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Abstract

Background: Novel temporal-spatial features of the 12-lead ECG can conceptually optimize 

culprit lesions’ detection beyond that of classical ST amplitude measurements. We sought to 

develop a data-driven approach for ECG feature selection to build a clinically relevant algorithm 

for real-time detection of culprit lesion.

Methods: This was a prospective observational cohort study of chest pain patients transported 

by emergency medical services to three tertiary care hospitals in the US. We obtained raw 10-s, 

12-lead ECGs (500 s/s, HeartStart MRx, Philips Healthcare) during prehospital transport and 

followed patients 30 days after the encounter to adjudicate clinical outcomes. A total of 557 global 

and lead-specific features of P-QRS-T waveform were harvested from the representative average 

beats. We used Recursive Feature Elimination and LASSO to identify 35/557, 29/557, and 51/557 

most recurrent and important features for LAD, LCX, and RCA culprits, respectively. Using the 

union of these features, we built a random forest classifier with 10-fold cross-validation to predict 

the presence or absence of culprit lesions. We compared this model to the performance of a 

rule-based commercial proprietary software (Philips DXL ECG Algorithm).
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Results: Our sample included 2400 patients (age 59 ± 16, 47% female, 41% Black, 10.7% 

culprit lesions). The area under the ROC curves of our random forest classifier was 0.85 ± 0.03 

with sensitivity, specificity, and negative predictive value of 71.1%, 84.7%, and 96.1%. This 

outperformed the accuracy of the automated interpretation software of 37.2%, 95.6%, and 92.7%, 

respectively, and corresponded to a net reclassification improvement index of 23.6%. Metrics 

of ST80; Tpeak-Tend; spatial angle between QRS and T vectors; PCA ratio of STT waveform; 

T axis; and QRS waveform characteristics played a significant role in this incremental gain in 

performance.

Conclusions: Novel computational features of the 12-lead ECG can be used to build clinically 

relevant machine learning-based classifiers to detect culprit lesions, which has important clinical 

implications.
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Introduction

The standard 12-lead ECG remains the mainstay for evaluating patients with suspected 

acute coronary syndrome (ACS) during first medical contact. [1,2] Detecting the presence 

and severity of coronary occlusion (i.e., culprit lesions) can guide timely therapeutic 

interventions and significantly improve patient outcomes. However, current automated 

algorithms are suboptimal in detecting or localizing culprit lesions in ST segment elevation 

ACS. [3] Furthermore, we currently lack tools to detect the presence of actionable culprit 

lesions in those with non-ST elevation ACS.

Acute myocardial ischemia affects the configuration of the QRS complexes, the ST 

segments and the T waves; yet most existing ECG algorithms primarily analyze ST 

segment deviation alone, which constitutes a missed opportunity and may contribute to 

the suboptimal performance seen in many automated algorithms. [4] Markers of electrical 

dispersion incorporate much more information in the ECG than that provided by measuring 

elevation of the ST segment and constitute powerful and robust means of assessing ECG 

morphology and dynamics in addition to classical interval and amplitude measurements. 

[5–7]

We have previously demonstrated that markers of ventricular depolarization and 

repolarization dispersion on the standard 12-lead ECG, other than ST segment, can improve 

the classification performance for detecting potential ACS during first medical contact. [8,9] 

However, identifying ACS patients with acute coronary occlusion has important implications 

for timely decision making and resource utilization in the emergency department. Thus, 

we sought to explore whether using novel features of ventricular depolarization and 

repolarization dispersion on the standard 12-lead ECG can optimize the classification 

performance for detecting the presence of culprit lesions in patients evaluated with suspected 

ACS.
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Materials and methods

Design and settings

Details on the methods of this study have been previously published in detail. [10] Briefly, 

this was a prospective observational cohort study recruiting consecutive patients with chest 

pain transported by emergency medical services to 1 of 3 tertiary care hospitals in the United 

States between 2013 and 2016. The patients were enrolled under a waiver of informed 

consent. We conducted an offline analysis on prehospital 10-s 12-lead ECGs stored after 

being recorded by prehospital personnel. The study outcomes were then adjudicated up to 

30 days after the indexed encounter. The University of Pittsburgh Institutional Review Board 

approved this study.

Study outcomes

We used guidelines proposed by the American College of Cardiology to define and measure 

the degree of coronary artery occlusion among patients who had diagnostic angiography. 

[11] Major coronary arteries of interest were the Left Anterior Descending (LAD), Left 

Circumflex (LCX), Right Coronary Artery (RCA), and Left Main Coronary artery (LMCA). 

Major coronary branches of interest included the first Obtuse Marginal (OM1), first 

Diagonal (D1), and the Right Posterior Descending Artery (RPDA). Additional variables 

for consideration included percent occlusion for previously grafted arteries, percutaneous 

coronary intervention (PCI) type (balloon angioplasty or new stent), or performance of 

angiography only. Major coronary artery with >70% occlusion or a newly placed stent 

were labeled as a culprit vessel, excluding the LMCA where >50% occlusion or a newly 

placed stent met criteria for culprit. Major coronary branches with >70% occlusion or newly 

placed stents were labeled as culprit equivalents (e.g., D1 = LAD equivalent, OM1 = LCX 

equivalent, RPDA = RCA equivalent). Notably, if the LMCA was labeled culprit, the LAD 

and LCX were labeled culprit as well.

ECG data preprocessing and features extraction

Before any preprocessing, all ECGs were manually reviewed and overread by an 

independent reviewer. ECGs with excessive noise or artifact were replaced by the next 

serial ECGs collected before emergency evaluation (n = 24, 1%). All available ECGs were 

included in the study, including those with confounders (e.g., BBB, LVH, etc.). Then, the 

10-s 12-lead ECGs (500 samples per second, 5 μV per least significant bit; 0.05–150 Hz, 

HeartStart MRx, Philips Healthcare) were preprocessed by Philips Healthcare Advanced 

Algorithm Research Center (Andover, MA). Signal was filtered to eliminate noise, baseline 

wander, and artifact, and ectopic beats were removed. Averaged representative beats from 

each of the 12 leads were computed to remove residual baseline noise and artifacts.

Next, using the 12 representative beats, a total of 557 global and lead-specific features of 

the P-QRS-T waveform were captured from each 12-lead ECG as previously described in 

detail. [8,9] In short, 444 temporal ECG features represent durations, amplitudes, and areas 

of various waveform deflections harvested from individual leads. Also, 6 more temporal 

ECG features represent global intervals and subintervals obtained after superimposing 

all representative beats. Next, 13 spatial ECG features representing principal component 
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analysis (PCA) ratios of time-voltage data of various ECG waveforms were computed 

on orthogonal leads I, II, and V1–V6. Finally, 91 additional spatial ECG features were 

identified representing axes, angles, loops, and gradients of QRS and T vectors from Frank 

lead xy, xz, yz, and xyz planes. Feature values were normalized (L2 norm), and missing 

values were imputed using the mean over the corresponding feature.

Data-driven feature selection

Two feature selection algorithms were used to pinpoint features that are most associated 

with individual culprit lesion detection. These algorithms are finetuned to result in an 

optimal performance of the classification algorithm while reducing the number of used 

ECG features. First, we applied Least Absolute Shrinkage and Selection Operator (LASSO) 

algorithm with a random selection of the coefficient to update at each iteration rather 

than the default sequential update of all coefficients, in order to expedite the convergence. 

Second, Recursive Feature Elimination (RFE) with 5% of features to remove at each 

iteration was implemented. Every method is applied on the full dataset, containing all the 

available ECG features. Then, the two sets of features selected by these algorithms were 

combined by keeping only the common features to obtain a final set. The latter was used in 

exploring the performance of the classifier.

This process was applied in three separate models for the different culprit lesions (LAD, 

LCX and RCA) to obtain three reduced sets of features for identifying each outcome. 

For the LCX outcome, only the LASSO set was used due to the decreased performance 

obtained by combining the feature selection results. It is important to note that feature 

selection algorithms are used as opposed to feature extraction algorithms for interpretability 

reasons. Indeed, feature extraction algorithms may result in a set of new features that are the 

combination of the original ones so it would be harder to trace back the contribution of the 

initial features set.

Finally, we combined the three reduced feature sets obtained for individual culprit lesions to 

form a global reduced set for the prediction of the presence or absence of any culprit lesion, 

yielding a set of 90 features. The features of this set were used as predictors for the classifier 

of the ‘any culprit lesion’ outcome. We plotted the feature importance bar graph with respect 

to each outcome as a function of the Gini importance (or mean decrease impurity) computed 

for the Random Forest (RF) structure.

Machine learning algorithm and performance metrics

Considering the sample size of our data and the prevalence of the outcomes, we decided 

to use RF. These classifiers are partially interpretable, reliable in unbalanced and non-

linear datasets, and robust to outliers. Four RF classifiers were built: LAD model, LCX 

model, RCA model, and any culprit model. We used 10-fold cross-validation on the 

data sets. Specifically, we implemented the stratified version so that each split had 

the same proportions of specific coronary occlusions as the global unbalanced datasets. 

The modeling was done using Python which is an open-source coding language, and 

built-in functions from the sklearn machine learning library were mainly used, such as 

sklearn.ensemble.RandomForestClassifier.
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The area under the receiver operating characteristic (ROC) curve was computed for each 

classifier to assess its performance. We used the Geometric Mean method to select 

an adequate threshold, which is an effective approach in imbalanced classification. The 

maximum of the Geometric Mean between the true positive rate (TPR, or sensitivity) 

and the specificity = 1 - false positive rate (FPR) over 10 thresholds (one for each fold) 

was considered to be the best threshold to apply on the fold results computed in the 

validation step. Using this cutoff, we obtained the 2 × 2 confusion matrix for each classifier 

and calculated the sensitivity, specificity, positive predictive value, and negative predictive 

value. We opted to use ROC-optimized cutoffs to derive a clinically applicable model 

with maximized sensitivity and negative predictive value while maintaining a reasonable 

specificity, which constitute pre-requisites for good screening tools in clinical practice.

ECG reference standard

We compared our final classifier (any culprit model) against Philips diagnostic 12/16-lead 

ECG analysis program (Philips DXL ECG Algorithm). Using this commercially available 

software for automated ECG interpretation, we processed each 12-lead ECG to denote 

the diagnostic likelihood “***Acute MI***” or “Acute Ischemia”. Both categories were 

combined to compute the 2 × 2 confusion matrix and corresponding sensitivity, specificity, 

and positive and negative predictive values for the presence of ‘any culprit lesion’. These 

metrics were compared against our final RF model. The metric chosen for a concrete 

quantification of the incremental gain or loss in performance was the net reclassification 

improvement (NRI) index computed for the RF classifier against the reference standard.

Results

Baseline characteristics

Our sample size consisted of 2400 patients (age 59 ± 16, 47% female, 41% Black). Overall, 

84.3% of the recruited patients had non-ACS etiology and 15.8% had confirmed ACS. 

Among the latter, 21.1% had no culprit lesions, 41% had single vessel disease, and another 

37.9% had multi-vessel disease, reflecting the complexity of these patients. The prevalence 

of the individual culprit lesions in our dataset was 7.2% for LAD, 4.8% for LCX, 5.7% 

for RCA, and 10.7% for any culprit, again reflecting the severe imbalance of our binary 

outcomes. Table 1 shows the baseline characteristics of the study sample and across culprit 

lesion subgroups (not mutually exclusive). When comparing those with any culprit lesion to 

those without, those with culprits were more likely to be older white men with a history of 

dyslipidemia, CAD, old MI, and coronary revascularization.

Performance of the machine learning classifier

Fig. 1 shows the areas under the ROC curves (AUC-ROC) for the four different classifiers 

in the study. The AUC-ROC for LAD, LCX, and RCA culprit lesions were equal to 0.82 

± 0.03, 0.84 ± 0.03, and 0.85 ± 0.05, respectively. Using the union of these subsets, the 

AUC-ROC for the ‘any culprit lesion’ model was equal to 0.85 ± 0.03 (Fig. 1, right lower 

panel), suggesting that the selected feature subsets had very good classification performance 

for separating cases and controls for each culprit artery.
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Table 2 shows the diagnostic accuracy metrics of the final “any culprit lesion” model and an 

ECG reference standard. Compared to the commercial interpretation program, our classifier 

not only yielded a 34.5% gain in sensitivity (71.7% vs. 37.2%) but it also maintained a 

higher negative predictive value (96.1% vs. 92.7%). The NRI of our RF model was 23.6%, 

which means that, among the 2400 patients in our study, nearly 1 in 4 patients screened 

with a prehospital ECG can be reclassified correctly using our machine-learning algorithm 

as compared to the automated software. Of note, using ROC-cutoff value at fixed specificity 

of 96% yields a sensitivity of 53%, which still outperforms the commercial model with NRI 

index of 16%.

To better understand the clinical implications of these results, we present two ECG examples 

that illustrate the importance of our findings. Fig. 2 displays the ECG of a 60-year-old male 

patient with 80% occlusion in one of LAD branches that subsequently had a stent placed 

in that artery. The automated algorithm detected a Q wave in V1 and V2 and suggested 

potential infarct but remained inconclusive. Our model reclassified this patient correctly for 

LAD occlusion. More interestingly, Fig. 3 shows the ECG of a 58-year-old male patient 

with 50% occlusion in LAD and 90% occlusion in LCX. The automated algorithm detected 

a right bundle branch block and did not interpret for infarct (i.e., false negative for culprit 

class). Our model reclassified this patient correctly, identifying a culprit lesion.

Furthermore, to interrogate the sources of misclassification in our model, we compared 

the demographic and clinical characteristics of our false negatives (n = 73, 3%) and true 

positives (n = 185, 8%). We found that our model tends to misclassify patient with true 

culprits who are diabetic and with significant coronary history (known CAD, old MI, prior 

PCI), and those with more subtle ST elevation or depression. Fig. 4 shows the 12-lead ECG 

of a 43-year-old male with history of hypertension, smoking, hyperlipidemia, known CAD, 

old MI, and prior catheterization. His angiogram revealed multiple 70%–80% occlusions 

of the diagonal and marginal branches of the LAD and received multiple stents. The 

commercial software noted the old anterior infarct but no acute changes, and our RF model 

predicted no culprit lesions.

Insights into model interpretability

Finally, to enhance the interpretability of our findings, we plotted the features selected by 

each classifier according to their classification importance (Fig. 5). For the ‘any culprit 

lesion’ outcome, the union of the previously selected subsets for individual culprits (k = 

90) were reviewed by experienced clinical scientists to investigate a plausible mechanistic 

link between the important features used by the machine learning algorithm and acute 

myocardial ischemia. The following features were found to be the most important predictive 

features contributing to the observed incremental gain in performance: metrics of ST80; 

Tpeak-Tend; spatial angle between QRS and T vectors; PCA ratio of STT waveform; T axis; 

and QRS waveform characteristics.

Discussion

In this study, we sought to explore whether using novel features of ventricular depolarization 

and repolarization dispersion on the standard 12-lead ECG can optimize the classification 
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performance of the presence of culprit lesions in patients evaluated for suspected ACS. 

While maintaining a specificity of ~85%, our final RF model improved sensitivity over 

existing commercial interpretation software by ~35%, with an NRI of 23.6%. Novel 

metrics of ventricular activation time (i.e., transmural conduction delays), QRS and T axes 

and angles (i.e., global remodeling), non-dipolar electrical dispersion (i.e., circumferential 

ischemia), and PCA ratio of ECG waveforms (i.e., regional heterogeneity) played an 

important role in this improved reclassification performance.

Acute myocardial ischemia affects the configuration of the QRS complexes, the ST 

segments and the T waves, thus novel computational ECG features quantifying global 

depolarization and repolarization dispersion have been previously shown to contain 

prognostic information on myocardial injury beyond those captured by the amplitude of 

the ST segment alone. Waveform principal eigenvalues and corresponding ratios, as well as 

non-dipolar voltage beyond the 3rd eigenvalue, have been shown to specifically correlate 

with acute myocardial injury. [5,7,12] These metrics can quantify the magnitude of diffusion 

or widespread global changes secondary to altered signal propagation speed and velocity 

between healthy and ischemic myocardium.

Furthermore, the angles between depolarization and repolarization vectors and loops have 

been shown to correlate with ischemia. [6,13] These metrics can quantify the altered 

electromechanical forces in the ventricular myocardium secondary to global remodeling 

after myocardial injury. Other T wave indices (e.g., T peak-end) have also been shown to 

correlate with ischemia in prior studies. [14]

In this study, we reported the ECG features which have been selected by the RF models 

across the various culprit endpoints (Fig. 5). It is worth noting that the RCA model tended 

to detect different features than the LAD/LCX models. While all models were heavily 

influenced by age, T peak-end, and various ST80 features, the LAD/LCX models were 

more influenced by features based on the principal component analysis (PCA) of the 

12-lead ECG. This in part seemed reasonable given that PCA analysis focuses on the 

orthogonal leads I, II, V1–V6, and repolarization distortions in the antero-lateral walls are 

likely to yield more spatial dispersion in the ECG signal. On the other hand, the RCA 

model was more influenced by the T axis dispersion in the frontal plane, as well as the 

non-dipolar voltage beyond main principal components, both which constitute markers of 

circumferential ischemia as one would expect with RCA occlusion.

Another important finding in our post-hoc sensitivity analyses was that patients with 

diabetes and pre-existing coronary history (CAD, old MI, prior revascularization) were more 

likely to be missed by our model (false negatives). This is an intriguing finding and supports 

the longstanding notion that such patients undergo chronic ischemic preconditioning and 

are likely to have existing collateral circulations, both of which can attenuate cellular and 

electrophysiological responses to ischemia. [15,16] This was further supported by our data 

that showed such patients were also less likely to manifest clinically significant ST elevation 

or ST depression. Such observations suggest that it is likely our incremental gain in accuracy 

(although suboptimal) might have hit the plateau of the 12-lead ECG’s diagnostic yield, and 
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biomarker-driven approach would be the next step in the clinical diagnostic paradigm to 

triage such patients.

Finally, this study has important clinical implications. Nearly 10 million patients are 

evaluated for chest pain at the emergency department annually in the US. Nearly half of 

these patients are admitted because the initial evaluation is inadequate to rule in or out 

acute coronary disease. Our results indicate that novel features of ischemia, combined with 

RF-based intelligent classifiers, can help reclassify 1 in 4 of these patients evaluated for 

suspected ACS. This can potentially expedite treatment in those who need immediate care 

and save unnecessary costs (e.g., diagnostics, admissions) in those without acute coronary 

occlusions.

Conclusions

Metrics of ventricular electrical dispersion on the standard 12-lead ECG can augment the 

prediction of culprit coronary lesions during first medical contact in patients with suspected 

ACS, which has important clinical implications.
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Fig. 1. 
Classification performance of the different random forest classifiers.

Each plot shows the individual 10-fold curves, the mean ROC curve, and the corresponding 

AUC for LAD, LCX, RCA, and any culprit models. The ±2 standard error of the mean ROC 

curve is based on the different 10 folds. ROC: Receiver Operating Characteristic, AUC: 

Area Under the Curve, LAD: Left Anterior Descending, LCX: Left Circumflex, RCA: Right 

Coronary Artery.
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Fig. 2. 
Selected ECG example #1 reclassified correctly using our RF model.

A 60-year-old male with 80% LAD occlusion.
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Fig. 3. 
Selected ECG example #2 reclassified correctly using our RF model.

A 58-year-old male with 50% LAD occlusion and 90% LCX occlusion.
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Fig. 4. 
Selected ECG example #3 misclassified using our RF model.

A 43-year-old male with in-hospital STEMI and multivessel occlusions.

Bouzid et al. Page 13

J Electrocardiol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Importance rank of ECG features subset for predicting culprit lesions.

These plots show the feature importance bar graph as a function of the Gini importance 

(or mean decrease impurity) computed for the Random Forest structures of LAD, LCX, 

and RCA models. The 10 most important features for the LAD model were: TpTe, 

Age, TrelAmp (global T-wave amplitude relative to global R-wave peak), st80_V4, 

STT_PCAratio (ratio 2nd to 1st principal component, STT), st80_V2, pcaTamp, PR_int_III, 

P_amp_V5 and T_PCAratio (ratio 2nd to 1st principal component, T-wave). The 10 most 

important features for the LCX model were: Age, st80_aVL, TpTe, st80_III, pctTNDPV 

(relative % T-wave non-dipolar components, RMS), STT_PCAratio, PCA2, PR_int_III, 

TrelAmp and PR_int_V4. The 10 most important features for the RCA model were: 

st80_aVL, Age, stend_aVL, st80_III, TpTe, fpTinfl1Axis (frontal plane axis of global 

T-wave inflection point before T-wave peak), st80_I, st80_aVF, pctTNDPV and tarea_V2. 

LAD: Left Anterior Descending, LCX: Left Circumflex, RCA: Right Coronary Artery.
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Table 1

Demographic and clinical characteristics across study subgroups.

Study sample
(n = 2400)

LAD Culprit
(n = 172)

LCX Culprit
(n = 114)

RCA Culprit
(n = 136)

Demographics

Age (years) 59 ± 16 63 ± 13 67 ± 12 66 ± 13

Sex (Female) 1119 (47%) 62 (32%) 44 (39%) 55 (40%)

Race (Black) 988 (41%) 44 (26%) 30 (26%) 35 (26%)

Past Medical History

Hypertension 1684 (70%) 117 (68%) 90 (79%) 104 (77%)

Diabetes 682 (28%) 53 (31%) 44 (39%) 45 (33%)

Dyslipidemia 973 (41%) 88 (51%) 65 (57%) 70 (52%)

COPD 566 (24%) 27 (16%) 17 (15%) 18 (13%)

Heart Failure 433 (18%) 26 (15%) 22 (19%) 18 (13%)

Known CAD 851 (36%) 90 (52%) 63 (55%) 74 (54%)

Old MI 627 (26%) 69 (40%) 48 (42%) 55 (40%)

Prior PCI 578 (24%) 81 (47%) 53 (47%) 62 (46%)

Prior CABG 215 (9%) 31 (18%) 26 (23%) 27 (20%)

Current Smoking 743 (31%) 41 (24%) 30 (26%) 42 (31%)

ECG Over-Read by Physician

Normal Sinus Rhythm 2061 (86%) 160 (93%) 105 (92%) 124 (91%)

Atrial Fibrillation 252 (11%) 6 (4%) 4 (4%) 6 (4%)

LBBB or RBBB 176 (7%) 16 (9%) 14 (12%) 14 (10%)

LVH with a strain pattern 80 (3%) 5 (3%) 4 (4%) 4 (3%)

At least one wall with ST elevation 163 (7%) 62 (36%) 39 (34%) 47 (35%)

At least one wall with ST depression 406 (17%) 78 (45%) 54 (47%) 60 (44%)

LAD: Left Anterior Descending Artery, LCX: Left Circumflex Artery, RCA: Right Coronary Artery, COPD: Chronic Obstructive Pulmonary 
Disease, CAD: Coronary Artery Disease, MI: Myocardial Infarction, PCI: Percutaneous Coronary Intervention, CABG: Coronary Artery Bypass 
Graft, LBBB: Left Bundle Branch Block, RBBB: Right Bundle Branch Block, LVH: Left Ventricular Hypertrophy. The columns in the table are not 
mutually exclusive.
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Table 2

Diagnostic accuracy metrics of the final RF model and the ECG reference standard.

Performance
Metrics

Available automated ECG interpretation Radom Forest model for ‘any culprit lesion’

Sensitivity 37.21% 71.71%

Specificity 95.61% 84.73%

Positive predictive value 50.53% 36.13%

Negative predictive value 92.66% 96.13%

NRI index Reference 23.60%

NRI: Net Reclassification Improvement.
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