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Abstract

Purpose: To illustrate two frame-shifts of multidimensional sleep health: i) use of composite 

sleep metrics; and ii) the inter-correlations among sleep dimensions.

Participants: 735 adults of diverse backgrounds aged <65 years who participated in the Multi-

Ethnic Study of Atherosclerosis.

Measures: In-home polysomnography (PSG), 7-day wrist actigraphy, and validated 

questionnaires.

Methods: The Buysse Ru SATED model – sleep Regularity, Satisfaction, Alertness, Timing, 

Efficiency, Duration – was operationalized, then extended by including additional measures of 

sleep architecture and sleep apnea from PSG and difficulties initiating sleep from questionnaire 

and sleep onset latency and duration [ir]regularity from actigraphy. We dichotomized sleep 

variables, operationalizing optimal and non-optimal ranges as ‘1’ and ‘0’, respectively, summed 

into a Sleep Health Score, and computed global sleep health scores via Principal Components 

Analysis (PCA).

Findings: Participants showed low prevalence of sleep regularity in timing (<30 minutes 

Standard deviation [sd]; 21.4% favorable) and duration (<60 minutes sd; 36.9%). Although 62.7% 

of participants demonstrated favorable sleep duration by actigraphy, few met criteria for favorable 

levels of % N3 (11.4%) or % REM (34.1%). The average Sleep Health Score was 5.6 of 13 (higher 

is better). Sleep variables were variably inter-correlated (r=0 to r=−0.72). The first Principal 

Component (PC) for each operationalization of sleep health was interpretable as a ‘health’ score; 

all summary scores captured variable but systematic shifts towards more favorable sleep in each 

sleep variable.
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Conclusions: Multidimensional sleep health can be measured by complementary composite 

scores as well as consideration of multiple individual dimensions.
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Introduction

Although it would be convenient if available datasets contained a comprehensive variable 

called ‘sleep’, what datasets typically include are multiple metrics about sleep: estimates 

of specific features of sleep as well as the impact of sleep on daytime symptoms and 

function. Each feature or dimension of sleep is often modeled separately and interpreted 

independently – as exposure or outcome – in distinct models: an effect size for total sleep 

time, one for sleepiness, and another for sleep efficiency.

A variety of sleep dimensions influence diverse outcomes: academic performance, 

mental and physical health, and mortality. Sleep dimensions are sensitive to exposures 

at the individual level (e.g. age; development; financial strain; caffeine, tobacco, and 
other substance use; physical activity, etc.) and social and environmental levels (e.g. 
neighborhoods and the built environment; social cohesion; social relationships; marital 
status; loneliness; discrimination; and work schedules, etc.). However, sleep dimensions 

are not independent of each other (1). Just as food is not consumed as singular nutrients (2), 

sleep is not experienced as singular dimensions. Adults who meet national recommendations 

of 7–9 hours of duration may evince heterogeneity in regularity, continuity, macro- and 

micro-architecture, and satisfaction. Accordingly, Buysse (2014) has defined sleep health 

as: “a multidimensional pattern of sleep-wakefulness, adapted to individual, social, and 

environmental demands, that promotes physical and mental well-being” (3).

A multidimensional paradigm is intrinsic to our understanding of sleep. Clinicians, for 

instance, routinely consider multiple aspects of sleep in diagnosis and management of sleep 

disorders. The literature has long reflected interest in the combined, including interactive, 

aspects of sleep, although has focused more on sleep disturbances rather than sleep health, 

and focused on clinical disorders rather than population health. Thus: What is distinctive and 

useful about the paradigm of ‘multidimensional sleep health’?

We provide empirical data to support multidimensional sleep health as a distinctively 

useful approach for characterizing ‘sleep health’ across the population. One innovation 

is the quantification of sleep health, which ranges beyond disorder or insufficiency – 

acknowledging the existence of gradients of “healthy sleep” beyond meeting a minimum 

duration of sleep or an absence of disorders such as insomnia or obstructive sleep apnea 

(OSA) (3). Sleep health also parallels broader paradigm shifts which acknowledge the World 

Health Organization’s definition of health as more than the absence of illness (4).

Sleep health also has other features that contribute to its utility. First, sleep health 

approaches multiple sleep dimensions (conceptually, operationally, analytically) as 

contributors to a composite concept – a metric of global sleep health. Extant scales include 
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Buysse’s Ru SATED scale and the National Sleep Foundation’s (NSF) Sleep Health Index 

(3, 5). Consistent and valid scales are necessary for scalable, longitudinal data collection 

that enables quantification of population shifts in global sleep health. Such work does not 

preclude analyzing each dimension in its own right, although statistical dependence may 

complicate model interpretation.

Second, sleep health emphasizes that sleep dimensions do not exist in isolation (1). There 

are physiological reasons why certain dimensions are correlated, perhaps causally, with 

others, for instance, duration and sleepiness or OSA and continuity. Sleep dimensions also 

may show statistical correlation when derived from common measurement tools. Thus, 

interpretation of individual dimensions as if they were independent may lead to erroneous, 

or partial conclusions about ‘sleep’: what kind of continuity, quality, alertness, and regularity 

is likely to be seen among ‘sufficient’ sleepers (however defined) as opposed to ‘insufficient’ 

sleepers?

In this paper, we illustrate these two frameshifts: i) composite sleep scores; and ii) 

consideration of correlations. To the Buysse Ru SATED model of sleep health–sleep 

Regularity, Satisfaction, Alertness, Timing, Efficiency, Duration–we incorporated several 

additional metrics associated with later health: sleep stage information (% N3, % Rapid Eye 

Movement [%R]), the Apnea-Hypopnea Index[AHI]; self-reported frequency of difficulties 

initiating sleep (DIS) or sleep onset latency from actigraphy; and (ir)regularity in duration; 

and mapped these dimensions to a conceptual sleep health model. We considered how to 

model multiple, often correlated, dimensions and found merit in both analyzing individual 

dimensions as well as a global sleep health metric. We constructed a Sleep Health Score 

(SHS: sum of indicator variables); and 4 data-driven sleep health scores from Principal 

Components Analysis (PCA). Finally, we showed how these composite and individual 

dimensions map across race/ethnic groups, an extension of prior work where we reported 

in detail differences in sleep health by race/ethnicity across a larger age range but did not 

evaluate the impact of differences in composites and their psychometric features (6).

Methods

Sample:

The sample was from the Multi-Ethnic Study of Atherosclerosis (MESA), a 6-community 

cohort of aging adults in the United States (Forsyth County, NC; Northern Manhattan 

and the Bronx, NY; Baltimore City and County, MD; St. Paul, MN; Chicago, IL; 

and Los Angeles, CA), diverse in race/ethnicity (White, Black, Hispanic, Chinese) (7). 

Details on this cohort are published (8). In brief, at Exam 5 (2010–2013), participants 

were invited to the MESA-Sleep ancillary study and underwent single-night at-home 

polysomnography (PSG), 7-day wrist actigraphy (Actiwatch Spectrum; Philips Respironics, 

PA; Actiware-Sleep v 5.59), and validated sleep questionnaires (Epworth Sleepiness Scale 

[ESS], Women’s Health Initiative Insomnia Rating Scale [WHIIRS]) (9, 10). Analyses 

were performed on secondary, de-identified, publicly available data; participants provided 

informed consent for the original Multi-Ethnic Study of Atherosclerosis (MESA) study; and 

MESA and MESA-Sleep complied with the Declaration of Helsinki. Actigraphy-assessed 

sleep onset and offset (rest interval) were determined by trained scorers based on a sleep 
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diary completed concurrently, participant-actuated event markers, actigraph light sensors, 

and activity counts. Analyses were restricted to adults 54–64 years because there are more 

normative data available for this age range (11).

Sleep health conceptual model and mapping concepts to variables: As 

described previously (6), sleep health domains were drawn primarily from Ru SATED 

but also the National Sleep Foundation’s Sleep Health Index (3, 5, 12). Selection of 

additional variables was informed by prior knowledge of a high prevalence of OSA and 

sleep fragmentation in middle-age adults (13). Thus, several continuity metrics were chosen 

a priori: sleep maintenance efficiency (SME; i.e., sleep efficiency from sleep onset through 

sleep offset), the Fragmentation Index (FI), and wake after sleep onset (WASO). Other 

additions to Ru SATED such as % R, % N3, AHI (3% desaturation to define hypopneas), 

duration (ir)regularity, and self-reported frequency of difficulties initiating sleep were also 

selected prior to analysis, using expert knowledge or evidence from the literature indicating 

their relevance for health outcomes.

Our conceptual model of sleep focused on four features (Figure 1): 1) the transition 

from wake to sleep (DIS) and daytime sequalae (quality, alertness) from the participants’ 

perspective; 2) the period between sleep onset; 3) inter-daily variability/irregularity in timing 

and duration; and 4) the entire sleep experience both during and across nights.

Derivation of global sleep health composite scores: We first created a summary 

score of dichotomized sleep variables (Sleep Health Score; SHS). As described in (6) 

following (14, 15), cut-points defined optimal ranges, with coding of ‘favorable’ sleep as ‘1’ 

and non-optimal ranges as ‘0’. Optimal ranges were drawn from the literature, the NSF’s 

objective sleep quality report (eg, for WASO), expert consensus, or sample characteristics 

(11, 13, 16–18). These dichotomous indicators of favorable sleep were summed into a global 

metric (SHS), additionally categorized as: least favorable (SHS 0–3), less (4–6), more (7–9), 

and most favorable (10–12) sleep health.

PCA also was conducted on continuous metrics: a) Ru SATED variables (midpoint 

variability/irregularity [MPsd], quality, timing (log-transformed), maintenance efficiency, 

and duration); b) Ru SATED, expanded with selected variables from PSG, adding 

AHI, % N3, %R; c) all variables chosen a priori (adding several variables measuring 

similar dimensions: duration irregularity/variability, frequency of trouble sleeping, WASO, 

fragmentation). For PCA, actigraphy-assessed onset latency was used rather than Difficulties 

Initiating Sleep given the focus on analysis of continuous variables for PCA. Each PC1 score 

was standardized (mean=0, sd=1) and coded such that higher is better.

Statistical Methods: Pearson correlations were computed for continuous sleep metrics 

(log-transformed where necessary). Principal Components and loadings were evaluated for 

three composites: i) Ru SATED; ii) Ru SATED + OSA (AHI) and architecture (%N3, %R); 

and iii) the Sleep Health Score (the most comprehensive set of indices across domains that 

mapped to the SHS constructed using dichotomous cutoffs). Sensitivity analyses assessed a 

parsimonious version of the Sleep Health Score (PC1) that eliminated potentially redundant 

measures. Composite score internal reliability was assessed by alpha Cronbach. Consistency 
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in PC weights-both direction and magnitude-was evaluated across each component. Trends 

among individual sleep health variables in relation to SHS categories were reported. 

Outcomes of composite sleep health scores (linear regression), and their dichotomized 

components (Zou’s modified Poisson regression), were regressed on the exposure of race-

ethnicity (White=ref), with adjustment for age and sex. Type I errors were allocated to 

tests on global scores; component-level analyses were evaluated qualitatively. Analyses were 

conducted in R 3.6.3.

Results

The sample had an average age of 59.4 ± 3.0 years, 55.6% were female, 31.8% were 

currently employed, and most obtained at least a high school degree (Table 2). The majority 

met criteria for actigraphy-assessed sufficient sleep (6–8 hrs; 62.7%; Table 1) but did not 

meet favorability thresholds for: continuity (WASO [6.8% favorable], FI [27.1%]), sleep 

architecture (% N3 [11.4%], %R [34.1%]), both types of (ir)regularity/variability (midpoint 

[21.4%], duration [36.9%]), AHI (48.2%), and quality (21.4%).

Table 2 suggests that when the components in Table 1 are summed into the SHS, increasing 

scores capture variable yet systematic positive shifts across all sleep dimensions. Differences 

in most-least favorable sleep health were notable in duration (+1.6 hours), midpoint 

irregularity/variability (−43.8 minutes), duration irregularity/variability (−48.7 minutes), 

AHI (−23.1 events/hr), % R (+8.4%), % N3 (+9.9%), and WASO (−58.5 minutes).

Figure 2 shows correlations among continuous sleep variables within and across domains. 

Within the continuity domain, fragmentation and sleep maintenance efficiency are highly 

correlated (ρ=0.72). Across domains, there are additional statistical dependencies: timing 

regularity (MPsd(log)) and sleep duration (TST) are moderately correlated (ρ=0.40), as is 

timing regularity with sleep timing (Timing(log)) (ρ=0.32). AHI correlates with continuity 

metrics (FI, SME, WASO) and % R (ρ’s range: −0.34 to 0.32).

Table 3 shows PC weights for the first three PCs for each sleep composite. The first PC 

is interpretable in all models as a “sleep health score”: the directionality of PC1 weights 

for individual variables concur with a priori knowledge of “better” sleep (e.g., higher sleep 

duration contributes positively). As expected, the PC1 weights varied depending on variables 

included but did not substantively change the interpretation of the PC1 composites. The 

simplest Ru SATED score shows that the measures of timing regularity, timing, and duration 

loaded on PC1 while satisfaction/alertness and efficiency loaded on PC2. With the addition 

of PSG and actigraphy measures to the Ru SATED score, we observe that AHI loaded with 

efficiency and regularity, %R loaded with satisfaction/alertness, duration regularity loaded 

with timing regularity, and fragmentation loaded with efficiency. Across the extended (SHS) 

scores, timing and regularity tended to load on PC2 while self-reported sleep indices loaded 

on PC3. Less than 30% of the variation in the data was explained by each of the first PCs, 

consistent with a multi-dimensional basis for sleep health. Moderate internal consistency 

was observed for each sleep health composite, with alpha Cronbach varying from 0.42 for 

Ru SATED to 0.61 for the full SHS.
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Figure 3A shows the Sleep Health Score (SHS), SHS-PC1, Ru SATED + OSA and 

architecture (PC1), Ru SATED (PC1), and their components by race-ethnicity, adjusting 

for age and sex. Consistent with prior analyses (47), the sample averaged 5.7 ± 2.1 of 13 

possible favorable dimensions on the SHS. Black adults averaged 1.34 fewer favorable 

domains than White adults (p<0.001). Hispanic adults averaged 0.74 fewer favorable 

domains (p<0.001); however, most of the individual dimension-level disparities overlap with 

the reference. Ru SATED (PC1) and Ru SATED + OSA and architecture (PC1) showed 

similar variation by race/ethnicity as the SHS and SHS-PC1. Figure 3B suggests that the 

largest drivers of global racial-ethnic disparities were sleep regularity (timing and duration), 

continuity (fragmentation, maintenance efficiency), and total sleep time.

Discussion

There is growing interest in considering sleep health as not merely the absence of a disorder 

but as a summary of the positive attributes of healthy sleep. Similarly, there is movement 

towards using a conceptual framework that articulates sleep as multidimensional, (3). We 

showed that sleep characteristics were commonly correlated, underscoring the limitations 

of focusing on single aspects of sleep: alternate intervention targets can be missed, and 

population variation in sleep health will not be adequately described. The inter-correlation 

among sleep variables may reflect intrinsic physiological inter-relationships and potential 

responsiveness to common stressors. One approach for summarizing the combined effects 

of multiple sleep dimensions is to create composite scores. We constructed a Sleep Health 

Score (SHS) by summing favorable indicators across 13 aspects of sleep health. Within the 

SHS, which varied by race-ethnicity, we found several key drivers of sleep health disparities: 

regularity, duration, and continuity. The validity of this approach was supported by PCA 

performed on continuous Sleep Health Score variables, the subset of Ru SATED variables, 

and Ru SATED extended with OSA and architecture. Those analyses showed that regardless 

of the specific model (Ru-SATED vs the expanded SHS), the conditional distribution of each 

composite score consistently showed racial-ethnic disparity. Moreover, the PCs reflected 

consistent correlations across sleep dimensions; the first PC (which represents a linear 

combination of weights for each sleep characteristic that explains the largest variance in 

the data) reflects large contributions of regularity and duration, and additional PCs further 

describe attributes more strongly influenced by sleep quality and sleep disorders. Our study 

was not designed to identify the optimal number of dimensions to include in a composite; 

nor to construct a universally-applicable, optimal composite (which will vary according 

to the purpose of the research and availability of measures). Rather, we highlight the (a) 

feasibility of using a multi-dimensional approach for evaluating sleep health and its value in 

identifying sleep health disparities; (b) overall consistency of scores when components such 

as regularity, duration and quality are minimally considered; and (c) complementary value of 

considering both global scores and multiple individual components

Below we elaborate on our specific approach to sleep dimensions as: i) potential intervention 

targets; ii) correlated constructs; iii) contributors to a composite concept; and as iv) 

indicators that systematically track with global scores.
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i) Public health perspective: sleep dimensions are potential intervention targets

Dichotomous indicators lend themselves to prevalence reporting, public health goal setting, 

and provide threshold targets for interventions. A public health perspective suggested 

the importance of an a priori approach, relying on concepts/theory (Figure 1) and prior 

knowledge of meaningful clinical thresholds (Table 1). This perspective views sleep 

characteristics as candidate targets for public health intervention or biomarkers which may 

signal later disease.

ii) Internal perspective of Sleep Health: sleep dimensions do not exist in isolation

A different yet complementary perspective was to understand the inter-relationship among 

sleep dimensions, which provides insight into common etiologies and inter-dependencies. 

This approach is of interest because not all aspects of sleep are easily modified directly (eg 

% R) but may be modified via targeted correlated features (via AHI); thus, correlations may 

give clues as to intervention targets.

iii) Holistic perspective of Sleep Health: sleep health can be viewed as a composite 
concept

A third perspective suggests that sleep health can be viewed as a composite or ‘global’ 

concept. We observed similar patterns of association for the SHS compared to global 

assessments derived using PCA and alternative sleep health frameworks. Prior work using 

questionnaires or actigraphy found similar evidence of patterning or latent factors (5, 12, 

19). While the SHS was informed by expert/prior knowledge (placement of cut-points), the 

PC1 sleep scores were a data-driven approach relying instead on covariance. That the two 

approaches were derived differently yet produced nearly identical pictures of racial-ethnic 

disparity suggested the robustness of various composites for estimating sleep disparities 

estimates. Additional research is needed to examine consistency of alternative scores in 

other settings (tracking temporal trends, responses to global exposures such as the pandemic, 

and public health interventions, etc).

iv) Composite-component perspective of Sleep Health

A final perspective was to examine the relationship between composite sleep scores and 

their individual components. The SHS-because of its dichotomous basis-is akin to asking: 

“In how many important aspects of sleep does the participant have a ‘passing’ or ‘favorable’ 

score?” Increasing scores on the global SHS captured systematic shifts towards favorability 

in each sleep variable and in each PC1 score: we observed increases in variables in which 

‘higher is better [eg duration]’ and decreases in variables in which ‘lower is better [eg AHI]’. 

When derived from PCA, the weights of the individual variables were consistently patterned 

in all PCA operationalizations of sleep health; i.e., a 1-unit increase on the composite score 

may also indicate that the individual-level metrics are trending towards favorability. Thus, an 

advantage of a global score is the consideration of multiple dimensions together.

Practical uses of global sleep scores

Global scores can provide overall assessments when dimension-level associations are under-

powered (eg Hispanic disparity; Figure 3). For health outcomes, the effects of ‘poor sleep’ 
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on outcomes such as cardiovascular disease and mortality may be the result of aggregate 

effects of co-occurring aspects of unfavorable sleep. Thus, a global score may capture small 

‘effects’ among the individual variables that cumulate to a larger composite effect in higher-

dimensional data, akin to individual nutrients which inform a larger dietary pattern (2). 

Second, analysis of this global score can reduce multiple testing , which may be beneficial in 

settings involving limited sample size and multiple available sleep metrics.

Dimension-level analyses, basis for dichotomization, and cohort sleep health assessment

Despite their benefits, global scores do not provide specific sleep targets for intervention. 

One approach is to perform post-hoc analyses of individual dimensions only if global 

dimensions show variation by the risk factor under consideration. We focused on a SHS 

constructed using a simple sum of the dichotomous versions of sleep variables, which 

provides readily interpretable metrics for public health purposes and is supported by the 

availability of clinical cut-points for many aspects of sleep (11, 16). While continuous sleep 

exposures or outcomes may offer greater statistical power, there are advantages for using 

cutoffs (20). First, cut-points aid clinicians in making decisions. Second, prevalence can be 

defined and then used for needs assessment: e.g., approximately one third of Americans 

do not meet sleep quantity recommendations (21). Third, cut-points enable quantification 

of prevalence trends over time and across groups. Additionally, cut-points may help avoid 

issues of non-linearities in exposure-response relationships, and cut-points are useful for 

setting goals for public health initiatives. Categorical assessments may be appropriate even 

if there is no evidence of a latent, internal discrete structure (taxon) for that dimension. 

As Kessler (2002) notes, “there appears to be no taxon for high blood pressure,” and yet 

cut-points for blood pressure based on external criteria such as risk of stroke guide clinical 

and public health decisions (20).

Correlations facilitate interpretation and can suggest common biology and risk factors

Sleep dimensions are not isolated phenomena and attention to their correlations may shed 

light on sleep health. For example, compared to White adults, Black adults in MESA 

showed i) lower sleep health composite scores, on average by more than a full SHS 

component difference; and ii) the largest dimension-level disparities for Black adults are in 

regularity (timing and duration), duration, % N3, and continuity (Figure 3). Viewed from the 

sleep health paradigm, their correlations suggest the likelihood of observing multiple sleep 

disparities given a large disparity in, and high correlation with, a single sleep dimension. 

It is also important to consider the bases for correlation: measurement of similar constructs 

(e.g., SME and FI each measure sleep continuity); biological association (e.g., possibly 

irregularity and timing); similar sensitivity to external factors (e.g., light, shiftwork that 

influence sleep regularity, duration, and continuity). Here, inter-correlation is cast as a 

source of research hypotheses.

While sleep duration has been a key focus of epidemiological research, findings on the 

detrimental effects of insufficient sleep duration may implicitly capture effects of poor sleep 

in correlated dimensions – such as regularity, continuity, sleep architecture, OSA, placement 

in the 24-hour day, and sleepiness/alertness – and erroneously attribute this omnibus effect 

to duration. Investigating dimensions other than duration may thus inform interventions on a 
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population scale. It may prove more accurate to say: ‘Sufficient sleep duration (and all that 
it implies) is protective of later health.’ Alternatively, ‘Sleep health, of which average sleep 

duration is one vital component, is protective of later health.’ Novel sleep health analyses 

using machine learning support this conclusion (1, 22).

Tensions and limitations

A limitation concerns the dependencies among dimensions, which also are among the 

more interesting and useful features of multidimensional sleep health. The correlations 

observed may be particular to the sample or attributable to confounding factors such as 

the socioecological context, age or other factors. A second limitation concerns evolving 

definitions and criteria of sleep health. For instance, there are not yet consensus optimal 

ranges for % N3 in late adulthood (11). While PCA revealed interpretable principal 

components, objective and subjective sleep measures each loaded on distinct PCs, which 

could reflect measurement bias separate from dimensional differences. The correspondence 

between self-reported composite scales and those involving objective measures is not 

characterized, and research indicates systematic differences in estimates between self-report 

and objective measures that vary by socio-demographics as well as by underlying sleep 

characteristics (23, 24).

The core definition of Ru SATED dimensions is evolving, with sleep regularity a recent 

addition. A canon of sleep health parameters for measures of sleep micro-architecture 

(e.g. spindles, k-complexes) has yet to be established (25, 26). Future work may utilize 

commercial health and activity monitors for eg sleep regularity (wearable activity monitors); 

sleep apnea (portable oximetry); and EEG via streamlined multi-day in-home recordings 

(27).

Finally, the components of global sleep health scores will likely vary according to the 

questions at hand (e.g., interest in a pediatric versus an aging population; cardiovascular 

disease versus cancer) and measurements available for study. In our study, the availability of 

PSG allowed us to comprehensively include quantitative sleep measures that are predictive 

of health. However, as shown by our PCA, restricting to simpler measures also provided 

interpretable global scores that also varied by race/ethnicity. A key construct that is difficult 

to assess is sleep onset latency, which is subject to recall bias (by diary) or misclassification 

by actigraphy due to challenges in correctly determining ‘lights off’ time. Improvement in 

measuring sleep onset latency may allow inclusion of more informative assessments of this 

key feature of insomnia and sleep quality.

Because a single, canonical operationalization of sleep health may be suboptimal for any 

particular project, adaptations may be warranted. For example, Meltzer and colleagues 

recently proposed an adaptation of Buysse’s Ru SATED framework for pediatric use, the 

Peds B-SATED model (B stands for Behavior), in which sleep hygiene behaviors are 

nominated as an additional dimension in lieu of ‘regularity’ for children (28). However, 

the multidimensionality of sleep behaviors themselves may pose a challenge to integrating 

sleep behaviors into multidimensional sleep health definitions. Future work might draw 

from prior literature on composites or complex systems in other fields which also deal 
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with multi-dimensional data in choosing how to weight and aggregate the complex set of 

phenomena comprising sleep health in a context-specific way (29).

Sleep health is undergoing conceptual advances and scale development (3, 5), scale 

validation (5, 12), implementations of sleep health in cohort studies and community samples 

(14, 30, 31), innovations in methodological approaches (1, 22, 32, 33), and optimal range 

and threshold determination (11, 16, 34). We suggest that statistical dependencies are an 

additional factor to contend with. In this study, the dependencies were cross-sectional; a 

fuller understanding of sleep health may be aided by longitudinal and comprehensive sleep 

data collection.

Summary

Multidimensional sleep health represents a paradigm shift in sleep science. Two useful 

frameshifts are that sleep health is both conceptually and operationally a composite 

concept and that sleep dimensions do not exist in isolation. These frameshifts logically 

implicate sleep disordered breathing and sleep regularity as targets for further research and 

intervention.
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Appendix A.: Multidimensional sleep health: conceptualization and 

operationalization

A1. Overview – how we operationalized multidimensional sleep measures 

for hypothesis testing

Step 1: Variable selection

Step 1 was dimension/variable selection. The basis for inclusion/exclusion of dimensions 

was prior concepts (Ru SATED, NSF), adapted to i) fit our population (diverse adults, mean 

age = 59.4 years); ii) leverage available sleep measures, which included polysomnography 

and actigraphy; iii) to assess racial-ethnic disparity. Our conceptual model and available 

measures suggested comprehensive inclusion of variables.

Step 2: Operationalizing selected variables

The second step was operationalization. For public health use, we dichotomized each 

variable selected in Step 1 and assessed sample prevalence. Optimal or favorable sleep 

ranges were coded ‘1’, and less favorable ranges were coded ‘0’. For instance, actigraphy-

assessed total sleep time was coded ‘1’ if the individual averaged 6–8 objective hours 

of sleep, and ‘0’ otherwise. If sampling weights existed, we would assess population 

prevalence in weighted analyses (we did not have such weights in MESA, which is not 
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intended to be a national probability sample). Dichotomized sleep variables were summed 

into the Sleep Health Score (SHS).

The Sleep Health Score (PC1) and other PC scores were constructed by PCA. As described 

previously, sleep variables were centered, scaled, and log-transformed where necessary. 

As noted, we substituted actigraphy-assessed sleep onset latency (SOLact) for Difficulties 

Initiating Sleep (DIS), because the ordinal variable DIS was not improved by log-

transformation, yet our conceptual model (Figure 1) suggested that the wake-sleep transition 

may be important to assess. We operationalized canonical Ru SATED (6 variables), Ru 

SATED + OSA/PSG (9 variables), via PCA. Figure A2 shows the distribution of each 

global sleep health metric: Ru SATED (PC1), Ru SATED + OSA and architecture (PC1), 

Sleep Health Score, Sleep Health Score (PC1), Sleep Health Score (PC1) parsimonious 

(eliminating potential redundant measures). Resulting scores were standardized (scaled, 

centered) and coded so that higher is better and a 1-unit increase/decrease is a 1-sd 

increase/decrease in sleep health. Each score is approximately normally-distributed. We will 

primarily discuss the SHS-PC1 due to its higher internal reliability, comprehensiveness, and 

distributional similarity to other PC sleep scores. The SHS is under-dispersed (mean=5.6, 

sd=2.1), but is unimodal, may have less skew than PC-derived scores, and is amenable to 

linear regression.

Step 3: Hypothesis testing

The final step was hypothesis tests: i) global Sleep Health Scores using Ordinary Least 

Squares regression (OLS); and ii) the dichotomized dimensions which comprise the SHS.

Below, we i) detail the mapping of prior concepts to our conceptual model, then to sleep 

measures; ii) remark on population-specific thresholds; iii) and compare/contrast global 

sleep scores.
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Figure A1. 
Work flow

A2. Conceptual model: mapping concepts to variables

Before and after sleep: Participants’ point of view

The SHS includes the self-reported difficulties initiating sleep (DIS) item from the Women’s 

Health Initiative Insomnia Rating Scale (WHIIRS) to assess the transition from wake to 

sleep (10). The SHS includes the insomnia phenotype of difficulties initiating sleep (DIS) 

– a symptom of high clinical utility. Self-reported measures of insomnia complaints may 

be of higher clinical utility than objective measures because one of the more striking 

characteristics of insomnia is its apparent lack of a straightforward objective analogue. 

At present, there is no accurate objective basis for the classification of insomnia. The 

SHS includes the WHIIRS item for habitual quality (Quality) and Epworth Sleepiness 

Scale (ESS) scores as after-sleep metrics of subjective satisfaction and participant-reported 

functioning.

The SHS-PC1 uses actigraphy assessed sleep onset latency (SOLact) due to intractable skew 

of DIS, and thus has one more objective dimension but lacks a participant-oriented measure 
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for this period. Conversely, the SHS lacks objective characterization of the wake-sleep 

transition in favor of participant evaluations of this period.

Between sleep onset-offset

The median adult MESA-Sleep respondent experienced 62 minutes of Wake After Sleep 

Onset (WASO), which could reflect a single 62-minute consolidated chunk of wakefulness 

or could reflect a highly fragmented period, with alternating 1-minute wake and sleep 

bouts. Sleep Maintenance Efficiency (SME) values would not differ in these two extreme 

cases, whereas the Fragmentation Index values would. We chose Sleep Maintenance 

Efficiency (SME) over Sleep Efficiency (SE). Sleep efficiency includes Time in Bed in 

the denominator, which includes sleep onset latency. As described, we already used DIS to 

characterize this period of sleep onset latency, from the participants’ own viewpoint, as a 

measure of difficulties initiating sleep and SOLact as an objective measure. Thus, for greater 

precision in characterizing the sleep period (sleep onset – sleep offset), we favored SME 

over SE.

Finally, from actigraphy, we used average total sleep time to assess the overall quantity of 

sleep. From PSG, we used % N3 (slow wave sleep), % Rapid Eye Movement sleep (% 

REM), and the Apnea-Hypopnea Index (AHI) as measures of sleep architecture and sleep 

disordered breathing.

Across nights

To characterize (ir)regularity in timing and duration across nights, we used the standard 

deviation of midpoint and total sleep time (TST) across the study period. To characterize 

average placement of sleep in the 24-hour day, we used midpoint timing/placement 

(Timing); for MPsd and Timing, the data in MESA-Sleep arrive in HH:MM:SS format 

which we converted to minutes by calculating difference in minutes from midnight to obtain 

a numerical value. We coded 02:00:00–04:00:00 (or 120–240 minutes from midnight) as 

favorable sleep midpoint placement in the 24-hour day (Timing) for the SHS.

Timing is natively a continuous and ‘circular’ concept in that, for instance, 23:59:30 and 

00:00:30 are both 30 seconds from midnight. For PCA, then, we required a transformation 

of the variable we calculated above to ensure 23:59:30 was not coded as the most extreme 

value from midnight. Our solution was to first constrain timing to less than 12 hours or 720 

minutes from midnight by coding values greater than 720 minutes from midnight as: Timing 

= Timing – 1440 minutes. We then calculated a metric (in minutes) based on the distance in 

midpoint between each participant and that of the median participant. Because this variable 

is skewed and included 0, we added 1 to this variable and log-transformed it:

1. Timing = Difference minutes of timing HH:MM:SS from midnight (00:00:00)

2. Timing = Timing if < 720 minutes; otherwise, Timing = Timing – 1440 minutes.

3. Timing = | Timing – Timing_median |

4. log Timing = log(Timing + 1)
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We treated MPsd as differences from midnight, in standard deviation (minutes) of midpoint. 

MPsd is right-skewed and is improved by log-transformation; TST regularity (TSTsd) is 

likewise skewed but not overly so, and we left this variable as is.

Figure A2. 
composite score distns (140mm)

A3. Defining optimal ranges according to the population

The Sleep Health Score is the sum of dichotomized dimensions. We used thresholds from 

the literature, expert consensus, or sample characteristics (Table 2). We remark on several 

thresholds of note, which highlight the importance of considering the population of interest 

and suggest future research.
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Thresholds

First, we used AHI≤15 events/hr as favorable. This may be important in aging cohorts, 

such as MESA, where low level OSA is common (38). The estimated U.S. prevalence of 

OSA near our threshold (AHI≥15) in midlife-older men and women (aged 50–70 years) was 

17.4% and 9.1%, respectively, and at a more stringent criterion (AHI≥5) was estimated to be 

43.2% and 27.8%.

For %N3 and %REM, normative values for %N3 and %REM do not yet exist for older 

adults (65+). For this reason, the National Sleep Foundation’s panel could not reach 

consensus (80%) for sleep architecture values for this age group. In our analyses we 

therefore applied adult thresholds universally to adults (<65). Establishing normative sleep 

ranges for late adulthood may provide guidelines for creating consistent scores across 

populations.

We coded the nearest whole number to the lowest quartile as favorable for the Fragmentation 

Index (FI<15). FI is defined, in essence, by the number of sleep periods less than 1 minute 

in length, with wake periods before and after this sleep period – thus, a Fragmentation Index 

(see Figure A2). From the MESA-Sleep data dictionary, FI is the “sum of Percent Mobile 

[wake] epochs and Percent Immobile Bouts Less than 1-Minute Duration to the number of 

Immobile Bouts, for the given interval.” A validated threshold does not yet exist for the 

Fragmentation Index (FI). Sleep Maintenance Efficiency was dichotomized at 90%. The 

most favorable quartile was approximately 93–94%, which we regarded as too extreme for 

an older adult population with a possibly elevated normative OSA prevalence and mid-sleep 

awakenings. Further research is needed on more precise cut points for these dimensions by 

validating against external criteria.
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Figure A3. 
variable loading (190mm)

A4. SHS-PC1

We aimed to create a data-driven unidimensional sleep score and used PCA. Of 13 sleep 

variables, “Timing” and “Midpoint standard deviation” (MPsd) were log-transformed for 

normality. For PCA-derived Sleep Scores, we replaced Difficulties Initiating Sleep that we 

used in the Sleep Health Score with actigraphy-estimated Sleep Onset Latency (SOLact) for 

PC scores because its distribution was more amenable to inclusion for PCA. Our measure 

of the wake-sleep transition–frequency of Difficulties Initiating Sleep (DIS) assessed by 

the ‘trouble sleeping’ item from the WHIIRS–was overly skewed and not improved by 

log-transformation.
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Table 3 described the 13 variables used to calculate PC scores for: Ru SATED (PC1), Ru 

SATED + OSA and architecture (PC1), and Sleep Health Score (PC1). Each variable was 

standardized, mean=0, standard deviation=1. PC1 scores are therefore interpreted relative to 

the sample, in our case, an aging adult sample (mean age = 59.4 years). We conducted PCA 

on sets of standardized variables: 6 variables for Ru SATED, 9 variables for Ru SATED + 

OSA and architecture, and 13 variables for Sleep Health Score. We ran a sensitivity analysis 

on a 10-variable version of the SHS (PC1) that eliminated potentially redundant measures 

such as TST regularity, and WASO (because we already assessed maintenance efficiency, 

SME). The results are not substantively different, and we focus on the main PC scores.

We evaluated the first 3 Principal Components for each run of PCA. We first evaluated 

variable loadings in the first three PCs for Ru SATED. We then evaluated variable loadings 

for the first three PCs for Ru SATED + OSA and architecture as well as the first three 

PCs for the SHS-PC1. These were reported in Table 3. We extracted the first Principal 

Component for each PC analysis, resulting in 3 global sleep scores derived from PCA: 

Ru SATED (PC1), Ru SATED + OSA and architecture (PC1), and the Sleep Health Score 

(PC1). Each global score was standardized, mean=0, sd=1.

We regarded the first dimension to be interpretable as a unidimensional sleep health score. 

As Table 3 and Figure A3 show, higher values on the PC dimensions given sleep dimensions 

– such as TST, %N3, %R, and SME – are generally regarded as favorable for later health 

along dimension 1 but not along dimension 2. Similarly, higher irregularities in timing 

(MPsd) and duration (TSTsd), and AHI are regarded as unfavorable for later health in 

dimension 1 but not 2. Quality (quality) is a Likert scale, higher is worse. We aimed for 

a unidimensional scale relevant for sleep and later health and used and interpreted the first 

dimension as our composite sleep score.

Figure 2, the correlation matrix of sleep dimensions, further supports the interpreted 

directionality of our measure: dimensions in which higher values are accepted as favorable 

for health tend to positively correlate (e.g. TST, SME), and dimensions of the contrary 

interpretation also tend to show varying degrees of similarly directed correlation (e.g. MPsd, 

TSTsd, FI, AHI, %REM).

The strength of the SHS-PC1 is that it represents a single, reduced dimension that explains 

the highest proportion of variance (19.5%) and whose directionality allows a ‘health’ or 

‘favorability’ interpretation. The limitation of the SHS-PC1 is that the highest proportion of 

variance is 19.5%, leaving 80.5% of the variance unexplained by dimension 1. Examining 

the potential value of this unexplained variance was outside of the scope of this article, and 

dimensions 2–13 may contain useful composite sleep health information.
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Figure 1. 
Conceptual model of sleep health
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Figure 2. 
Correlation matrix (190mm)
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Figure 3. 
(A) Composite disparity (140mm)

(B) race-eth dimension disparities (140mm)
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Table 1.

Sleep variables, dimensions, and dichotomization rules. The Multi-Ethnic Study of Atherosclerosis, age <65 

years (n=735).

Sleep variable
Sleep health 
dimension Measure

Dichotomization rule 
(coded as ‘1’)

Sample prevalence 
of favorability 

(‘1’). n (%) Abbreviation

Midpoint variability (sd, 

min)
d Regularity

d Actigraphy <30 minutes 157 (21.4%) MPsd

Duration variability (sd, 

min)
f Regularity Actigraphy <60 minutes 271 (36.9%) TSTsd

Quality (WHIIRS Likert 
subscale; higher is increasing 

complaints)
d Satisfaction

d Questionnaire “Sound and restful” or “very 
sound or restful” 267 (36.3%) Quality

Sleepiness
d

Alertness
d Questionnaire ≤10 617 (83.9%) ESS

Timing (midpoint)
b,d

Timing
d Actigraphy 02:00–04:00

b 466 (63.4%) Timing

Sleep maintenance efficiency 

(%)
d Efficiency

d Actigraphy >90% 524 (71.3%) SME

Fragmentation Index
c Efficiency Actigraphy ≤15

a 199 (27.1%) FI

Wake after sleep onset (min)
f Efficiency Actigraphy ≤20 minutes 50 (6.8%) WASO

Total sleep time
b,d

 (min) Duration
d Actigraphy 6–8 hours

b 461 (62.7%) TST

%R
b,e Architecture PSG 21%–30%

b 251 (34.1%) % R

%N3
b,e Architecture PSG 16%-20%

b
 (50) 84 (11.4%) % N3

Apnea-Hypopnea Index 

(events/hr)
e

Obstructive sleep 
apnea PSG ≤15 events/hr 354 (48.2%) AHI

Sleep onset latency 
(difficulties initiating sleep – 

WHIIRS subscale)
f

Wake-sleep 
transition Questionnaire “Less than once a week” or 

“no, not in the past 4 weeks” 476 (64.8%) DIS

Sleep onset latency (min)
g Wake-sleep 

transition Actigraphy - SOLact

a
WHIIRS: Women’s Health Initiative Insomnia Rating Scale. PSG: polysomnography. MPsd: midpoint standard deviation. TSTsd: total sleep time 

standard deviation. FI: the Fragmentation Index. TST: total sleep time. % N3: % non-rapid eye movement, stage 3 sleep. SME: sleep maintenance 
efficiency. AHI: the Apnea-Hypopnea Index. ESS: Epworth Sleepiness Scale. WASO: wake after sleep onset. % R: % rapid eye movement sleep.

b
These dimensions have optimal ranges in which overexpression of this dimension is considered problematic.

c
The cut-point for FI was defined as the nearest whole number to the most favorable quartile (lowest quartile).

d
Variables used in our operationalization of canonical Ru SATED (PC1)

e
In addition to Ru SATED (PC1), variables used in Ru SATED + OSA/Architecture (PC1)

f
In addition to Ru SATED + OSA/Architecture (PC1), variables used in the Sleep Health Score

g
Actigraphy-assessed onset latency used in all Principal Components-based sleep scores, in place of self-reported difficulties initiating sleep (see 

Appendix, and Table 3).
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Table 2.

MESA-Sleep Participant socio-demographics, global sleep health, and sleep health metrics by Sleep Health 

Score. The Multi-Ethnic Study of Atherosclerosis, ages <65 years (n=735).

Sleep Health Score (SHS) categorized: least to most favorable SHS

Overall least (0–3) less (4–6) more (7–9) most (10–12) p

N 735 120 378 205 32

Socio-demographics

Race-ethnicity (%) <0.001

   White 265 (36.1%) 26 (21.7%) 123 (32.5%) 96 (46.8%) 20 (62.5%)

   Chinese 93 (12.7%) 11 (9.2%) 49 (13.0%) 30 (14.6%) 3 (9.4%)

   Black 200 (27.2%) 52 (43.3%) 108 (28.6%) 38 (18.5%) 2 (6.2%)

   Hispanic 177 (24.1%) 31 (25.8%) 98 (25.9%) 41 (20.0%) 7 (21.9%)

Female (%) 409 (55.6%) 55 (45.8%) 205 (54.2%) 126 (61.5%) 23 (71.9%) 0.011

Age 59.4 (3.0) 59.3 (3.0) 59.6 (3.0) 59.2 (2.9) 59.4 (2.9) 0.638

Education 0.082

   Less than high school 71 (9.7%) 11 (9.2%) 43 (11.4%) 14 (6.8%) 3 (9.4%)

   High school or some college 352 (47.9%) 57 (47.5%) 191 (50.5%) 95 (46.3%) 9 (28.1%)

   College degree 174 (23.7%) 34 (28.3%) 79 (20.9%) 52 (25.4%) 9 (28.1%)

   Graduate 138 (18.8%) 18 (15.0%) 65 (17.2%) 44 (21.5%) 11 (34.4%)

Married 480 (65.3%) 65 (54.2%) 248 (65.6%) 141 (68.8%) 26 (81.2%) 0.010

Employed 234 (31.8%) 42 (35.0%) 124 (32.8%) 59 (28.8%) 9 (28.1%) 0.615

Global sleep health

Sleep Health Score↑ 5.7 (2.1) 2.6 (0.7) 5.1 (0.8) 7.8 (0.8) 10.3 (0.5) <0.001

Sleep Health Score (PC1)↑ 0 (1) −1.1 (0.9) −0.2 (0.8) 0.8 (0.5) 1.4 (0.4) <0.001

Ru SATED (PC1)↑ 0 (1) −1.0 (0.9) −0.1 (0.9) 0.6 (0.7) 1.2 (0.5) <0.001

Ru SATED + OSA and architecture 
(PC1)↑

0 (1) −1.2 (0.9) −0.1 (0.8) 0.7 (0.6) 1.4 (0.4) <0.001

Sleep health variables

  Regularity

Midpoint variability
e
 (sd, min)↓

47.2 [31.8, 
70.6]

67.8 [47.9, 
95.2]

53.0 [36.9, 
76.1]

35.3 [25.5, 
50.8]

23.2 [16.7, 
26.7]

<0.001

Duration variability
e
 (sd, min)↓

76.4 (36.8) 90.1 (29.9) 83.2 (38.0) 61.6 (32.0) 39.6 (12.8) <0.001

  Satisfaction

Quality
c
 (Likert subscale

d
; 

higher=increasing complaints)↓

2.8 (0.9) 3.3 (0.8) 2.8 (0.9) 2.4 (0.8) 2.3 (0.7) <0.001

  Alertness/sleepiness

Epworth Sleepiness Scale
c ↓ 6.3 (4.2) 9.0 (4.9) 6.2 (4.1) 5.4 (3.4) 4.1 (2.3) <0.001

  Timing

Timing
e
 (midpoint minutes from 

midnight)↓

196.1 [155.1, 
242.5]

230.8 [151.2, 
278.8]

201.1 [157.9, 
254.6]

182.1 [151.2, 
222.3]

177.5 [151.2, 
205.1]

0.001
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Sleep Health Score (SHS) categorized: least to most favorable SHS

Overall least (0–3) less (4–6) more (7–9) most (10–12) p

  Efficiency

Sleep Maintenance Efficiency
e
 (%)↑

91.4 (3.4) 89.2 (4.3) 91.1 (3.1) 93.0 (2.2) 93.2 (1.8) <0.001

Fragmentation Index
e ↓ 19.3 (6.8) 23.3 (7.4) 20.3 (6.7) 15.7 (4.7) 14.7 (4.0) <0.001

Wake after Sleep Onset
e
 (min)↓

76.8 (56.3) 102.8 (63.2) 81.9 (58.5) 57.3 (40.0) 45.5 (33.1) <0.001

  Duration

Total Sleep Time
a
 (hrs)↗

6.4 (1.2) 5.6 (1.4) 6.4 (1.2) 6.9 (0.9) 7.2 (0.6) <0.001

  Sleep architecture

% R
b↗ 19.0 (6.6) 15.5 (6.9) 18.4 (6.5) 21.2 (5.7) 23.8 (4.0) <0.001

% N3
b↗ 9.7 [3.2, 16.7] 8.2 [3.2, 14.7] 8.6 [1.9, 15.9] 10.9 [4.9, 17.6] 18.6 [11.9, 

20.0]
<0.001

  Obstructive sleep apnea

Apnea-Hypopnea Index
b
 (events/hr)↓

15.5 [7.3, 
30.35]

29.5 [16.3, 
48.7]

17.8 [9.1, 32.0] 9.6 [5.3, 16.5] 6.8 [3.7, 11.2] <0.001

  Wake-sleep transition – insomnia 
complaint

Onset latency
c
 (freq. of difficulties 

initiating sleep)

<0.001

 No, not in the past 4 weeks 405 (55.1%) 33 (27.5%) 203 (53.7%) 142 (69.3%) 27 (84.4%)

 Yes, less than once a week 71 (9.7%) 6 (5.0%) 28 (7.4%) 34 (16.6%) 3 (9.4%)

 Yes, 1–2 times a week 132 (18.0%) 37 (30.8%) 74 (19.6%) 21 (10.2%) 0 (0.0%)

 Yes, 3–4 times a week 66 (9.0%) 17 (14.2%) 41 (10.8%) 7 (3.4%) 1 (3.1%)

 Yes, 5+ times a week 61 (8.3%) 27 (22.5%) 32 (8.5%) 1 (0.5%) 1 (3.1%)

  Wake-sleep transition 
(actigraphy)

Onset latency
e
 (actigraphy)

4.2 (3.0) 4.6 (3.8) 4.1 (2.9) 4.1 (2.7) 3.6 (2.1) 0.326

a
↑ = Higher is better; ↓ = lower is better; ↗ = generally higher is better, but overexpression can be problematic (eg long sleepers, excessive % R). 

PC1: principal component 1. sd: standard deviation. OSA: obstructive sleep apnea.

b
polysomnography

c
self-report

d
Women’s Health Initiative Insomnia Rating Scale, subscale

e
actigraphy
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Table 3.

Principal Components Analysis of sleep health metrics: Ru SATED, Ru SATED + OSA and architecture, 

Sleep Health Score (SHS), SHS-parsimonious

Ru SATED Ru SATED + OSA and 
architecture SHS-PC1 SHS-PC1 (parsimonious)

α= 0.42 α= 0.47 α= 0.61 α= 0.45

Percent of 
Variance

27.72% 20.01% 17.06% 20.40% 15.09% 13.01% 19.55% 13.71% 9.32% 18.39% 14.06% 11.75%

Also 
known 

as

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Ru SATED

(Ir)regularity↓

(timing)
MPsd

−0.59 0.26 −0.12 −0.45 −0.45 0.06 −0.31 −0.53 0.11 −0.45 −0.43 0.10

Satisfaction/
quality↓ 

(increasing 
insomnia 
symptoms)

Quality

−0.07 −0.61 −0.45 −0.08 0.22 0.63 −0.07 0.10 0.50 −0.08 0.23 0.60

Alertness↓ 

(increasing 
ESS)

ESS
−0.31 −0.51 −0.31 −0.29 0.10 0.53 −0.18 −0.03 0.37 −0.29 0.10 0.50

Timing↓ 

(increasing 
delay)

Timing
−0.39 0.41 −0.35 −0.26 −0.49 −0.04 −0.14 −0.36 0.00 −0.25 −0.46 0.01

Efficiency↑ 

(maintenance)
SME

0.24 0.36 −0.69 0.32 −0.29 0.06 0.41 −0.32 −0.09 0.33 −0.32 0.05

Duration↗ TST 0.58 0.05 −0.29 0.50 0.21 −0.07 0.33 0.24 −0.03 0.49 0.24 −0.07

PSG 
(architecture)

Apnea-
Hypopnea 
Index↓

AHI
−0.38 0.43 −0.23 −0.32 0.18 −0.29 −0.38 0.38 −0.27

% N3↗ % N3 0.14 −0.34 −0.18 0.14 −0.12 0.08 0.15 −0.31 −0.14

% R↗ % R 0.35 −0.25 0.48 0.27 −0.05 0.53 0.35 −0.17 0.51

SHS additions

Irregularity↓ 

(duration)
TS Tsd

−0.27 −0.42 0.15

Onset latency↓ SO 
Lact −0.11 0.26 0.33 −0.06 0.34 0.12

Fragmentation↓ FI −0.44 0.36 0.11

Wake after 
sleep onset↓

WASO
−0.32 −0.01 −0.28

a
Ru SATED: Regularity Satisfaction Alertness Timing Efficiency Duration. SHS: Sleep Health Score. SHS (PC1): Sleep Health Score principal 

component 1. Ru SATED + OSA and architecture: Regularity Satisfaction Timing Efficiency Duration + obstructive sleep apnea + sleep 
architecture. ESS: Epworth Sleepiness Scale. % N3: % non-rapid eye movement, stage 3 sleep. % R: % rapid eye movement sleep. PSG: 
polysomnography.

b
↑ = Higher is better; ↓ = lower is better; ↗ = generally higher is better, but overexpression can be problematic (eg long sleepers, excessive % R)
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