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Abstract

With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative 

means for infection control. Optical waveguides are an auspicious delivery method for 

precise administration of phototherapy. Studies have shown that phototherapy is promising in 

fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) 

including biofilm-forming species and drug-resistant strains while evading treatment resistance. 

When administered via optical waveguides, phototherapy can treat both superficial and deep-

tissue infections while minimizing off-site effects that afflict conventional phototherapy and 

pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication 

designs to optimize this promising treatment option are underexplored. This review outlines 

principles and applications of phototherapy and optical waveguides for infection control. Research 

advances, challenges, and outlook regarding this delivery system are rigorously discussed in 

a hope to inspire future developments of optical waveguide-mediated phototherapy for the 

management of infection and beyond.
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1. Introduction

Infection refers to the process in which pathogens colonize host tissues producing a 

subsequent host response to respective pathogens or its toxins. Pathogens that cause 

infectious disease include bacteria, fungi, protozoa, helminths, and viruses among others. 

However, many are commonplace in the environment, and even function symbiotically 

with host species. For example, many symbiotic bacteria and fungi are present in 

gastrointestinal tract (GI), mucous membranes, and on the skin in mammals. The human 

body has multiple lines of physical and chemical defenses against pathogenic microbes 

under normal circumstances. However, if these barriers are compromised due to trauma, 

burns, immunosuppression, chronic illness or other comorbidities, infection can manifest 

in significant patient morbidity or death. Moreover, due to improper use of drug therapies, 

antimicrobial and antiviral treatment resistance is emerging globally with the onset of 

multi-drug resistant pathogens that are refractory to present pharmaceutical treatments[1]. 

According to the Centers for Disease control and Prevention (CDC), 2.8 million people 

are affected by resistant infections with an annual death toll of approximately 35,000 

in the United States[2]. Furthermore, it is difficult for current systemic antimicrobials 

to sufficiently penetrate biofilms, a protective extracellular polymeric matrix produced 

by particular bacterial and fungal species, which demands high doses of medications 

that increase the risk of adverse effects without the promise of sufficient efficacy[3–

7]. Despite government incentives, such as the Generating Antibiotic Incentives Act 

(GAIN), to develop novel pharmaceutical agents (i.e. antibacterial vaccines, phage therapy, 

immunostimulants, adjuvants, probiotics, and others), medication development is a slow and 

costly process relative to the emergence of resistant microbes. Further, the development of 

novel pharmaceutical agents still leaves the risk of resistance development to these new 

therapies[1, 8].

There is potential for phototherapy to be considered as an alternative or adjunct to 

conventional pharmaceutical therapies for infection control attributed to the low treatment 

resistance (with exceptions seen in photothermal and UVC therapies), and a broad 

spectrum of antimicrobial and antiviral activities[9–25]. Implementation of this alternative 

therapy into routine clinical practice can reduce the use of drug therapies and may be 

leveraged against existing drug-resistant strains of pathogens[9]. Most phototherapies have 

minimal invasiveness, and negligible systemic side effects, unlike their pharmaceutical 

counterparts[7, 26, 27]. Phototherapy comprises any therapeutic approach involving the use 

of light[9, 28–31]. Types of phototherapy can be classified according to the type of incident 

light and therapeutic mechanism. Categories include photodynamic, laser, photothermal, 

and other light-based (i.e. ultraviolet (UV) light, blue light) therapies. By illuminating an 

infected region with the appropriate wavelength, dose, duration, and frequency of light 

with or without exogenous agents (i.e. substrate, photosensitizer, or medium to propagate 

light), pathogens at the source of infection can be inactivated or irradicated. Amongst 

the widespread advantages compared to traditional therapies, there remain shortcomings 

of phototherapy in infection treatment, such as limited penetration depth, imperfect 

selectivity for pathogenic cells, lack of flexible and precise delivery, and safety issues 

(e.g. inflammation, healthy tissue damage, carcinogenesis) that warrant further research 
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to reach the full therapeutic potential of phototherapy for infection treatment. Delivering 

phototherapy via optical waveguides is an auspicious approach to overcome some of the 

shortcomings of phototherapy by directing the propagation of light with minimal losses and 

less off-target irradiation than that of phototherapy alone to address local infections even to 

deep tissues.

Optical waveguides are indispensable to modern living being an integral component of 

telecommunications, sensors, and photonic integrated circuits to name a few applications. 

Optical waveguide-mediated phototherapy is a recently revived area of research being 

investigated for cancer ablation, biosensing, endoscopy, surgical laser delivery, and infection 

treatment[17, 32–36]. The latter application will be examined in this review. Optical 

waveguides are constructs with different geometries composed of dielectric materials that 

confine light propagation to a particular destination due to differences in the refractive 

indices of constituent materials[37–40]. Conventional optical waveguides are made of 

non-compliant and rigid materials (i.e. glasses and plastics), that are destructive to 

most body tissues[37–44]. Curvlite Sales developed an optical waveguide comprised of 

polymethyl methacrylate (PMMA), a polymer widely used for dental illumination in 

1939. This and the emergence of interdisciplinary research fields, such as biomedical 

engineering and materials science and engineering, have since inspired the development 

of a plethora of transparent, biocompatible polymers intended for optical waveguides in 

medicine[45]. Increasingly, advanced, multifunctional, and/or stimuli-responsive optical 

waveguides possessing suitable mechanical and optical properties are being developed to 

perform in clinical environments[40, 46, 47]. The delivery of phototherapy with emerging 

optical waveguide technology has the potential to serve a critical role in local infection 

treatment, especially for drug-resistant microbes and viruses, deep tissue infections and 

biofilm-forming pathogens while eschewing off-site effects that are often inevitable in 

photo- and pharmacotherapies (Fig. 1). While other reviews eloquently focus on optical 

waveguide materials or medical applications, various types of phototherapies for infection 

and biomedical applications at large, as well as elucidation of components of such 

therapies (i.e. photosensitizers (PS), photothermal agents (PTAs)), this review uniquely 

compiles the basic principles, applications, and combinatory use of phototherapy and optical 

waveguide techniques specifically towards infection control. Pertinent research advances, 

current challenges, and future directions are highlighted in this work to shed light on 

opportunities for innovation and optimization of this promising therapeutic strategy to tackle 

the shortcomings of conventional treatments for infectious disease.

2. Phototherapy for infection treatment

The birth of phototherapy began with Niels Finsen, who was awarded the Nobel Prize 

for successfully treating smallpox and cutaneous tuberculosis using red and UV light in 

1903[48, 49]. Phototherapies are effective at treating pathogenic organisms through various 

mechanisms all with the commonality of administering some form of light to a colonized 

site. This review categorizes the types of phototherapies according to pathogen inactivation 

mechanisms. The classifications reviewed herein include photodynamic therapy (PDT), 

photothermal therapy (PTT) and direct light-based phototherapies. The above classification 

was based on the pathogen inactivation mechanisms rather than the wavelength or the 
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form of the light source. For example, when the laser was used to excite photosensitizers 

or photothermal agents to generate ROS or heat, the phototherapy should be categorized 

as PDT or PTT, respectively. When the laser was used directly to change the membrane 

potential of the pathogen, the phototherapy should be categorized as direct laser therapy. 

Similarly, if the visible light was used to generate ROS, the phototherapy should be 

categorized as PDT no matter which wavelength was used.

2.1 Photodynamic therapy

Among the types of phototherapies, photodynamic therapy is the most commonly studied 

technique. Photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a means of 

phototherapy combining light, a substrate, and a photosensitizer to generate free radicals and 

reactive oxygen species (ROS) to eradicate undesired cells[50, 51].

2.1.1 Mechanism and principles—The underlying principles of PDT can be best 

illustrated by a Jablonski diagram (Fig 2a). This diagram demonstrates that after a quantum 

event, an electron in the singlet ground state (S0) absorbs a photon exciting it to a higher 

energy level (i.e. the singlet excited state (Sn)) with the same spin. Subsequently, the 

excited electron may return to the ground state from S1 to S0 by means of releasing 

a photon (fluorescence; lifetime ~10−8 s) or vibrational energy dissipated as heat by a 

process referred to as internal conversion (IC). The process when the excited electron 

changes spin state and enters the lowest excited triplet state (T1) is known as intersystem 

crossing (ISC). Afterwards, the electron relaxes to the S0 state in the form of photon 

release (phosphorescence, lifetime above 10−6 s) or as heat through IC. Based on quantum 

mechanics principles, the radiative decay process from T1 to S0 is forbidden. Hence, the 

decay time from T1 to S0 relative to S1 to S0 is longer[52]. The longer lifetime of triplet 

excitons results in the increased opportunity to transfer electrons (type I reaction) or energy 

(type II reaction) to target molecules rather than decay through internal conversion by heat. 

These processes are referred to as photosensitization and are necessary for PDT activity in 

infection treatment. The molecule which absorbs photons is known as the photosensitizer 

(PS), while the target molecule of photosensitization is referred to as the acceptor or 

substrate.

Following a type I reaction, two radicals or radical ions (i.e. O2
•− and •OH) and/or H2O2 

are generated. In contrast, type II reactions result in singlet oxygen (1O2) generation 

following energy transfer to ground state molecular oxygen (3O2)[51, 53]. According to 

current evidence, both type I and II PDT result in the damage of most biomacromolecules 

including proteins, lipids and nucleic acids to kill cells and has roles in inflammatory 

processes[54, 55]. The potential differences in pathogen control between applying type I and 

type II PDT has yet to be elucidated. It should be noted, however, that type I and type II 

photosensitization generally occur concurrently in PDT where the ratio of type I to type II 

reactions is dependent on the PS, PS concentration, substrates, and environment[56]. The 

differences between the effects of type I and II reactions in addition to the downstream 

effects of damage to biomacromolecules inflicted by PDT can be a focus of future research. 

Such studies may deliver a more profound understanding of the killing mechanisms of type 
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I and II reactions to direct novel designs of PSs and inform researchers how to protect host 

cells while selecting for pathogenic cells.

There is some inherent selectivity for pathogenic cells by PDT, which is believed to be 

attributed to: 1) the smaller cell volume and larger specific surface area of microbial cells 

and viral particles compared to that of mammalian cells, which results in a more probable 

binding and uptake of PSs by pathogenic cells; 2) the limited diffusion distances of ROSs 

(e.g. that of 1O2 is 100-200 nm) make it less probable for ROS to penetrate and damage 

enough cellular structures in larger host cells than that of the small pathogenic cells; 3) 

the higher rate of division and metabolic processes of pathogenic cells compared to that 

of host cells leads to increased sensitivity to free radicals and ROS[51, 57]. Increased 

selectivity for pathogenic cells may be facilitated by local application of PSs, as opposed 

to systemic administration, as well as through conjugating targeting moieties to PSs (e.g. 

cationic groups)[51].

2.1.2 PDT components and materials—The three necessary components for PDT 

include incident light, a photosensitizer, and a substrate. Since PDT has a broad working 

wavelength range, various light sources can be used, such as light emitting diodes (LEDs) 

and lasers. Ultrafast laser is a promising light source in PDT due to high spatial accuracy, the 

minimal potential for non-specific tissue damage and enhanced penetration depth[58]. As 

the source of excitation, light should be of the appropriate energy to bring PSs to the excited 

state. Near infrared (NIR) light can penetrate deeper into tissues than shorter wavelength 

light. Hence, NIR-activated PSs are more desirable for infection treatment. Some PSs have 

working wavelengths in the NIR region; however, the working wavelength of most current 

PSs is within the UV-visible region. For example, the absorption of riboflavin falls into UV 

to blue light range and blue light is commonly used for riboflavin activation in practical PDT 

applications[59–61]. Methylene blue (MB), toluidine blue O (TBO) and protoporphyrin IX 

(i.e. PPIX, active form of the prodrug, 5-aminolevulinic acid (5-ALA)) all work in the red 

light range in practical PDT applications[59, 62–65]. Similarly, most aggregation-induced 

emission luminogens that can function as PSs typically work in the visible region[66–68]. 

There are few reported PSs that can respond to NIR, such as indocyanine green (ICG)[59, 

69]. More photosensitizers used in clinical trials and antimicrobial applications can be found 

in the following reviews[10, 17]. A suitable triplet state energy of the PS is also crucial 

for ROS generation in PDT. Photoluminescent materials with efficient ISC, high quantum 

yield of triplet excitons, and relatively long triplet state lifetime constitute ideal properties 

for PSs for PDT applications to achieve sufficient free radicals and ROS generation. If the 

lowest triplet state energy level (T1) of the PS is lower than the energy level of excited 

state of molecular oxygen (O2(b1Σg
+) and O2(a1Δg)), the energy/electron transfer process is 

unable to occur. The rate constant of ISC (kISC) is dependent on the spin orbital coupling 

(SOC) constants (ξ) as well as the energy gap between the singlet and triplet states (ΔEST) 

according to perturbation theory and Fermi’s golden rule[70, 71]. Materials with large ξ, 

having a greater ability to alter the electronic spin direction, and low ΔEST will increase 

kISC. To achieve a large ξ, heavy atoms (i.e. atoms with atomic number (Z) greater than 

30 and halogens except for fluorine) are used to exploit the heavy atom effect. Therefore, 

it is common to covalently conjugate halogen atoms to PS molecules to enhance ROS 
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quantum yield in PDT materials[72]. Ruthenium (Ru), platinum (Pt), and iridium (Ir) may 

also be used. However, these elements are not only costly, but they are also undesirable 

for biomedical applications due to inherent toxicity. Another way to increase ROS quantum 

yield is to reduce the ΔEST. This is commonly done by incorporating a donor-acceptor 

(D-A) structure with a twisted conformation[73, 74]. However, this design approach is 

not desirable for PDT applications because the twisted conformation results in a reduced 

extinction coefficient and hypsochromic shift (i.e. blue shift) compared to non-twisted 

structures[75]. Substrates that are conducive to effective PDT should possess an appropriate 

redox potential and energy level to increase the proclivity to accept energy or electrons 

from PSs. It is also critical that substrates are abundant physiological environments. Main 

substrates include molecular oxygen and water.

There are several types of materials studied for PDT applications, such as organic-metal 

complexes and inorganic semiconducting materials[76]. A comprehensive review of PSs 

can be found in the review by Lan et al.[77] When metal oxides and other inorganic 

materials are excited by light with greater photoenergy than the band gap of the material, 

valence electrons can travel across the band gap to the conductive band resulting in a charge 

separated state, which facilitates electron transfer reactions (i.e. type I photosensitization) 

(Fig. 2b)[78]. Several metal oxides[79–87] and carbon nanomaterials[86, 88–97] were 

reported to have promise as PSs for PDT. However, metal oxides mainly absorb in the UV 

range limiting their penetration depth[56]. As a result, combining upconversion materials, of 

which can convert lower-energy NIR light to higher-energy UV emission, with metal oxide 

nanomaterials[98–106] and applying optical waveguides can be two feasible approaches 

to overcome this issue. Some other PDT related works are also listed here including 

novel developments involving composite organic and inorganic nanomaterials and metal 

peroxides[107–117].

For most organic materials, following photoexcitation electrons undergo rapid vibrational 

relaxation to the S1 and only a minority of electrons will transit to T1 through ISC. However, 

owing to biocompatibility, tunability, processability and low cost, organic materials are 

PSs popular for biomedical applications. Efforts to enhance ISC processes in organic 

materials have occurred since the 1970s when the first generation of organic PSs were 

developed, which included hematoporphyrin derivatives. The first-generation PSs suffered 

from poor selectivity and low extinction coefficients within their therapeutic window. The 

second-generation PSs emerged in the late 1980s. Representative second-generation PSs 

include tetrapyrrolic macrocycles and derivatives, transition metal coordination complexes, 

and cationic compounds, such as phenothiazines, xanthenes and cyanines. With the 

development of nanotechnology, the design of the third generation of PSs mainly focusing 

on improving delivery and targeting ability of PSs by nanocarriers[56]. For example, 

Zhang et al. developed a nanoassembly of Förster resonance energy transfer (FRET) 

photosensitizer pairs using FDA approved chlorin e6 (Ce6) as the donor component and 

1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (Dir) as the acceptor[118]. 

For infection control, there has been several attempts to use conventional organic PSs, 

such as ICG[119, 120] and polymer-based PSs[121] alone or in combination with other 

therapeutic components to form synergistic PDT nanosystems. Conventional organic PSs 

usually contain highly conjugated chromophores, which tend to self-assemble in the aqueous 
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environments leading to photoluminescence quenching (i.e. aggregation-caused quenching 

(ACQ)) typically destroying the PDT performance. Opposite to ACQ, aggregation-induced 

emission (AIE) was identified by Benzhong Tang in 2001[122], which is attractive for 

PDT applications. There are many reports studying AIE-based materials and platforms in 

PDT[68, 123–149].

Molecular oxygen serves as an excellent substrate due to its triplet ground state (O2(X3Σg
−)), 

which is conducive to accepting energy of triplet excitons that are the products of ISC[57, 

150, 151]. Fortunately, molecular oxygen is relatively stable, inert, and abundant in the 

biological environment with an ability to travel far distances and permeate cell membranes 

and is a primary substrate of type I reactions. Water (H2O) is common substrate for type II 

reactions[56, 152–155].

2.1.3 Applications of photodynamic therapy for infection treatment—Many 

studies have demonstrated remarkable success with PDT against a wide array of pathogens 

including bacteria, fungi, viruses, and protozoa. Moreover, PDT is effective in biofilm 

producing organisms, which are difficult to treated by conventional pharmaceutical therapies 

and often require high doses of medication[156–167]. PDT treatment has been employed 

for several clinically relevant infections, such as diabetic ulcers, osteomyelitis, middle ear 

infection, acne, viral lesions, burns and wounds, and periodontitis in addition to being 

evaluated blood sterilization as detailed in other review works[9, 10, 12, 168–171].

PDT has been most often studied in bacterial and fungal models. For infections caused 

by bacteria, PDT has demonstrated to be effective against Gram-positive species like 

Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), as well as, Gram-

negative species like Acinetobacter baumannii, Pseudomonas Aeroginosa, and drug-resistant 

strains of Gram-negative bacteria[9, 172–216]. Lombard and colleagues have demonstrated 

efficacy to treat brain abscesses by topically applying hematoporphyrin intraoperatively and 

irradiating the infected site for five minutes[217]. Acne vulgaris, caused by the colonization 

of Cutibacterium acnes (formerly Propionibacterium acnes) results in skin lesions typically 

found on the face, back, and upper arms and has been shown to be sensitive to PDT therapy 

using different PSs and wavelengths of light. Examples of PDT regimens for acne vulgaris 

include methyl aminoevulinate (MAL) with blue light, 5-aminolevulanic acid (ALA) with 

550-570 nm light, and indocyanine green (ICG) activated by NIR irradiation[218–222]. 

Colonization of the skin by Corynebacterium minutissimum in superficial skin layers 

and folds leads to an infection known as erythrasma and has been treated with red light 

PDT[223–225]. More recent publications are listed here[226–243].

Among fungal species, Candida is one of the most prevalent pathogenic fungi, which has 

attracted many in vitro and in vivo studies[63, 244–256]. Cutaneous infection commonly 

found in skin folds caused by Candida albicans and Trychophyton species has been treated 

with red light and ALA PDT. Other studies have also demonstrated PDT activity against 

Trichophyton rubrum[257, 258], Aspergillus fumigatus[259, 260], Metarhizium anisopliae 
and Aspergillus nidulans[261]. More recent antifungal PDT works are provided in the 

following references:[262–281].
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For viral infections, study results have indicated that compared to non-enveloped viruses, 

enveloped viruses are more sensitive to PDT[282–287]. The difference in sensitivity may 

be due to increased accessibility of the phospholipid membrane, which is critical for 

the pathogenicity of enveloped viruses, by ROS. Herpes simplex virus (HSV), a highly 

contagious virus leading to lesions of the lips and genitals, was popularly treated with PDT 

in the late 20th century until it as found that it lacked therapeutic benefit while having 

adverse effects and potentially increasing risk of cancer. Human papilloma virus (HPV) 

infection manifests as genital warts and increases risk for cervical cancer. HPV has been 

treated with both been treated with PDT using a 630 nm laser with polyhematoporphyrin 

as well as with ALA- and MAL-PDT. ALA-PDT with activation from a helium-neon 

laser showed significantly less recurrence and comparable efficacy when compared to 

CO2 laser therapy after two treatments[288]. However, other randomized controlled trial 

results have demonstrated no difference in recurrence between the two treatment types[289]. 

Other studies using ALA and red light have similarly shown high response rates with 

low recurrence. Vesicular stomatitis virus (VSV), a disease that plagues many livestock 

animals, caused by Rhabdoviridae and Semliki forest virus transmitted by mosquitoes 

in Africa caused by Togaviridae infection are enveloped viruses sensitive to PDT with 

buckminsterfullerene (C60)[283, 290].

The coronavirus disease (COVID-19) pandemic caused by the SARS-CoV-2 virus remains 

a serious threat to public health. Various therapeutic strategies, such as pharmacotherapeutic 

therapies have been investigated[291, 292]. PDT is considering to be a promising therapeutic 

approach to treat SARS-CoV-2 infection[293–314]. For example, Kipshidze et al. first 

proposed using PDT and sonodynamic therapy (SDT) to treat COVID-19 by injecting 

porphyrin-based photosensitizers either systemically or locally into the lungs through the 

pulmonary artery using micro-catheters and in the absence of specialized photonics or in 

resource-limited settings, some PSs may be activated using transthoracic continuous wave 

ultrasound (SDT)[315, 316]. Weber et al. reported a successful reduction of SARS-CoV-2 

viral load in 20 COVID-19 positive patients by PDT and verified by qPCR[317]. Besides 

PDT, several other biophotonic technologies and phototherapies were proposed or conducted 

to diagnose or treat COVID-19 or help biomodulation and rehabilitation during and after 

COVID-19[318–330].

Current antimicrobials are often ineffective against parasitic and protozoa infections 

that cause diseases like granulomatous amoebic encephalitis (GAE), amoebic keratitis, 

leishmaniasis, malaria, trypanosomiasis, and giardiasis due to rapidly emerging 

resistance[17, 331–334]. Consequently, several studies have been conducted to show activity 

against these refractory microbes using PDT. Sand flies from the Phlebotominae subfamily 

are a vector for the protozoan parasites in the genus Leishmania that can lead to a 

disease known as leishmaniasis that burdens people in developing nations. Clinical studies 

showed topical PDT is safe and effective in the treatment of cutaneous leishmaniasis 

boils. Some results have demonstrated significantly better efficacy compared to treatment 

with paromomycin and methylbenzethonium chloride. Further, PDT has been shown to 

be effective against protozoa that were refractory to other therapies[9, 332, 335–339]. 

There are several studies on the efficacy of PDT for microbial killing in vitro and in 
vivo[332, 340–345]. Other notable results of PDT to treat protozoa and parasitic organisms 
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are as follows: Kassab et al. reported a complete inhibition of viability of Acanthamoeba 
palestinensis[346]; Chen et al. demonstrated that PDT using hypocrellins B (HB) induced 

complete arrest of the growth stage of protozoa and cysts in a dose-dependent manner[347]; 

investigation from Mito et al. showed that MB-mediated PDT reduced the respiratory 

activity of Acanthamoeba castellanii trophozoites (i.e. growing state of protozoa) in an 

MB-concentration dependent manner[348]. For Plasmodium spp., two studies demonstrated 

that PDT treatment can induce effective inactivation and can be used as an alternative 

approach to antimicrobials to control the infection[349, 350]. Other evidence showed that 

PDT is also capable of eliminating Trypanosoma cruzi, a protozoan parasite common to 

Latin America causing Chagas disease[351–356]. More recent publications are also listed 

here[357–373].

Another therapeutic approach to prevent the spread of infectious diseases is through 

treatment of pathogen vectors (i.e. insects and pests). PDT has been reported to inactivate 

pest populations of Anopheles, which transmits malaria, and Aedes, which mainly spreads 

diseases like dengue fever, yellow fever, West Nile virus, eastern equine encephalitis, and 

Zika virus[374–379]. More recent and related publications on PDT for mosquito control are 

listed here[380–390]. This preventative approach is a promising technique to reduce disease 

transmission.

Since therapeutic resistance to conventional antimicrobials is a leading global concern, 

some groups have investigated the potential for pathogens to develop resistance to PDT. 

To date, evidence does not demonstrate induced resistance of pathogens to PDT therapy. 

This is likely due to the fact that ROS have various structural and metabolic targets that 

harm pathogens, rather than single target like conventional antibiotics, making it more 

difficult to develop a viable resistance mechanism[17, 18]. Lauro et al. tested whether the 

photosensitizing action of porphycenes leads to the selection of photoresistant cells or a 

change in the spectrum of sensitivity to the action of different antibiotics and no appreciable 

resistance and no difference in sensitivity to antibacterial drugs were found[11]. Tavares 

et al. reported that PDT treatment using Tri-Py+-Me-PF as a photosensitizer presented a 

promising approach to efficiently destroy Vibrio fischeri and recombinant Escherichia coli 
after a single treatment. After treatment, the microorganisms did not recover their viability 

and after ten generations of partially photosensitized cells neither of the bacterial species 

developed resistance to PDT[19]. Giuliani et al. also demonstrated that 20 consecutive 

antimicrobial PDT with RLP068/Cl did not result in any resistant mutants[20].

2.1.4 Challenges for PDT materials—Although PDT is a promising therapy option 

for infection treatment, it is still a method that can be improved. For example, PSs 

that absorb long wavelengths of light often necessitate large conjugated systems, which 

lead to strong π-π interactions and aggregation, causing a reduction in ROS quantum 

yield. Additionally, current PSs with a large two-photon absorption cross section (δ) 

that are desirable for NIR excitation and resulting increased penetration depth possess 

high intramolecular charge transfer (ICT)[391–393]. However, ICT usually facilitates non-

radiative decay of an excited state, which strongly competes with energy transfer from 

PSs to molecular oxygen, and hence harms the production of ROS[394]. Furthermore, a 

PS that exhibits high ICT possesses a high propensity for intermolecular charge transfer, 
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which also promotes non-radiative decay diminishing its therapeutic activity[395–398]. 

Moreover, large conjugated systems also increase hydrophobicity and therefore, reduce 

water solubility of photosensitizers limiting biological applications. Currently, poor water 

solubility can be improved using nanocarriers[75, 399–407]. Although AIE can enhance 

the ROS quantum yield in the aggregated state, the current PDT platform still suffers from 

poor water solubility, complicated composition, poor reproducibility, unstable, harsh and 

high-cost synthesis conditions. Another challenge for PDT is patient tolerability to therapy. 

Due to incomplete sensitivity for pathogens, ROS production and chemicals used for PSs 

may lead to patient discomfort or harm. There have been reports of tissue damage in vivo 
and minor burning at the site of treatment[9]. Hence, increasing selectivity for bacteria over 

host cells is another area worth attention to minimize patient harm and optimize efficacy. 

This calls for a deeper investigation into underlying mechanisms to instruct ideal irradiation 

regimens and PS designs.

2.2 Photothermal therapy

Photothermal therapy (PTT) is comprised of: photothermal agents (PTAs) and incident 

light. The light sources of PTT are the same as those of PDT. However, unlike 

photodynamic therapy, PTT is not dependent on oxygen or other substrates for efficacy. 

Instead, incident light interacts with PTAs to elevate the temperature of infected sites 

and inactivate pathogens[408]. Hence, materials that can efficiently convert light to heat 

energy (vibrational dissipation through ISC) are appealing candidates for PTT. Photothermal 

conversion efficiency (ηPT) can be calculated by equation (1):[409–411]

ηPT = hAΔTmax
I (1)

where h is the heat transfer coefficient, A is the surface area of the system, ΔTmax is 

the temperature difference between the maximum steady-state temperature and ambient 

temperature, and I is the power of the incident light. A method to calculate heat transfer of 

metallic nanomaterials has also been developed and requires measurement of the extinction 

cross sections of the samples[23, 412–415].

2.2.1 Classification and mechanisms of PTT—PTT treatment is divided into three 

subtypes depending on the thermal therapeutic range as follows: diathermia (<41 °C); 

hyperthermia (41-46 °C); and thermal ablation (>46 °C)[23, 416–420]. Diathermia is a mild 

treatment used for radiation and chemotherapy that sensitizes cells through increasing blood 

flow[23, 416]. Hyperthermia can induce protein denaturation and aggregation, loss of cell 

membrane integrity, and DNA cross-linking resulting in cellular dysfunction and eventual 

inactivation[23, 417, 418, 421]. Studies have shown that treatment with hyperthermia PTT 

can sensitize pathogenic cells towards heat[419], antibiotics[422] and other therapies[420]. 

In thermal ablation, stress caused by heat results in coagulative necrosis and irreversible 

damage of cells within a few minutes. Temperatures exceeding 60 °C leads to rapid necrosis 

of cells will occur owing to protein denaturation and enzyme inactivation[23, 416, 423].

2.2.2 Materials used in PTT—To date, several PTA candidates have been 

reported to achieve thermal ablation temperatures. Inorganic materials include carbon-
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based nanomaterials[97, 424–426], metallic nanomaterials[427–431], phosphorus-based 

nanomaterials[107, 110, 115, 116, 417, 432–434], metal-organic frameworks (MOFs)

[114], manganese dioxide[115, 435], metal sulfides[116, 408, 436], metal peroxides[108], 

organic dyes[117, 437, 438], and conjugated polymers[439–441]. Major types of organic 

PTAs include cyanine- [112, 442–458], diketopyrrolopyrrole-[459–462], croconaine-[463–

466], porphyrin-[467–470], polymer-based agents[471–481] among others[109, 482–485]. 

Additionally, AIE-based materials have emerged as a novel family of PTAs[148, 149, 

486–496]. Many organic PSs can be viable PTAs since they can be tailored to dissipate 

absorbed light through internal conversion and/or intersystem crossing generating heat with 

or without ROS generation. The heat generation mechanisms of inorganic materials are more 

complicated and diverse that that of organic ones. There is a recent review by Zheng et 
al. detailing the primary photothermal mechanisms of inorganic materials: 1. the localized 

plasmon surface resonance (LSPR) effect present mainly in metals and semiconductors, 

metal oxides, and quantum dots; 2. relaxation of electron-hole pairs in low electron density 

semiconductors; and 3. ladder-like energy level of rare earth ions[23].

2.2.3 Applications of PTT for infection control—There have been plenty of 

successful in vitro and in vivo studies testing vast antimicrobial applications of PTT. 

Chen et al. and Xu et al. highlighted recent advances of nanomaterial-based PTT and 

its potential in antibacterial treatment[497, 498]. Fan et al. reported a metal-organic-

framework (MOF)-derived 2D carbon nanosheet platform with PTT capability for localized 

bacterial eradication. This work achieved nearly 100% bactericidal efficiency at low 

concentrations while providing rapid and safe skin wound disinfection without damaging 

skin tissues or yielding accumulative toxicity[499]. Liu et al. developed humic acid (HuA) 

encapsulated zeolitic imidazole framework-8 (HuA-ZIF-8) nanocomposites. Synergistic 

antimicrobial action occurred through concomitant photothermal activity and zinc (Zn2+) 

release demonstrating excellent bactericidal efficiency against S. aureus and E. coli (i.e. 

99.59% and 99.37%, respectively) upon 20 min of NIR irradiation[500]. Wang et al. 
proposed a synthetic, intelligent hydrogel for S. aureus and biofilm detection and treatment. 

The system worked by changing in color in response to pH change caused by bacteria 

colonization followed by treatment by achieving local hyperthermia under irradiation with 

a NIR laser (808 nm) that was able to penetrate biofilms[501]. Qing et al. described 

a smart nanostructure, Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter or 

TRIDENT. This system was capable of fluorescence monitoring and synergistic killing 

of bacteria through using the photothermal effect to facilitates increased permeation of 

imipenem, a broad-spectrum antibiotic, into cells. The TRIDENT system showed desirable 

in vitro and in vivo MRSA eradication even at low doses[502]. Yan et al. reported a 

pH switchable nanoplatform, which was fabricated by grafting polyaniline (PANI) and 

glycol chitosan (GCS) onto the surface of persistent luminescence nanoparticles (PLNPs). 

Through persistent luminescence imaging, PTT selectively destroyed pathogenic cells due to 

the higher affinity of PLNP-PANI-GCS for bacterial cells as well as provide a stronger 

photothermal effect in acidic environments fostered by bacteria colonization. In vivo 
imaging-guided PTT to bacterial infection abscess showed effective treatment[503]. Liu 

et al. developed an enzyme-responsive delivery antibacterial system, AA-Ru-HA-MoS2. 

This system used mesoporous ruthenium nanoparticles (Ru NPs) as nanocarriers and 
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loading the prodrug of ascorbic acid (AA), an antioxidant encapsulated by hyaluronic acid 

(HA) to combat resistant bacterial infections by combining chemical and photothermal 

therapies[504]. Some other representative works may also be found in the following 

references[119–121, 426, 505–522]. For more information regarding disinfection of surfaces 

using PTT, the reader is encouraged to consult the review by Zou et al.[426].

2.3 Direct light-based therapies

Certain forms of incident light and wavelengths can damage pathogenic cells without the 

need for exogenous compounds. These direct light illuminations provide a simple and 

noninvasive means to control infection. The following sections comprise overview and 

evidence of direct laser therapy as well as direct UV and direct blue light illumination 

therapies for pathogenic inactivation.

2.3.1 Direct laser therapy—“Laser” is an acronym for “light amplification by 

stimulated emission of radiation”. Although laser light can be used in PDT and PTT to 

activate PSs or generate heat, respectively, there are laser therapies that possess different 

inactivation mechanisms against pathogens. Ultrafast laser therapy and dual-wavelength 

laser therapy are two direct laser therapies that will be discussed in this section.

Ultrafast (ultrashort) lasers administer short pulses of light to achieve peak power that 

can reach up to gigawatts (GW) in magnitude, which is sufficient to achieve two-photon 

absorption[17, 523]. For infection control pulse durations are typically on the order 

of femtoseconds (10−13). Femtosecond laser therapy has been reported to be effective 

against enveloped and non-enveloped viruses[524–532], Gram-positive and Gram-negative 

bacteria[529], as well as fungi[533]. Proposed mechanisms of action are specific to the 

type of pathogen. In viruses, hydrogen bonds, hydrophobic interactions, and some covalent 

bonds (i.e. disulfide bonds) can be disrupted by the mechanical agitation under femtosecond 

laser illumination[529, 534]. Meanwhile, bacterial and fungal DNA may be damaged 

through two-photon absorption of visible femtosecond lasers[529]. There is evidence that 

supercoiled DNA in bacteria are relaxed by femtosecond lasers inducing cell death[535]. 

These unique mechanisms confer selective killing of targeted pathogens while leaving 

healthy cells unharmed[535].

For dual-wavelength laser therapy, two different wavelengths usually in the red to NIR 

range of laser are applied simultaneously. There are few investigations to date studying 

mechanisms, safety, and efficacy of this therapy[536]. Evidence suggests the efficacy of 

dual-wavelength laser therapy is attributed to a decrease of the transmembrane potential of 

respective pathogens and an increase in ROS generation resulting from optically-mediated 

mechanotransduction of cellular redox pathways[537]. However, it is noted that currently 

available studies demonstrate successful inactivation of various pathogens, such as S. aureus, 

MRSA, E. coli, C. albicans, T. rubrum, as well as Pantoea agglomerans in pressure ulcer 

model[536–538]. Remarkably, Krespi et al. reported that 870/930 nm laser treatment can 

re-sensitize erythromycin-resistant bacteria. The authors postulated the change in the cellular 

redox state due to the light therapy suppressed the activity of drug efflux pumps, a common 

mechanism of antimicrobial resistance[538].
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2.3.2 Direct UV therapy—UV light can be divided into three spectral regions: UVA 

(315-400 nm), UVB (280-315 nm), UVC (100-280 nm)[539, 540]. Among them, UVC 

is the most effective and commonly used wavelength range for disinfection attributed to 

formation pyrimidine dimers after absorption by nucleic acid strands. Moreover, UVC 

light may also damage proteins in aromatic amino acid residues, which have maximum 

absorption in the UVC region. Specifically, phenylalanine has an absorption maximum at 

260 nm, tyrosine at 275 nm, and that of tryptophan is near the UVC region at 295 nm[52, 

539, 541].

There are several in vitro and in vivo studies demonstrated the efficacy of UVC therapy 

against bacterial and fungal infections as well as in species that produce biofilms[542–547]. 

Clinical investigations have also been completed by Freytes et al., Nussbaum et al. and Thai 

et al. to treat ulcers caused by MRSA[548–550]; Thai et al. also confirmed that UVC can kill 

other bacteria, such as P. aeruginosa, S. aureus and MRSA present in the superficial layers 

of chronic wounds[551]; Shimomura et al. demonstrated that UVC has potential to eliminate 

multiple species of bacteria and be used in prophylaxis of catheter related infections[552]; 

Boker et al. successfully treated onychomycosis, a fungal infection of finger and toe nails, 

using UVC irradiation[553]. It should be noted that induced resistance has been reported 

to direct UV therapy[22]. Several publications on direct UV therapy to treat COVID-19 are 

listed here[554–562].

Although there are several studies which indicate that short-term, UVC therapy at 

appropriate fluences does not induce significant damage to human cells and tissues[544, 

563–567], the safety concerns of UVC therapy need to be taken into consideration prior 

to use in real-world applications. Since UVC can cause damage to DNA and protein, 

prolonged and repeated exposure to UV light can harm host cells leading to sequelae like 

skin cancer and burns[568, 569]. UVC can also lead to ophthalmological problems, such 

as photokeratitis (i.e. snow blindless or welder’s flash), cataracts, and chronic retinopathy, 

limiting the applications of UVC therapy in eye infections[570–573]. Inflammation may 

also be induced by UVC irradiation (i.e. sun burn)[574–576]. Treatment regimens that are 

effective with minimal exposure and direct delivery of UVC light to an infected area can 

mitigate damage to healthy tissue. Although delivery of UVC light using optical waveguides 

is a current challenge, precise delivery of therapeutic light could be a plausible solution to 

these safety concerns.

2.3.3 Direct blue light therapy—Blue light is typically defined as wavelengths 

between 400 to 500 nm having less energy than ultraviolet light[17]. Wavelengths falling 

in this blue light range can be further subclassified as violet, blue and cyan. Therapy 

predicated on blue light has drawn increasing attention due to its higher safety profile 

compared to UV light with relatively less photodegradation of the molecules it irradiates. 

As opposed to PDT, an exogenous photosensitizer is not necessary in blue light therapy 

due to endogenous photosensitizers (e.g. porphyrins and flavins) and blue light receptors 

present in microbes. Although, the mechanism of blue light therapy is not fully elucidated 

yet, current evidence indicates blue light therapy works similarly to PDT in which free 

radicals and ROS are generated after photosensitizer excitation causing subsequent damage 

to macromolecules[27, 577–580].
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Blue light has broad-spectrum activity against both Gram-positive and Gram-negative 

bacteria as well as fungi in vitro and in vivo. Wavelengths between 402-420 nm have 

been reported to be the most effective range to inactivate bacteria. Wavelengths between 

455 nm-470 nm have shown activity against S. aureus[578, 581–593]. Recently, Lu et 
al. reported a combination therapy of blue light and the photochemical, carvacrol, had 

synergistic effects to cure acute and chronic biofilm-associated A. baumannii as well as 

MRSA infections in third-degree burn wounds of mice. Furthermore, survival was higher in 

the light treatment groups P. aeruginosa skin wound infections of mice. Excellent pathogen 

targeting was exhibited due to the abundance of porphyrin-like molecules in bacteria[21]. 

Consistent with other studies, the authors did not find evidence of induced resistance after up 

to 20 cycles of treatment[19–21].

2.4 Light source, penetration depth and irradiation mode

Optical penetration depth (δ) is the distance at which the light intensity reduces to 1
e

of the initial light intensity[594]. Multiple factors, such as wavelength, light source, and 

tissue physiology can affect penetration depth of light in living tissues[595]. Endogenous 

fluorophores, especially hemoglobin and melanin, have a strong absorption below 600-700 

nm[594–596]. Therefore, NIR light (700–2,500 nm) can penetrate biological tissues more 

efficiently than visible light because these tissues scatter and absorb less light at longer 

wavelengths[594–597]. At wavelengths longer than 950 nm, however, the absorption of 

water and lipids increases drastically, which would adversely affect light transmission in 

tissue[596, 598–603]. Therefore, the region from about 600 to 1300 nm is often called 

the optical window of tissue[595, 597, 604–606]. However, NIR light longer than 850 nm 

was found to be less effective in activating PSs in practical PDT because of the relatively 

fast non-radiative transition resulting from the narrow energy gap and the insufficient 

triplet energy level[595, 604, 607, 608]. Thus, current desirable PSs should possess strong 

absorption at the wavelength ranging from 600 to 850 nm. There are experimental reports 

of penetration depths of various lights in different tissues. Ogawa and Kobuke stated based 

on two publications that generally, the penetration depth ranges between 0.5 and 1.5 mm 

at the wavelength from 480 to 600 nm and gradually improves to 4–5 mm with increasing 

wavelength[606]. Kim and Darafsheh reported δ < 0.5 mm at 400–430 nm, 1 mm at 500 

nm, 2–3 mm at 630 nm, and 5–6 mm at 700–800 nm in most tissues[594]. Stolik et al. 
reported how δ changes upon varying wavelengths of red and NIR light in human ex vivo 
tissues[609]. Clement et al. and Ash et al. reported that red light penetrates 4–6 mm beneath 

the surface of the skin, blue light penetrates around 1 mm, and ultraviolet light hardly 

penetrates human tissue[610]. Such limited penetration depth of phototherapies largely 

hinders their wide applications in deep tissue.

As for the light source, take PDT as an example, no single light source is ideal for all 

PDT applications, even with the same PS[604]. PS absorption spectrum, location and size 

of lesions, and tissue characteristics should be considered when the light source of PDT 

was chosen[604]. Both lasers and incandescent light sources have been used for PDT and 

show similar efficacies[611]. Compared to the pumped dye lasers, diode lasers are smaller, 

more cost-effective, have facile installation, a longer operational lifetime, and are capable 

of automated dosing[604]. Light-emitting diode (LED) is an alternative light source with 
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relatively narrow spectral bandwidths and high fluence rates[612, 613]. Complex dosimetry, 

such as total light dose, light exposure time and light delivery mode (single, fractionated and 

metronomic light delivery) can affect the clinical efficacy of PDT[495] and the light fluence 

rate also affects PDT response[614]. Integrated systems that measure the light distribution 

and fluence rate interstitially or at the irradiated tissue surface can inform how to adjust 

the light output for effective treatment. Examples of uses of various light sources for PDT 

treatment include, the use of lasers can be coupled into fibers with diffusing tips to reach the 

lesions in the urinary bladder and the digestive tract[604, 615]. Inflatable balloons can be fit 

into organs with strongly scattering material on the inside to evenly disperse light are also 

commercially available[604, 615]. Furthermore, implanting a light source in solid organs 

under image guidance is feasible[604]. The proper combination of PSs, light sources, and 

treatment parameters is crucial for an optimal PDT efficacy[616, 617].

The most commonly applied irradiation mode in phototherapy is single light delivery. The 

light dose can also be administered in a fractionated manner, which means there is a 

dosing interval (seconds to hours) between two illumination doses[618]. In phototherapies 

with exogeneous compounds, such as PDT and PTT, the exogenous agents may also be 

administered in a fragmented manner[618]. The metronomic mode refers to low doses of 

exogeneous agents administered concomitantly with light over several hours[618, 619]. 

Several publications have reported fractionated PDT mediated pathogen inactivation and 

explored the antimicrobial efficacy difference between fractionated and single light delivery 

PDT. For example, Misba and Khan observed a 6–6.5 log10 reduction of planktonic and 

3.6–4.2 log10 reduction in biofilm after irradiation with fractionated light compared to 

continuous light administration[620]. Sampaio et al. demonstrated that MB-mediated PDT 

was efficient to achieve total microbial load reduction in both fractionated and continuous 

modes, but in fractionated mode it was possible to use a lower light dose[621]. The 

metronomic mode has been tested in a preclinical brain tumor model with PDT[619] 

but not for antimicrobial applications to date. Both in vitro and in vivo results from the 

preclinical brain tumor model showed enhanced induction of apoptosis of cancer cells 

compared to acute, high-dose PDT (aPDT) and it worth to study the feasibility and efficacy 

of metronomic mode in antimicrobial phototherapy.

3. Current challenges and considerations in phototherapy

Amidst the multitude of therapeutic mechanisms and promise of phototherapy for infection 

control, there remains inherent limitations and considerations that can be found in Table 1. 

Main drawbacks common to each of the phototherapies include limited penetration depth, 

limited working wavelength ranges, incomplete selectivity for pathogenic cells, and off-site 

effects. Illumination treatment should be simple, fast and effective to facilitate patient 

adherence and practicality in the clinical setting.

Many of the drawbacks of PTT mirror that of PDT. PDT and PTT are both non-selective 

techniques that may target not only pathogenic microbes, but also microbes that are 

symbiotic with the host. By guiding light to the exact infected site, which is feasible 

with optical waveguides, collateral symbiotic flora and healthy tissue damage can be 

minimized. There are some reports on active-targeting nanoparticle systems or platforms 
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with conjugated binding components so that PSs and PTAs actively bind to the target cells 

and can be only activated by specific wavelength of light illumination, which makes PDT 

and PTT safer and more accurate[622]. Additionally, PSs and PTAs may have inherent 

chemical toxicity or poor biocompatibility, which can lead to local irritation or damage[23, 

77, 408, 426, 437, 497, 623, 624]. Moreover, patients exposed to sunlight or other strong 

light sources after receiving PDT or PTT treatment may potentially acquire over exposure 

and activation of PSs or PTAs[623, 624]. In terms of resistance, some studies have reported 

induced microbial resistance to PTT treatment within the hyperthermia temperature range 

via high expression of heat shock protein, a molecular chaperone that repairs thermal 

damage to cells[23–25]. Therefore, when designing materials, it is important to consider 

the resultant treatment temperature, the possibility of induced resistance in response to PTT 

treatment, and to consider measures to combat the possibility of induced resistance and 

minimize thermal damage to host tissue.

Regardless of wavelength, power, and source of light is used, light will inevitably be 

attenuated due to absorption by and scattering within tissues. The epidermal, dermal, and 

hypodermal layers of human skin have respective thicknesses of roughly 0.1 mm, 1.5-2 mm 

and 7-20 mm[625–627]. Light must be able to penetrate at least this much for superficial 

infections and more for infections beneath the skin. However, the penetration depth of 480 

to 600 nm light generally ranges between 0.5 to 1.5 mm, and even longer wavelengths 

of light that have a higher penetration depth can only travel a couple millimeters into 

mammalian tissues[595, 604, 606, 628–630]. Multi-photon excitation techniques can help 

increase penetration depth, but still fall short of biomedical and clinical demands[606, 

631–633]. Moreover, multi-photon excitation techniques necessitate extensive training, large 

instrumentation and delicate handling for proper operation making implementation into the 

clinical environment difficult.

Access to difficult-to-reach areas of the body may also be limited without the guidance of 

therapeutic light. In efforts to overcome limited penetration depth and off-site effects of 

phototherapies, optical waveguide technology can be used to precisely deliver phototherapy 

to the infection site[210, 578, 634–636]. The different types of phototherapies for infection 

treatment are illustrated in Fig. 3.

4. Optical waveguides

4.1 Basic principles and material requirements

As the name indicates, optical waveguides direct the propagation of particular wavelengths 

of light to a desired destination. The geometries of optical waveguides vary including 

fibers, films, strips, slabs, and microneedles[37–44]. Step-index optical fibers, which possess 

discrete differences in the refractive indices at the interface of constituent materials are the 

most prevalent of the optical waveguide design used in biomedical applications and infection 

control due to high mechanical flexibility and ability to guide light over long and variable 

distances without significant losses. Therefore, the following section will focus on the basic 

principles and applications of step-index optical fibers in conjunction with phototherapies to 

treat infection.
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The refractive index (n) describes how fast light travels through a material relative to the 

speed of light in vacuum and is a material-specific property:

n = c
v (2)

Here, n is refractive index (RI), c is the speed of light in vacuum (3.0×108 m/s), and v 

refers to the speed of light through a certain medium. Snell’s Law describes the behavior of 

incident and refracted light at an interface by the given equation (3):

n1sinθ1 = n2sinθ2 (3)

Where n1 and n2 are the RIs of medium 1 and 2, respectively, θ1 is the angle between 

incidence and the normal and θ2 is the angle between refraction and the normal. If n1 > n2, 

then sinθ1 < sinθ2 and θ1 < θ2. As θ1 increases, θ2 will follow. Refraction will disappear 

once θ2 reaches 90° and the incident light will only be reflected. The corresponding angle 

for θ1 is known as the critical angle (θc) and this phenomenon is described by total internal 

reflection (TIR) (Fig. 4). The core principle of optical waveguides is TIR (apart from 

photonic crystal fibers (PCFs) and holey fibers (HFs) which are predicated on the photonic 

bandgap effect). To achieve TIR, the RI of the inner layer of the waveguide must exceed that 

of the outer cladding layer or medium (i.e. air)[37–39, 41–44]. The most common approach 

to meet the RI requirements conducive to TIR is to fabricate a concentric cylinder structure 

with two layers. The inner layer is where incident light traverses and is referred to as the 

core, while the outer layer is referred to as the cladding (Fig. 4). There are non-cladding 

types of optical waveguides that treat the external environment as the outer layer to the core. 

However, waveguide designs without cladding come at the cost of increased risk for optical 

loss and sensitivity to the surrounding environment compared to cladded optical waveguide 

designs[45, 639, 640].

4.2 Materials for optical waveguides used in biomedical applications

A viable optical waveguide should have the ability to transmit light over variable distances 

with low optical loss over a broad range of therapeutic wavelengths. The refractive index of 

the core material should always be larger than that of cladding material over the working 

wavelength range to keep light attenuation low. Core materials should also minimally absorb 

the incident light to prevent losses during propagation and it is additionally desirable for 

materials to have optical clarity[641–648].

Conventional optical waveguide materials include glass, plastic, crystal, semiconductors, 

ceramics, and metals[45, 649–651]. However, these materials suffer from poor 

biocompatibility, non-degradability, poor tunability of properties, and noncompliance with 

mechanics of most body tissues. Taken together, conventional optical waveguide materials 

are poor candidates for waveguides in the clinical setting[45]. Since of the first biomedically 

compatible waveguides composed of PMMA was developed for dental illumination in 1939 

many researchers have been developing optical waveguide materials and designing optical 

waveguides to achieve improved biocompatibility, degradability, chemical functionality, 
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and desirable mechanical properties, and tunability of each with sufficient light-guiding 

performance relative to conventional waveguides for biomedical use[45, 652–657].

Several developed optical waveguides composed of various biocompatible materials that 

may be used to deliver phototherapy can be found in Fig. 5. Biomaterial candidates 

can be categorized according to their origin (i.e. natural or synthetic) and properties 

(i.e. mechanical, degradability, hydrophilicity, etc.). Natural materials, such as agar[658], 

gelatin and agarose[659], silk and silk proteins[639, 660, 661], have been processed to 

perform as biocompatible optical materials. Even mammalian and bacterial cells have been 

used to fabricate as optical waveguide biomaterials. Muller cells were found to serve as 

optical fibers helping image projection through retinal tissue with less image distortion 

and light scattering loss[662, 663], and E.coli was reported to also form functional optical 

waveguides[664, 665]. Synthetic materials have reduced batch-to-batch variability and less 

inherent antigenicity compared to that of natural materials[666–668]. Furthermore, synthetic 

biopolymers have the benefits of tunable properties that can be done through adjusting 

composition (i.e. ratios of constituent monomers or polymer(s), compositing, chemical 

conjugation, etc.), polymer concentration, molecular weight, functional groups, and degree 

of crosslinking. Hydrogels (i.e. superabsorbent polymers that absorb as much as 90% of 

their weight in water), elastomers, and biodegradable or nonbiodegradable polymers may 

all be synthetic or natural in origin[669]. Polydimethylsiloxane (PDMS), for example, is 

a synthetic elastomer that is bioinert and non-toxic, but is not biodegradable. Although 

not used in clinical setting yet, a biodegradable optical waveguide may be beneficial as 

it evades the need for a secondary surgery for removal and the associated risks. Among 

biodegradable polymers for optical waveguides, polylactic acid (PLA), polyglycolic acid 

(PGA), poly(lactic-co-glycolic) acid (PLGA), and silk fibroin are some of the most used 

and successfully developed materials in tissue engineering[639, 670–674]. More recently, 

citrate-based polymers, a new class of synthetic biodegradable polymers exhibit great 

potential for optical waveguide applications. Citric acid, a Krebs cycle intermediate, is 

the core chemical used in the citrate-based polymer syntheses, through which various 

biodegradable elastomeric polymers can be synthesized by reacting citric acid with different 

diols and/or amino acids via a facile polycondensation reaction. Differing from the natural 

polymers as silk or the aforementioned traditional synthetic degradable polymers that 

usually have limited tunability, citrate-based polymers are advantageous due to their 

ultrafine tuning refractive index (~103), mechanical strengths (from tens of Pascal to 

mega Pascal), degradation rates (from a few days to over a year), antibacterial and anti-

inflammatory effects in addition to excellent biocompatibility[666, 675–695]. Furthermore, 

due to the abundant carboxyl and hydroxyl groups in the polymers, citrate-based polymers 

are easily functionalized for drug tagging, imaging, sensing, or to bear desirable properties, 

such as electrical conductivity and luminescent properties. Therefore, citrate-based polymers 

are an ideal class of biodegradable polymer platform for the design of multifunctional 

devices promising for versatile biomedical applications such as tissue engineering (blood 

vessel, bone, nerve, skin etc.), wound healing, theranostic cancer nanomedicine, and 

biosensing[666, 675–702]. Among the citrate polymers, poly(octamethylene citrate) (POC) 

synthesized by reacting citric acid and 1,8-octanediol has been used to develop a number 

of FDA-cleared biodegradable interference screws and suture anchors such as Citrelock™, 
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Citrefix™, and Citrespline™ for various orthopedic indications including knee, foot and 

ankle, shoulder, elbow, and wrist applications[667, 668]. To tune the refractive index of 

POC, another citrate polymer, poly(octamethylene maleate citrate) (POMC) was synthesized 

by partially replacing citric acid with maleic anhydride in synthesis. Although there is only 

a minor difference in the chemical structure between POC and POMC, POMC possesses a 

higher refractive index over a broad range of wavelengths from 300 nm to 1000 nm with 

an index difference of ~0.003, similar to that between the cladding and the core of silica 

optical fibers. Both POC and POMC have relatively low absorption (<0.13 dB/cm) at visible 

and near-infrared wavelengths. A flexible step-index optical waveguide was fabricated using 

POC as the cladding while POMC as the core that is promising for organ scale light delivery 

and collection[653].

One of the future trends will be to develop novel optical biomaterials with multi-

functionality and stimuli-responsive properties to facilitate more practical and versatile 

clinical applications in which they can be used. For more extensive reviews on biomaterials 

used for optical waveguides and biophotonic applications, the reader is invited to peruse the 

following publications: [45, 703, 704].

4.3 Existing works on phototherapies delivered via optical waveguides to treat infection

Use of optical waveguides with phototherapy permits more freedom to vary multiple 

treatment factors than phototherapy alone. For example, total energy delivery, rate of 

energy delivery, penetration depth, and location can be tuned with optical waveguides[618]. 

Besides, implantable optical waveguides, integrated with sensing and/or imaging modules 

enables easier and more accurate post-treatment and real-time assessment. The use of optical 

waveguides for biomedical applications has established and investigational uses in skin 

imaging, scar analysis, biosensing, cancer ablation, and deep tissue photomedicine (Fig. 

5)[655–657]. However, attempts to combine the optical waveguide and phototherapy for 

treatment of infections at present is underexplored and results implicating efficacy are mixed 

leaving a large unmet need for research to optimize this therapy alternative. By using optical 

waveguides to deliver phototherapy for infection treatment, minimally attenuated light is 

guided through the center of the waveguide to the target area to circumvent the physical 

barriers with minimum power loss and necessary penetration depth. Optical waveguides 

can precisely deliver phototherapy to deep tissue infections (i.e. respiratory, gastrointestinal 

tract) and to photosensitive regions that off-site exposure would be otherwise harmful (i.e. 

eye area, use of high energy light) (Fig. 6). The use optical waveguides to deliver shorter 

wavelengths for already available PSs and PTAs activated by UV to visible wavelengths 

of light could expand the optical range of PDT and PTT in treating various infections not 

achievable previously by PDT or PTT alone[7]. Moreover, optical waveguides that deliver 

phototherapy may be designed to possess multifunctionality and/or stimuli-responsive 

activity is an emerging area of research that provides additional therapeutic utility to 

standard phototherapy treatment. For example, many current research works are focused 

on the designs and applications of optical waveguide for pathogen sensing[634, 705–709]. 

The Seok Hyun Yun group demonstrated for the first time efficacy of a cell-containing 

optical waveguide composed of a polyethylene glycol (PEG)-based hydrogel to achieve in 
vivo cell-based sensing and therapy[710].
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Representative examples delivering phototherapy by optical waveguides are detailed here 

and can be found in Table 2. Bisland et al. proposed PDT as an alternative treatment 

to antibiotics for osteomyelitis using a bioluminescent strain of biofilm-producing S. 
aureus grown on kirschner wires (K-wires). The S. aureus-coated K-wires were exposed 

to methylene blue (MB) or 5-aminolevulinic acid (ALA)-mediated PDT either in vitro or 

following implantation into the tibial medullary cavity of SD rats. S. aureus infections 

were subject to PDT for 10 days post inoculation. 300 mg kg−1 of ALA was administrated 

intraperitoneally followed by percutaneous light illumination (635 ± 10 nm; 75 J cm−2) 4 

hours later via an optical fiber placed onto the tibia. This treatment resulted in significant 

inhibition of bacterial growth[711]. For treatment of dental infections, PSs can be deposited 

into dental pockets followed by direct irradiation with light noninvasively via optical fibers. 

This procedure can be usually completed in a few minutes giving optical waveguide PDT 

therapy a significant advantage over treatment with antiseptics and antibiotics that have 

difficulty reaching sufficient concentrations in the infected dental area, longer treatment 

times, and systemic side effects[27, 712]. Kömerik et al. reported effective inactivation of 

Porphyromonas gingivalis by applying up to 48 J of a 630 nm laser light via an optical 

fiber in the presence of toluidine blue[210]. Lee et al. used a phenothiazinium-based PS and 

delivered low-intensity red laser light via an optical fiber with a diffuser to access the root 

canal lumen to treat Gram-positive bacteria without damaging the host tissues[636]. Soukos 

et al. performed antimicrobial PDT with E. faecalis using methylene blue (25 μg/mL) for 

5 min followed by exposure to 30 J/cm2 of 665nm light delivered by an optical fiber with 

multiple cylindrical diffusers that uniformly distributed light over 360° to achieve a 53% 

killing rate, which was then increased to 97% after increasing the power to 222 J/cm2[713].

Furthermore, optical waveguide-mediated delivery of phototherapy may be a potential 

treatment option for Helicobacter pylori infection in the stomach, but still demands further 

research to optimize treatment conditions for sustained eradication. Lembo et al. were the 

first ones to report in patients infected with H. pylori, the whole stomach can be safely 

illuminated with violet light. In this study, a novel light source consisting of laser diodes 

connected to diffusing fibers to deliver 408 nm light to yield a significant antibacterial 

effect[716]. Moreover, Ganz et al. delivered violet light (405 nm, 40 J/cm2) to 1 cm diameter 

spot-size in the gastric antrum via an optical fiber to achieve inactivation of H. pylori[585]. 

Kipshidze et al. recently proposed to direct energy delivery through an endoluminal 

microcatheter with an illuminating balloon containing a diffusing fiber-optic array at its 

distal tip capable antiviral, antibacterial, anti-inflammatory, and vasculoprotective properties 

of the blue and red wavelengths of light[311]. Khan et al. developed an optical fiber-based 

photonic crystal fiber sensor for THz sensing of COVID-19 disinfecting products[323]. 

Stawiki proposed to treat COVID-19 by using diffusive optical fibers to deliver UVC 

light with repeated short-term tracheobronchial illumination[561]. Shan et al. developed the 

aforementioned biodegradable, citrate-based step-index optical fibers with low optical loss 

of 0.4 dB/cm. A proof of concept study using a 20 mW 532 nm laser in Sprague-Dawley 

(SD) rats was conducted to demonstrate a strong potential for active optical waveguide 

mediated-phototherapy for infection treatment[653].
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4.4 Challenges and considerations in phototherapy delivered by optical waveguides for 
infection treatment

Although combining optical waveguide techniques with phototherapy shows promising 

efficacy for infectious diseases, there are some drawbacks to their unique advantages. Firstly, 

optical waveguides deliver the light locally meaning an invasive approach and incisions to 

the site of deep tissue infections that are not easily accessible are typically necessary[639, 

656, 661]. To minimize invasiveness, microneedles have been used to penetrate skin to guide 

light into tissues[655, 717]. However, the penetration depth was still limited. For deep tissue 

light delivery, traditional non-biodegradable optical waveguides need to be removed from 

the body after treatment. By replacing the traditional optical waveguides with biodegradable 

counterparts, the removal step may be evaded. The biocompatibility of optical waveguides, 

its respective degradation products if degradable, and PSs and PTAs used should all be 

considered to minimize the risk of adverse host responses. Regarding the optical waveguide 

material design, it is imperative to be mindful of the desired operational wavelengths, 

area of treatment, and tissue mechanics for the design and fabrication of effective optical 

waveguides.

5. Outlook and perspectives

Since antibiotic resistance is becoming increasingly serious with the emergence of “super 

bugs” refractory to conventional therapies, the development of alternatives or combinational 

therapies is critical to combat infectious diseases. Namely, phototherapy appears to be 

a promising approach for the local infection treatment and prophylaxis due to its broad-

spectrum antimicrobial and antiviral activities, low invasiveness, minimal systemic side 

effects, and no evidence of inducing treatment resistance (except direct UV therapy and 

PTT). Phototherapies reviewed in this paper include photodynamic (PDT), photothermal 

(PTT), direct laser, direct UV and direct blue light therapies. These modes of therapies 

have been combined with optical waveguide technologies to target a variety of pathogens 

through multiple mechanisms with access to deep or normally inaccessible infections and 

overcome the off-site effects that are experienced by phototherapies alone. It is likely 

that the biodegradable optical waveguides may also be loaded with drugs as a drug 

delivery platform. After the phototherapy treatment, as the optical waveguide degrades, 

the drugs may be released in a designed manner, either enhancing the therapeutic efficacy 

or facilitating the healing process. Moreover, the combination of optical waveguides with 

PDT and PTT should enable the use of PSs and PTAs that are responsive to lights at 

UV regions for deep tissue treatments. PSs and PTAs that are only UV-light responsive 

are usually smaller and less conjugated than their NIR-responsive counterparts resulting in 

better solubility, processability, biocompatibility and stability.

Another area at the forefront of research is stimuli-responsive and multi-functional optical 

waveguide-mediated phototherapies for more precise targeting and treatment. Phototherapy 

can be combined with drug delivery options as well as with other nonpharmacologic 

treatment modalities, such as sonodynamic therapy. Phototherapy combined with sensing 

and diagnostic techniques can potentially be developed into point-of-care theranostics that 

enable feedback-informed treatment through monitoring the treatment progression in real-
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time. The development of biodegradable optical waveguide materials with tunable refractive 

indexes, biomimetic mechanics, flexibility and multifunctional or self-cleaning potential is a 

promising direction for the design of new optical waveguide-mediated phototherapies.

Furthermore, an underexplored phenomenon in the field of optical materials that is gaining 

increasing attention is organic ultralong room temperature phosphorescence (URTP)[718–

722]. Thus far, materials with URTP capabilities have been studied for applications, such 

as anticounterfeiting, data encryption and bioimaging investigations[722–728]. However, 

the biomedical applications of URTP materials haven not been extensively studied other 

than some bioimaging applications. The ultralong triplet lifetime of URTP materials confers 

higher probability of energy/electron transfer compared to the traditional PSs making them 

appealing for PDT. Some possible reasons that URTP materials have not been exploited 

for PDT applications include: 1. The absorption maximum of the current URTP materials 

is always in the UV range with few reports in the violet range thus it is not suitable 

for deep tissue treatment by itself; 2. Crystallization is the most common and effective 

approach to achieve URTP. Unfortunately, crystals that have compact structure prevents the 

diffusion of the quencher (e.g. molecular oxygen), which attenuates energy/electron transfer 

to substrates resulting in poor ROS generation efficiency. There should be a niche area 

for the use of URTP materials if combined with optical waveguides. Optical waveguides 

may allow the delivery of shorter wavelengths that activate URTP materials in deep tissues 

for phototherapies . With such long lifetimes and high triplet quantum yield, PDT in 

conjunction with URTP materials loaded in the optical waveguides has great potential to 

further improve the efficacy of phototherapy for infection control.

The use of phototherapies in combination with optical waveguides overcome many of 

the challenges and shortcomings of the conventional pharmaceutical and phototherapies. 

Optical waveguide-mediated phototherapies have gained significant attention as a powerful 

therapeutic approach or alternative to the current antimicrobial and antiviral therapies and 

holds great promise for the management of the infection-related diseases and beyond.
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Fig. 1. 
The integration of phototherapy and optical waveguide technology is an innovative and 

promising approach to combat pathogens and tackle the rapidly emerging threat of multi-

drug resistant microbes and viruses. Optical waveguides of which are ideally biodegradable, 

biocompatible, and mechanically compliant with the working environment can direct 

incident light to the immediate site of infection minimizing off-site effects and systemic side 

effects that are often inevitable with traditional phototherapy and pharmaceutical therapy, 

respectively. The use of optical waveguides for treatment of infection harnesses the benefits 

of phototherapy, meanwhile overcoming the barrier of limited penetration depth expanding 

the use of phototherapy to deep tissue infections. Through the multiple mechanisms of 

action that phototherapy provides and the precise delivery by optical waveguides, there 

is great potential to fulfill the requirements of infection control caused by a variety of 

pathogens including those refractories to conventional therapies while reducing the need for 

drug treatment.
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Fig. 2. 
Underlying principles of PDT and PTT. (a)The Jablonski diagram demonstrates the general 

mechanism of reactive oxygen species and free radical generation in PDT and PTT upon 

photon absorption (abs) by a photosensitizer or photothermal agent, respectively. Following 

photon absorption, electrons are promoted from the ground state (S0) to an excited state 

(Sn; n≠0) then relax by emitting energy as heat (VR, IC) or light (fluorescence or 

phosphorescence). Type I reactions result in the generation of free radicals (O2
•−, •OH) 

and H2O2. Type II reactions result in singlet oxygen generation (1O2). (b) Schematic of 

free radical generation in metal oxide nanomaterials. Valence electrons are excited from 

the valence band (VB) to the conductive band (CB) when exposed to light that exceeds 

the energy of the bandgap. The resulting charge separated state is conducive to energy 

transfer (type II) reactions producing free radical species, which degrade microbial and viral 

macromolecules.
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Fig. 3. 
Schematic illustration of different types of phototherapies for infection treatment. From 

left to right: Photodynamic therapy (PDT) activates exogenous photosensitizers (PSs), 

which interact with substrates to produce reactive oxygen species (ROS) that damage 

biomacromolecules[54, 55] (the colors used in the picture do not directly reflect the 

actual wavelengths); Photothermal therapy (PTT) relies on the illumination of photothermal 

agents (PTAs) to generate heat for pathogen inactivation[408] (the colors used in the 

picture do not directly reflect the actual wavelengths); Direct blue light therapy is 

believed to activate endogenous PSs to yield similar effects to that of PDT[27]; Direct 

dual-wavelength laser therapy may reduce membrane potential, activate endogenous PSs, 

and alter cellular respiration[536]; Direct ultraviolet (UV) therapy induces dimerization of 

thymine nucleotides preventing DNA replication and translation[539]; Direct ultrashort laser 

therapy delivers rapid-pulses of light providing microbe specific damage[534, 535].
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Fig. 4. 
Schematic illustration of the (a) dependence on incident light angle and refractive index to 

achieve total internal reflection and (b) light propagation through a step-index optical fiber 

via total internal reflection resulting in minimal energy loss over the length of the fiber. 

θ1: incident angle; θ2: transmitted angle; θc: critical angle; n1 and n2: refractive indices of 

media 1 and 2, respectively.
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Fig. 5. 
Representative biocompatible optical waveguides comprised of cells and polymeric 

biomaterials (a) E. coli-based biophotonic waveguide. Adapted with permission from 

[665]. Copyright (2013) American Chemical Society; (b) Step-index optical waveguides 

made from silk. Adapted with permission from [639]. Copyright (2015) Optical Society 

of America; (c) Bioabsorbable optical waveguides made from poly(L-lactic acid) (PLLA) 

or polyethylene glycol (PEG). Adapted with permission from [656]. Copyright (2016) 

Nature Publishing Group; (d) Optical microneedle array made from poly(lactic acid) 

(PLA). Adapted with permission from [655]. Copyright (2016) Optical Society of 

America; (e) Biodegradable step-index optical fiber made from citrate-based polymers: 

poly(octamethylene citrate) (POC) as cladding while poly(octamethylene maleate citrate) 

(POMC) as core. Adapted with permission from [653]. Copyright (2017) Elsevier.
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Fig. 6. 
Schematic illustration of the penetration depths of various therapeutic lights (UVC, blue, and 

NIR) in tissues and the optical waveguide-mediated light delivery for phototherapy. Left: 

diffused light delivery through a diffuser/diffusing tip at a large lesion; Right: precise light 

delivery at a specific target site.
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Table 1.

Types of phototherapy and respective limitations

Phototherapy Description Mechanism of Action Limitations

PDT
Light activates a topical or injected PS in 
the presence of a substrate produce ROS and 
radical ions[50, 51]

ROS and free radicals destroy 
macromolecules critical to cell 
function[54, 55]

ROS are not cell 
selective[51, 57]

Poor biocompatibility or 
phototoxicity of PSs[23, 73, 
74, 77, 623, 624]

Thermal effects are not cell 
selective[408]

PTT Irradiation of photothermal agents (PTAs) 
with light

Local hyperthermia leads to 
denaturation of proteins, cell 
aggregation, loss of membrane integrity, 
and cross-linking of DNA[408]

Photobleaching, poor 
biocompatibility or toxicity 
of PTAs[408, 426, 437, 497, 
583]

High temperatures, power 
density, or overexposure to 
light irradiation may damage 
host tissue

Induced resistance has been 
reported[23–25]

Direct Ultrafast 
(Ultrashort) Pulsed 

Laser

Ultrafast pulses of light with power on the 
order of GW. Femtosecond lasers are the 
most commonly used[535]

Viruses: Induced viral capsid 
aggregation and inhibition of viral 
replication and transcription[534, 535]

Requires specialty 
equipment and training

DNA damage and relaxation of 
supercoiled DNA in bacteria and 
fungi[535]

Activation of endogenous porphyrins to 
generate ROS[535, 637]

Increase in cell membrane permeability 
increasing sensitivity to drug 
treatment[637]

Direct Dual-
Wavelength Laser

Two different wavelengths of laser are 
applied to infected site. Low power and 
red/NIR light can be used[536]

Reduced membrane potential[537]
Requires specialty 
equipment and trainingROS production by endogenous 

chromophores[537]

Aberrant electron transport chain 
processes and energy production[536]

Mechanism of action, safety, 
and efficacy are largely 
underexplored

Direct UV
Direct light (100 - 400 nm) irradiation. 
UVC (100 - 280 nm) is the most commonly 
employed[22, 539, 541]

Inhibited DNA replication due to 
formation of thymine dimers[539]

Limited tissue penetration 
depth[22]

Risk of carcinogenesis, 
burns, and retinal 
damage upon prolonged 
exposure[539]

Possible damage to aromatic amino 
acids in proteins[638]

Induced resistance has been 
reported[22]

Direct Blue Light Direct light (400 - 500 nm) irradiation. An 
aerobic environment may be necessary[578]

May activate endogenous PSs (e.g. 
porphyrins, flavins, cytochromes) in 
microbes to generate ROS[27]

Poor tissue penetration[27]

Risk of eye damage upon 
prolonged exposure[27]

PDT: photodynamic therapy; NIR: near-infrared; ROS: reactive oxygen species; PS: photosensitizer; UV: ultraviolet; GW: gigawatts; PTT: 
photothermal therapy; PTA: photothermal agent; DNA: deoxyribose nucleic acid
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Table 2.

Representative studies administering phototherapy via optical waveguides for infection treatment

Infection Model Treatment Results Reference

Osteomyelitis induced by S. 
aureus in tibia of SD rats

In vivo: Percutaneous administration of 635 ± 10 nm laser 
(fluence of 75 J/cm2) at 250 mW/cm2 for 4 hours post-IP 
injection of ALA (300 mg/kg)

Significant inhibition of bacterial 
growth after 24 hours

[711]No significant difference after 48 
hours compared to ALA treatment 
only

Human root canals infected 
with E. faecalis

Ex vivo: Methylene blue (25 μg/mL) incubation for 5 
minutes followed by illumination with 665 nm light 
(fluence 222 J/cm2)

97% killing after 7 days of sample 
incubation relative to no treatment 
controls.

[714]

In vivo and clinical H. pylori 
infection

In vivo: Several 15-minute treatments of 31 to 46 kJ of 
408 nm light to porcine stomachs

Clinical results revealed transient 
decrease in infection 8 hours after 
treatment according to UBT

[715]
Clinical: 15, 30, 45, or 60-minute treatment time; UBT 
and bacterial counts were evaluated at time of enrollment, 
5 days, and 5 weeks after treatment, respectively.

CFU reduction was highest and 
only significant in the antrum 
(97.7% killing)

The highest reduction in microbe 
count was observed in the 30-
minute treatment group

In vitro and clinical H. 
pylori infection

In vitro: 2 cm2 spot size of 405 nm light (4, 8, 16, and 32 
J/cm2 fluence) for 5 minutes

In vitro: 32 J/cm2 energy density 
caused a 5-log reduction of 
bacterial viability 7 days post-
treatment

[585]

Clinical: 1 cm2 spot size of 405 nm light (40 J/cm2 

fluence) for 4.5 minutes in the antrum

Clinical: CFUs/gram of tissue 
demonstrated significant (91%) 
bacterial kill relative to non-treated 
samples

Periodontitis induced by P. 
gingivalis in SD rats

6, 12, 24, 48 J of 630 nm light for 1, 2, 4, and 8 minutes 
with toluidine blue (0.01, 0.1, and 1 mg/ml) for bacterial 
kill measurements

No detectable bacteria in 1 mg/mL 
toluidine blue with light treatment 
group and significant reductions (at 
least one log10) in viable count of 
all other treatment groups. [210]

48 J of 630 nm light was administered for 8 min using 
toluidine blue (0.01, 0.1, and 1 mg/ml) for bone loss 
measurements

Significant differences in reduction 
in bone loss in 0.1 and 1 mg/mL 
toluidine groups using 48 J of light

Clinical COVID-19 
pulmonary infection

Blue and/or red light administered via endobronchial 
or pulmonary arterial routes proposed for antiviral, 
antibacterial, anti-inflammatory, and vasculoprotective 
effects

Proposed study design [311]

Intubated patients with 
COVID-19 pulmonary 
infection and/or acute 
respiratory distress 
syndrome

Direct trachea-bronchial UVC irradiation (2.0-2.5 mW) 
for 6 minutes every 4 hours for 24 hours Proposed study design [561]

S. aureus: Staphylococcus aureus; SD: Sprague-Dawley; IP: intraperitoneal; ALA: 5-Aminolevulinic acid hydrochloride; E. faecalis: Enterococcus 
faecalis; InGaN: indium gallium nitride; UBT: urea breath test; CFU: colony forming unit; P. gingivalis: Porphyromonas gingivalis
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