone83. One
key limitation of this study, however, is that the proteomic profile

Table 2 Ideal elastic moduli for generating organoids from
different organs.

Organoid Ideal matrix elastic
modulus

References

Mouse ESC-derived
neuroepithelial

2–4 kPa 156,157

Mouse liver 6–20 kPa 179

Human intestine
Mouse intestine

100–200 Pa
100–200 Pa

162–164,
191

Human brain
Human fore-brain
Human hindbrain

100 Pa–1 kPa
300 Pa
1 kPa

51,114,197

116

116

Mouse heart 700 Pa 190

Mouse bone 34 kPa 51

Fig. 2 Microenvironment of cells. Cells in an organ or organoid are surrounded by other cells, extracellular matrix (ECM) proteins, and growth factors
sequestered in the proteoglycan-modified ECM proteins. Cells bind to ECM proteins via adhesion molecules, such as integrin receptors, which provide
signaling cues to exert biological functions. The stiffness of ECM experienced by the cells also affects their biological activities.
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of the rat pancreas may be very different from that of the human
pancreas. The human pancreas presents a challenge in decel-
lularization as it has a higher lipid content than animal models.
With specific preparation methods that remove lipids, Sackett
et al. found that decellularized human ECM is capable of sup-
porting the survival of undifferentiated hPSCs and their pan-
creatic lineage derivatives, including insulin-expressing beta-like
cells, in vitro81.

Tissue organoids grown in other naturally-derived proteins
and biomacromolecules. A complementary approach to the use
of decellularized ECM is naturally-derived proteins, such as col-
lagen I derived from porcine tendon, porcine skin, or bovine lens
capsules. Collagen I has been used to form human colorectal
carcinoma model organoids in a 3D culture of rabbit colons84 and
as a support for the culture of human and murine intestinal,
stomach, and colonic organoids85. Other examples are vitrified
collagen I for human intestinal organoids86 and murine renal
organoids87, as well as fibrin supplemented with laminin-111
capable of supporting various murine and human epithelial
organoids88.

The Tokyo Medical and Dental University (TMDU) method
uses collagen I for intestinal enteroid culture89. Yui and
colleagues showed that embedding intact murine colonic crypts
and isolated Lgr5+ progenitor cells in collagen I with hepatocyte
growth factor, R-spondin 1, EGF, and Noggin generated
organoids that were able to engraft onto damaged mouse
intestinal epithelia upon transplantation. In contrast to the
TMDU method, the Ootani method uses collagen I gel in which
small and large intestinal cells are kept suspended at an air-liquid
interface; this method improves oxygenation of the organoid,

allows viable murine organoids to be maintained in culture for up
to 350 days, and preserves the mesenchymal niche in the
organoids90.

Two factors have been shown to affect the differentiation of
progenitor cells into organoids in collagen-based matrices: the
source of seeded cells, and the spatial arrangement of collagen
types around the cells. Isshiki and colleagues reported that the
choice between the TMDU and Ootani methods should be
governed by the source of cells used to generate the intestinal
organoid. More consistent results are obtained for growing
intestinal organoids from seeded isolated rat intestinal crypts
using the TMDU method, whereas the Ootani method is better
for growing rat colon organoid cultures of homogenized tissue91.

In addition to judicious selection of cell type, cell fate is
intimately tied to interactions between cell surface integrins and
biochemical cues in the ECM92. Collagen I has a high affinity for
α2β1 integrin, whereas collagen IV binds more strongly to α1β1
integrin93. Collagen IV tends to occur exclusively in basement
membranes93. β4 integrin expressed by intestinal organoids is
distributed only at the basal surface94, while β1 integrin is
required for proper apical-basal polarization95–97. A combination
of collagen I and fibronectin compared to collagen I alone
functionalized within a PEG gel enhanced hepatic differentiation
from human mesenchymal stem cells98. Clearly, the culture of
organoids must take the 3D spatial positioning of the relevant
materials into account.

In addition to organoids grown in naturally-derived proteins,
several laboratories have grown a wide range of organoids in
polysaccharides such as alginate or alginate-chitosan mixtures.
Organoid types grown in alginate include human lung99,100,
human brain101, murine intestinal102, human intestinal102,103,
human pancreatic104, and human and murine vascular105.

Fig. 3 An example of whole-organ ferret liver decellularization with excellent retention of structural information, for use as an organoid scaffold.
Figure (a) shows the liver at the start of treatment, then after 20 and 120min of decellularization. A micrograph of the decellularized liver, (b), shows that
the liver capsule and vasculature remain intact after cell removal. Scanning electron microscope images show that the structure of the liver is remarkably
well-conserved, with an intact Glisson’s capsule (GC) visible in (c), and an intact hepatic artery (HA), hepatic portal vein (PV), and biliary duct (BD) visible
in (d). Other blood vessels are structurally intact, despite cell removal (e), with the structural details apparent even at high magnification (f). H&E staining
(g) shows that all cells have been removed, with the pink stain showing protein-containing extracellular matrix; this absence of cellular material is further
confirmed by Mason’s Trichrome staining (h). Movat-Pentachrome staining (i) shows the presence of collagen in yellow, and a dark stain shows elastin
around an artery. Decellularization can proceed gently enough to retain structural information, yielding scaffolds that can be colonized by pluripotent cells
which then differentiate into mature organoids. The image is from ref. 74 and is reproduced with permission.
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Capeling and colleagues grew HIOs on an alginate substrate and
found that differentiation of human pluripotent cells into HIOs
could be supported without the alginate providing chemical cues
to the cells. The authors hypothesized that cells create their own
niche within the alginate hydrogel by secreting basement
membrane proteins and forming mesenchyme, allowing cellular
survival and differentiation into HIOs103. Rossen and colleagues
demonstrated the development of murine and human vascular
organoids in a non-functionalized alginate setting105. Alginate
has a number of advantages that make it attractive as a material
for further study; it is inexpensive, relatively easy to modify and
functionalize, biocompatible, and has been used in a wide range
of biological and materials applications106–108. The mechanical
properties of alginate, such as elastic modulus, extensibility, and
characteristic relaxation time, can also be easily tuned109. For
these reasons, alginate is a promising material for further
exploration. However, because alginate is biologically derived,
its mechanical properties are still subject to lot-to-lot
variability110. Similarly, hyaluronic acid and mixtures of hya-
luronic acid and chitosan have been extensively used in the
growth and construction of neural organoids111–116.

Advantages and disadvantages of decellularized ECM and
other naturally-derived proteins or biomacromolecules.
Decellularized ECM-based methods can quickly recapitulate
organ function. Many or all of the chemical cues required for the
formation of a spatially-defined organ, including difficult-to-
introduce glycoproteins, are already present, minimizing the need
for additional chemical modification of the ECM. Decellularized
ECM retains the compositional differences observed between
basal and apical regions. Collagen- and alginate-based materials
have been approved by the FDA for a wide variety of
applications117, which allows for rapid clinical translation.

Decellularized ECM does have disadvantages. Most impor-
tantly, the quantity of ECM that is available for study is limited by
the availability of donor animals or humans, and the quality of
ECM can be affected by the health of a donor. For example,
emphysematous or fibrotic lung tissue has hardened and
undergone alterations in its architecture. These alterations can
lead to cells failing to survive beyond one week of culture118 or
broad changes in the phenotype of seeded cells that do survive119.
Contrarily, myocardial infarct is known to trigger remodeling
events that stiffen the ECM and change its chemical composition;
yet when mesenchymal stem cells are seeded on infarcted tissue,
the cells secrete higher levels of pro-survival and immunomodu-
latory growth factors120. While myocardial infarct appears to
enhance the survival of seeded cells, the negative effects of other
diseased tissue on organoid development should not be
discounted.

Even with healthy donor tissue, batch-to-batch variability
remains. The physical properties of decellularized ECM are difficult
to control or modify, which limits the experiments that can be
conducted. Decellularized ECM is also chemically undefined; the
factors driving differentiation are often unknown. Surface proteo-
glycans that are necessary for successful organoid formation may be
removed by harsh decellularization121. A related difficulty is that
not all decellularization protocols are equally effective at removing
cells or other immunogenic species, which can cause varying host
immune responses and failure of implants in clinical trials122.
Finally, the occasional need for PSC differentiation into organ-
specific progenitor cells that are then introduced into the
decellularized matrix requires an additional step.

Collagen-based culture methods are not limited by donor tissue
availability; biomedical-grade collagen can be harvested on an
industrial scale from cows and pigs. However, some collagen-based

culture methods rely on coculture with supporting cells98, which
introduces undefined components into the organoid culture.
Furthermore, it is difficult to modify the mechanical properties of
these culture systems without altering chemical concentrations. To
elucidate the effects of mechanical properties on organoid
development, researchers have turned to synthetic hydrogels that
have been functionalized with cell-binding cues.

Organoid culture in synthetic hydrogels
Native ECM is complex; it contains over 300 different proteins,
each of which has a different biological function and stiffness123.
This large number of proteins means that many variables cannot
be easily dissected to study the influences of ECM on organoid
behavior and development. Synthetic hydrogels are attractive
because their mechanical properties, functionality, and erosion
rate can be controlled. The matrix metalloprotease (MMP) family
of enzymes affects cellular and organoid development by
degrading ECM proteins124. By including MMP recognition sites
on synthetic hydrogels, it is possible to tune the rate of the
hydrogel’s erosion. Manipulating synthetic hydrogels using
methods such as electrospinning125, photopatterning126,127,
spraying of microspheres128, inkjet and 3D printing129, or
microfluidic channels130 further enables control over the shape
and size of the organoids. The ability to exert local control over
chemical and mechanical properties allows researchers to dupli-
cate the heterogeneity in stiffness and composition found in
organs, generate interfaces between materials similar to those
found in the ECM, and duplicate essential elements of material
microstructure; each of these controls has implications for organ
function and disease131,132. Synthetic hydrogels can also be made
responsive to external stimuli. For example, a thermoreversible
hyaluronic acid- poly(N-isopropylacrylamide) (PNIPAAm) based
hydrogel that solidifies at 37 oC and re-liquefies upon cooling
enabled culture and recovery of human pluripotent stem cells
without enzymatically digesting the matrix133. Light-sensitive
polyvinyl alcohol matrices have recently been developed for cell
culture; these matrices allow for control over the spacing of
biochemical cues and the material environment134. Both of these
materials may be useful for future organoid studies.

The use of synthetic hydrogels may also open up new avenues by
altering the porosity of the scaffold on which the cells are grown.
Dye and coworkers found that human lung organoids transplanted
in mice could merge together to form airway structures. However,
this was only possible if the scaffold was able to degrade, which
increased the material’s pore size135. Choi and coworkers reviewed
the pore sizes typically used in making tissue-engineering scaffolds,
ranging from 5–15 microns for fibroblasts to 200–400 microns for
osteoblasts, and developed a method for creating an artificial kidney
scaffold using microstereolithography136. However, these studies
observed the effects of pore size on mature cells rather than orga-
noid development from multipotent cells. Broguiere and coworkers
found that a Matrigel culture system had a pore size smaller than
200 nm, or the resolution limit of their confocal microscope, but
that a fibrin-based material had a pore size closer to 4 microns;
these materials had comparable elastic moduli and colony-forming
efficiency88. To our knowledge, studies showing an explicit con-
nection between pore size and organoid differentiation have not yet
been reported.

Synthetic hydrogels also have readily tunable viscoelastic
properties, such as loss modulus and characteristic relaxation
time. Many relevant tissues are viscoelastic, with brain tissue in
particular not only having a strong dissipative component (i.e.,
high loss modulus) in its response to stress137 but also having
slight differences in viscoelastic properties between white matter
and gray matter138. The viscoelastic properties of a material affect
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matrix remodeling, cell spreading, migration, differentiation, and
consequently, organoid fate139–141. The effects of viscoelastic
properties on cell culture and behavior are complex but have been
thoroughly reviewed elsewhere140,142. The effects of materials
properties other than stiffness have only recently begun to be
explored, and tunable hydrogels will enable more sophisticated
experiments to be conducted.

The role of chemical cues in organoid differentiation. Synthetic
polymer-based culture allows organoid formation conditions to
be evaluated using high-throughput methods143–145. Synthetic
hydrogels can be functionalized with biologically active moieties
that permit the growth and spread of cells146–151; concentration
and spacing of these cues can be changed independently152–155. A
striking demonstration of the utility of high-throughput
approaches was provided by Ranga and colleagues, who pre-
pared PEG-based gels in 1536-well plates and studied murine
ESCs (mESCs) expressing an Oct4-GFP reporter. The authors
analyzed 1000 variations of matrix elastic modulus, cell-binding

peptides, and matrix susceptibility to MMP degradation and their
effects on murine ESC fate156. The optimal conditions (elastic
moduli ranged from 2–4 kPa and scaffolds with MMP insensi-
tivity) produce murine neural tube organoids that are more
homogenous in colony size and morphology, as well as more
polarized, than those grown in Matrigel. The percentage of cells
containing an actomyosin contractile ring is used as a metric for
the polarity of the cells157.

Cell-binding cues from collagen, fibronectin, or laminin have
frequently been added to synthetic hydrogels to allow for
organoid growth and differentiation. Ng and colleagues created
functional human liver organoids derived from human iPSCs in a
colloidal crystal of PEG functionalized with collagen I, fibronec-
tin, or laminin-521158,159. Attachment of human iPSCs was
successful in assemblies functionalized with collagen I and
laminin-521 but not with fibronectin. This result builds on
previous work by the authors, in which basic human liver
function was recapitulated by a PEG-based scaffold160. To
promote iPSC differentiation into human neuronal progenitor

Fig. 4 Growth of intestinal organoids on synthetic hydrogels, and effects of matrix stiffness and degradability on their formation. Gjorevski and
colleagues demonstrated defined PEG-based intestinal organoid culture. The stiffness and degradability has a major effect on the ability of induced
pluripotent cells to differentiate into intestinal organoids. By varying the ratio of hydrolytically labile functional groups (dPEG) to stable functional groups
(sPEG), the rate of degradation of the gel can be controlled (a, b). Higher ratios of sPEG are associated with the expansion of intestinal stem cells, whereas
the degradable gels lead to the formation of organoids containing differentiated cells (c). In fact, organoid formation is observed only in gels that have a
stiffness of ~190 Pa: cells expressing lysozyme (Paneth cells), mucin-2 (Goblet cells), and Chromogranin-A (enteroendocrine cells) are in different
compartments, indicating that specialized cells are spatially separated (d). In short, a stiff matrix leads to intestinal stem cell proliferation and expansion,
but a soft matrix and functionalization with laminin-111 promotes differentiation (e). The image is from ref. 162 and is reproduced with permission.
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cells, Ovadia and colleagues compared photo-crosslinked PEG-
based gels that contained chemical cues such as the laminin-
derived cell-binding sequences YIGSR and IKVAV, the
fibronectin-derived sequences PHSRNG10RGDS and RGDS, and
the vitronectin-derived sequence KKQRFRHRNRKG161. The
authors found that PEG gels functionalized with YIGSR and
PHSRNG10RGDS were permissive for human iPSC survival and
differentiation into neural progenitor cells in 3D culture.

The role of stiffness in organoid differentiation. The stiffness of
synthetic hydrogels can be controlled and has an effect on
organoid formation. Gjorevski and colleagues reported a syn-
thetic matrix for the intestinal organoid culture of murine and
human Lgr5+ progenitor cells derived from the intestinal crypt.
The material consisted of a PEG gel functionalized with either an
RGD fibronectin-derived peptide or a laminin-111-derived
peptide162. A stiffer matrix containing an RGD fibronectin-
derived peptide promoted survival and proliferation of undiffer-
entiated progenitor cells. In contrast, the softer matrix containing
a laminin-111-derived peptide promoted the differentiation of
progenitor cells into functional murine and human organoids.
The authors found that organoid formation in minimal nutrient
conditions was permissible only within a narrow range of matrix
stiffness; the optimal elastic modulus was 190 Pa. Making the
PEG gels more susceptible to MMP degradation resulted in
depolarized organoids with irregular shapes. Major findings of
this study are illustrated in Fig. 4, which also demonstrates the
effect of matrix stiffness and degradability on the formation of
one class of organoids.

Cruz-Acuna and colleagues also found that PEG-based materials
may need to be soft and degradable in order to support differentiated
intestinal organoids. The authors used a 4-arm PEG maleimide to
encapsulate and culture Matrigel-derived HIOs. Organoid viability
was reduced at high PEG density and matrix stiffness; RGD- or
AG73 (CGGRKRLQVQLSIRT)-functionalized PEG matrices pro-
moted greater organoid viability than laminin-derived IKVAV- or
type I collagen-derived GFOGER peptides163,164. After successful
engraftment, HIOs generated from 4-arm PEG maleimide promoted
the healing of mucosal wounds in a mouse colon injury model.
Intriguingly, when PEG was crosslinked with dithiothreitol to inhibit
matrix degradation, organoid viability at seven days was poor as
measured by live-dead staining. This demonstrates a requirement of a
degradable matrix for prolonged survival.

Synthetic hydrogels in action: Modeling difficult tissues such as
the brain and pancreas. Neural organoids present special chal-
lenges including a lack of reproducibility, batch-to-batch varia-
tion in transcriptional profiles, and susceptibility to small
microenvironmental changes that may have a considerable effect
on organoid fate165.

Essential elements of the complexity of the brain must be
recapitulated to enable clinical applications of neural organoids. For
example, toxicity in brain tissue has many potential causes involving
multiple cell types166–168. Therefore, the most useful organoids for
toxicity models should include multiple populations. Schwartz and
colleagues used a PEG-based gel functionalized with pendant RGD
cell-binding domains and crosslinked by MMP-degradable peptides
to generate neural organoids169. In this study, cells were introduced
in three sequential stages: neural cells were introduced at day 0,
vascular and mesenchymal stem cells at day 9, and microglia and
macrophage precursors at day 13. The organoids were then exposed
to a library of known toxic and nontoxic compounds, and the
resulting RNA-seq data of the organoid response were used to build
a machine-learning algorithm to assess the neurotoxicity of known
and unknown compounds. In a blinded test, nine out of ten tested

chemicals were correctly identified as toxic or nontoxic; in contrast,
the true positive rate of chemical identification in animal models is
between 41 and 71%170.

Brain organoids cultured in hyaluronic acid hydrogels were
used to model Down syndrome by Wu and colleagues114. The
authors found that the differentiation of both normal and Down
syndrome iPSCs into neurons was dependent on matrix stiffness;
cells could be grown at a softer elastic modulus of ca. 500 Pa but
not ca. 1500 Pa, as indicated by higher expression of β-2 tubulin
and microtubule-associated protein 2. However, Down syndrome
patient-derived iPSCs that were differentiated in the softer gel
showed no discernable neurite outgrowth, suggesting a block in
the maturation of the differentiated neurons.

Hyaluronic acid hydrogels can also be functionalized with
various peptides to examine brain organoid differentiation. Lam
and colleagues found that the concentration of laminin-derived
IKVAV, with 300 μM being the optimal concentration, was
critical to neural organoid survival; however, this concentration
did not enhance neuronal differentiation115. Bejoy and colleagues
showed that functionalizing hyaluronic acid with heparin affects
neuronal patterning; the addition of heparin favored differentia-
tion of human progenitors into neurons with a hindbrain fate,
whereas non-functionalized hyaluronic acid favored a forebrain
fate. The authors also established that the stiffness of this hybrid
material is relevant to cell fate determination; lower elastic
moduli, ca. 300 Pa, led to forebrain development, whereas higher
elastic moduli, ca. 1000 Pa, led to hindbrain development116.

Neural organoids have also been cultured in Matrigel-free
conditions using microfluidic approaches such as microwell
printing. A number of groups were able to generate spheroids in
chip-based devices171–173, but the spheroids lack spatial complex-
ity and cell types compared to fully-developed organoids.
Without having to functionalize the well substrates, Chen and
coworkers used a 3D printed mold to cast polydimethylsiloxane
(PDMS) microwells to generate human embryoid bodies that
have the potential to differentiate into brain organoids in a
suspension culture174. They found that a critical factor affecting
differentiation was the ridges of the culture vessel, unlike previous
studies using smooth wells. This study represents a new direction
towards the generation of organoids, where the shape of the
culture vessel might be tuned in order to change cellular
phenotype, growth, and differentiation.

Pancreatic organoids have proven difficult to prepare without
resorting to Matrigel-based culture. To our knowledge, Candiello
and colleagues were the first group to use a synthetic hydrogel,
amikacin hydrate crosslinked with poly(ethylene glycol) diglyci-
dyl ether known as Amikagel, to culture hESC-derived islet
organoids175. Amikagels with elastic moduli ranging from 37 to
320 kPa were created, but no chemical signaling peptides were
incorporated into the gels. The authors found that stiffer gels
drove pancreatic progenitor cells to aggregate, leading to
increased differentiation and maturation into beta-like cells; this
may have been mediated through paracrine signaling enhanced
by cellular proximity. Compared to cells grown in Matrigel, beta-
like cells grown in Amikagel produced higher levels of functional
beta-cell markers PDX1 and NKX6.1 and were more responsive
to a glucose challenge. Their finding challenges the conventional
wisdom that cell-binding domains are required for effective
organoid formation. The stiffness of the gel is also very high,
exceeding the elastic modulus of materials typically used in the
culture of bone51. Mechanistically, the authors propose that the
culture system is forcing the formation of a compressed organ,
rather than serving as a mimetic. A potential disadvantage of this
approach is limited control of cellular aggregate sizes and
attendant consequences of cell viability of no more than
five days. The smallest cell aggregates reported by the authors
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were ca. 200 microns in diameter; the typical human islet has a
diameter of ca. 130 microns176. Larger islets have been known to
form necrotic centers because of a lack of oxygen and nutrient
diffusion; other studies have found that islets best maintain
cellular identity and function when they have a size of ca.
100–150 microns177. Further work should be done in this system
to establish long-term viability.

Advantages and disadvantages of synthetic polymeric matrices.
A major advantage of using synthetic polymers for organoid culture
is that they are amenable to systematic variation in structure and
properties and can be used to explore the effects of mechanical and
chemical cues on cellular fate178,179. Moreover, many such mate-
rials, including PEG and PLGA, have been approved by the FDA
for use in human therapeutics. Nguyen and colleagues recently
assessed more than 1200 synthetic polymer formulations for toxi-
city and abilities to promote implant vascularization and endothelial
cell network formation180. This work provides a valuable resource
for organoid researchers, particularly those concerned with vascu-
larization of organoids postimplantation.

There are several disadvantages of synthetic hydrogels. First,
many synthetic hydrogels require the incorporation of biochem-
ical cues such as cell-binding peptides. In the absence of
biochemical cues cells may not attach to the hydrogel, leading
to anoikis (a type of programmed cell death)181 instead of
organoid formation162. Improper spacing of biochemical cues can
also lead to cell death182. While the backbone materials of
synthetic hydrogels are cheap and can be produced on an
industrial scale, functionalization of these materials with
precisely-placed, custom-made peptides significantly increases

cost and requires expertise in materials science, making these
materials less attractive to cell biology labs. There have been a
number of studies showing that organoids can be grown on
unmodified surfaces such as alginate, but this requires more
research103,105,110,175,183. Further, synthetic hydrogels may
degrade into cytotoxic by-products184 or require cytotoxic
initiators185, limiting the types of polymers that can be used in
cell culture186. Synthetic hydrogels may contain pendant or
other unreacted groups, which may be toxic to cells (such as
neurotoxic maleimides)187. Finally, synthetic hydrogels used as
medical implants can trigger foreign body reactions188; similar
effects may be seen in immunogen-containing organoids. For
these reasons, it may be advantageous to engineer recombinant
protein gels.

Organoid culture in peptide and recombinant protein
matrices
Recombinant proteins made by genetically engineered organisms
have found wide applications in medicine, food processing, and
catalysis. Engineered recombinant protein gels possess major
advantages compared to other culture methods: chemical cues
can be added with exact definition; chemical and mechanical
properties of the gel can be altered independently; polydispersity
is low; and degradation rates can be programmed by including
appropriate recognition sites for MMP degradative enzymes.

Chung and colleagues generated a hydrogel using an elastin-
like polypeptide matrix containing a fibronectin-derived RGD
cell-binding domain with tetrakis(hydroxymethyl)phosphonium
chloride (THPC) as an amine-reactive crosslinker; this material
transiently inhibited contractility of murine ESC-derived

Fig. 5 Growth of cardiomyocytes on recombinant proteins, and effects of elastic modulus on cardiomyocyte differentiation. The elastin-like proteins
(ELPs) used by Chung and colleagues (a) consist of a bioactive domain translationally fused to one or more elastin-like domains; these domains contain
lysine groups to facilitate crosslinking by tetrakis hydroxymethyl phosphonium chloride (THPC). By varying the ratio of THPC to ELP reactive groups, it is
possible to tune the elastic modulus of the resulting culture matrix (b) without significantly altering the diffusion of nutrients or other vital factors through
the gel (c). Embryoid bodies embedded in the matrix undergo differentiation into cardiomyocytes most favorably in the gels with the lowest elastic
modulus (d); the cells show the greatest contractility when grown in protein crosslinked with a 0.5:1 ratio of THPC:ELP reactive groups. The image is from
ref. 190 and is reproduced with permission.
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cardiomyocytes and enhanced survival of dorsal root ganglia cells
from chick embryos189. In a follow-up study, murine cardio-
myocyte differentiation (measured by α-myosin expression, cell
contractility, and metabolic activity) was found to be dependent
on the stoichiometric ratio of THPC to protein, which tuned the
stiffness of the hydrogel. Among the elastic moduli studied (700,
3000, and 4000 Pa), the softest material favored the proliferation
of embryoid bodies that contain mesodermal progenitor cells and
promoted rapid cardiomyocyte differentiation (Fig. 5). Embryoid
bodies cultured in the 700 Pa matrix displayed the highest level of
MMP secretion. Inhibition of MMP secretion was deleterious to
proliferation and differentiation, suggesting that remodeling of
the matrix is essential in cardiomyocyte differentiation190.

In another follow-up study, a very soft matrix with an elastic
modulus of 180 Pa promoted intestinal organoid-forming effi-
ciencies comparable to those observed in collagen I-based
matrices. Organoid-forming efficiency was higher when the
engineered ECM proteins contained 3.2 mM RGD peptide,
compared to no RGD. Interestingly, MMP activity was sig-
nificantly higher in the stiffer matrices. Inhibition of MMP
activity reduced organoid-forming efficiency in the stiffer engi-
neered hydrogel matrices, suggesting that secretion of degradative
enzymes in adult intestinal organoids may be a response to overly
stiff conditions191.

Recombinant ECM protein has been investigated for pancreatic
organoid culture. The Tirrell and Ku groups have jointly devel-
oped and studied an artificial elastin-like polypeptide that
incorporates an 18-amino acid sequence derived from α1 laminin;
this polypeptide has been named artificial (a) ECM-lam (Fig. 6).
aECM-lam was used to supplement a methylcellulose-based 3D
pancreatic organoid culture that was devoid of Matrigel. Adult
murine Sox9/EGFP+ ductal progenitor cells were first proliferated
in Matrigel, then transferred to a culture containing aECM-lam

but not Matrigel. After 2 weeks, endocrine-acinar organoids were
observed, demonstrating that aECM-lam was capable of inducing
differentiation of ductal progenitor cells into endocrine and aci-
nar lineages192. A follow-up study established that when Matrigel
was added, endocrine and acinar cell development was inhibited
while ductal cell formation was promoted193, demonstrating the
importance of the ECM microenvironment in pancreatic orga-
noid differentiation. Using aECM-lam, other morphologically-
distinct organoids were formed from murine postnatal
pancreas194 and sorted adult ductal progenitor cells195. Finally,
the exact population of adult progenitor cells capable of giving
rise to endocrine/acinar cells in aECM-lam was determined to be
ductal cells, which have high levels of CD133 but low levels of
CD71 expression195. Collectively, these studies demonstrate the
utility of aECM-lam in promoting endocrine and acinar cell
differentiation in pancreatic organoid culture and identifying the
responsible progenitor population.

Peptide-based hydrogels have recently been employed to model
Alzheimer’s disease. Zhang and colleagues used the self-
assembling peptide RADA-16 to culture human neuronal cells
treated with exogenous amyloid-β oligomers, known contributors
to Alzheimer’s disease. A 3D culture in RADA-16 resulted in
activation of a p21-activated kinase in response to amyloid-β
oligomers. Both the activation and localization patterns of the
p21-activated kinase are characteristic of neurons in an Alzhei-
mer’s disease state. In contrast, the corresponding 2D culture did
not show this activation and localization, suggesting that the 3D
organoid culture of neurons is critical for modeling Alzheimer’s
disease196.

The HYDROSAP self-assembling peptide hydrogel is a system
recently developed by Pugliese, Marchini, and colleagues. In
this system, multi-functionalized and branched self-assembling
peptides (SAPs) can generate hydrogels with controllable

Fig. 6 Generating pancreatic organoids with a recombinant ECM protein. An artificial elastin-like polypeptide functionalized with a sequence from laminin
can be used to generate organoids from pancreatic ductal progenitor cells from adult mice. (a) The recombinant protein (named aECM-lam) incorporates
an IKVAV-containing 18-amino acid sequence derived from α1 laminin. The aECM-scr is a scrambled sequence control for aECM-lam. (b) aECM-lam
permits the differentiation of endocrine (expressing C-peptide and glucagon) and acinar cell lineages (expressing amylase). (c) Individual organoids
(Endocrine/Acinar) grown in aECM-lam express beta-cell maturation markers glucokinase, Pcsk1, and Pcsk2. (d) Organoids grown in aECM-lam are capable
of secreting insulin in vitro when challenged by high concentrations of D-glucose or a combination of D-glucose and cAMP activator theophylline. The image
is from ref. 192 and is reproduced with permission.
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elastic moduli197. The authors used HYDROSAP peptide 3D
hydrogels with elastic moduli of ~800 Pa (similar to the stiffness
of human brain tissue) to culture human fetal neural stem
cells198, which were able to differentiate into various lineages
including astrocytes, oligodendrocytes, and neurons.

Related work has been performed by Edelbrock and colleagues,
with peptide amphiphiles capable of forming long, self-assembled
nanostructures within a hydrogel. The peptides contain brain-
derived neurotrophic factor (BDNF), which enables the forma-
tion of mature neurons via activation of the TrkB pathway.
Display of BDNF on the peptide amphiphile is necessary for this
effect to be observed199. Similar work has shown promise in stem
cell differentiation and neural regeneration following spinal
injury in vivo200–202, further demonstrating the utility of peptide-
based materials in cell culture.

Advantages and disadvantages of recombinant protein matri-
ces. Self-assembling peptides and recombinant proteins offer
important advantages in organoid culture. Recombinant proteins
are molecularly well-defined and can be tuned independently for
stiffness, viscoelastic behavior, and chemical functionality203–205.
They can be programmed to degrade and remodel at controlled
rates by including protease recognition sites206 or changing
crosslinking chemistry207. Protein-based hydrogels can be out-
fitted with a broad range of chemical functionalities by introdu-
cing noncanonical amino acids208,209; they can also be readily
tailored to a wide variety of biomedical contexts210,211 and made
thermally responsive212,213. The programmability of recombinant
proteins has prompted increasing interest in the design of
protein-based hydrogels as matrices for organoid culture.

Protein-based materials have several disadvantages. First, not
all proteins can be recombinantly expressed and ensuring re-
folding and functionality of these proteins can be challenging.
Certain recombinant proteins and self-assembling peptides are
immunogenic214–218. Ensuring that the recombinant protein is of
human origin does not guarantee non-immunogenicity219. Care
must be taken to avoid introducing other immunogenic factors,
such as bacterial endotoxin. Therefore, proteins for clinical use
would preferably be expressed in mammalian expression systems
(e.g., Chinese Hamster Ovary) or in yeasts (e.g., Pichia pastoris).

Outlook and conclusions
Although several Matrigel-free techniques have been developed,
they have been used in a narrow range of target tissues; expanding
the number of tissue types will increase the acceptance of these
alternative techniques. The ideal material for organoid culture
should allow independent changes in the chemical and
mechanical properties so that the effects on organoid growth,
development, or morphology can be correlated. It should also
functionalize biologically-relevant cell-binding proteins or pep-
tides with ease. Finally, the ideal material should mimic the
dynamic nature of the ECM in terms of erosion rate, viscoelas-
ticity, and susceptibility to degradation. Because of these
requirements, synthetic materials and programmable recombi-
nant proteins represent fruitful areas of future research.

This review has proceeded with the assumption that a matrix is
required to culture organoids, but matrix-free culture systems
have also been developed. For instance, Pagliuca and colleagues
kept human embryonic stem cells suspended in liquid culture at
70 rpm, added specific growth factors to encourage differentia-
tion, and found that the resulting beta-like cells behaved similarly
to mature beta cells220. A similar process was used by Nair and
colleagues using mechanical agitation to keep human cells sus-
pended in culture, resulting in functional beta-like clusters221.
Control over the mechanical environment in such a system could

be exerted by changing the speed of agitation. This method has
the advantage of allowing easy harvesting of cells, which are
simply allowed to settle to the bottom of a tube.

Using the methods discussed above, we anticipate a gradual
shift away from the use of Matrigel in organoid culture and
towards methods that enable exact control of the cell’s mechan-
ical and chemical environments with a more precise definition.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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