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Abstract

Background: Obesity and related comorbidities are major health concerns among
many US immigrant populations. Emerging evidence suggests a potential
involvement of the gut microbiome. Here, we evaluated gut microbiome features
and their associations with immigration, dietary intake, and obesity in 2640
individuals from a population-based study of US Hispanics/Latinos.

Results: The fecal shotgun metagenomics data indicate that greater US exposure is
associated with reduced ɑ-diversity, reduced functions of fiber degradation, and
alterations in individual taxa, potentially related to a westernized diet. However, a
majority of gut bacterial genera show paradoxical associations, being reduced with
US exposure and increased with fiber intake, but increased with obesity. The
observed paradoxical associations are not explained by host characteristics or
variation in bacterial species but might be related to potential microbial co-
occurrence, as seen by positive correlations among Roseburia, Prevotella, Dorea, and
Coprococcus. In the conditional analysis with mutual adjustment, including all genera
associated with both obesity and US exposure in the same model, the positive
associations of Roseburia and Prevotella with obesity did not persist, suggesting that
their positive associations with obesity might be due to their co-occurrence and
correlations with obesity-related taxa, such as Dorea and Coprococcus.

Conclusions: Among US Hispanics/Latinos, US exposure is associated with
unfavorable gut microbiome profiles for obesity risk, potentially related to
westernized diet during acculturation. Microbial co-occurrence could be an
important factor to consider in future studies relating individual gut microbiome taxa
to environmental factors and host health and disease.
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Background
Evidence from animal studies suggests that the gut microbiome may play a causal role

in the development of obesity [1, 2], while the relationship between gut microbiome

and obesity remains unclear in humans [3, 4]. Recent systematic reviews found mixed

results on gut microbiome features associated with obesity across human studies [3, 4].

The inconsistency in human studies may be due to small sample sizes (the majority of

previous studies had N < 100) and/or large interpersonal variation in gut microbiome

related to many host factors (e.g., race/ethnicity [5], geography [6], diet/lifestyle [7, 8]).

On the other side, microbes do not live in isolation but develop a range of relationships

in the communities, including mutualism, commensalism, synergism, competition para-

sitism, predation, antagosim, and amensalism [9], and the complex microbial inter-

action might also influence the relationship of gut microbiome with obesity and other

conditions.

Emerging evidence suggests that immigration is associated with gut microbiome al-

terations, which might be related to changes in diet and other factors during the accul-

turation process [10, 11]. Notably, microbiome-related conditions such as obesity and

its comorbidities are major health concerns among US immigrants from lower-to-

middle income countries [12]. A recent study in immigrants from Thailand to the USA

found that US immigration was associated with loss of gut microbiome diversity and

reduced ratio of Prevotella to Bacteroides, and loss of gut microbiome diversity was as-

sociated with obesity [10]. These results suggested a potential involvement of gut

microbiota alterations in immigration-related obesity [10]. However, not much is

known about individual taxonomic signals and functional components related to obes-

ity. Higher Prevotella relative abundance has been consistently reported in non-

industrialized populations, which are more metabolically healthy (e.g., lower prevalence

of obesity and diabetes compared to industrialized populations), and whose diets con-

tain more dietary fiber [13–15]. Paradoxically, several studies have found positive asso-

ciations of Prevotella with obesity [16, 17], insulin resistance [18], and inflammatory

autoimmune diseases [19, 20]. The mechanisms underlying the unexpected association

between gut Prevotella and human diseases are not fully understood [21–23].

This report focuses on the US Hispanic/Latino community, which represent a sub-

stantial fraction of the total immigrant population in the USA (https://www.

pewresearch.org/hispanic). In US Hispanics/Latinos, the prevalence of obesity is

particularly high, and the length of duration of US residence or US exposure at earlier

ages is associated with higher prevalence of obesity as well as greater severity of obesity

[24, 25]. Our prior work using 16S rRNA data in 1674 US Hispanics/Latinos showed

that the ratio of Prevotella to Bacteroides is lower in US-born versus immigrant His-

panics/Latinos, potentially related to lower fiber intake [11]. However, this ratio was

found to be higher in individuals with obesity compared to those with normal weight,

which was paradoxical to the observation that US-born Hispanics/Latinos had a higher

prevalence of obesity and lower fiber intake compare to immigrant Hispanics/Latinos

[11]. Therefore, studies are needed to explore potential explanations for these paradox-

ical results. Particularly, microbial interactions have been commonly observed [26, 27],

but have not been well-considered in the analyses of gut microbiome and human health

and disease. Microbial co-occurrence network which infer ecological relationships

based on taxonomic composition data obtained from high-throughput sequencing
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techniques [28], has been used to visualize the correlations between microbes in micro-

bial communities and predict the potential microbial interactions [9].

To better understand the interrelationship among immigration, gut microbiome, and

obesity in US Hispanics/Latinos, we extended our analyses using shotgun metage-

nomics sequencing on a larger group of individuals. Among 2640 US Hispanics/Latinos

of diverse background (including Dominican, Cuban, Puerto Rican, Mexican, Central

American, and South American), aged 23 to 83 years, from the Hispanic Community

Health Study/Study of Latinos (HCHS/SOL ) [29, 30], we evaluated multiple gut micro-

biome features including community-level diversity, individual taxa, and functional po-

tential, and examined associations of these features with immigration generation,

duration of US residence, usual dietary intake, and obesity. The potential microbial co-

occurrence relationship and its potential influences on the associations of gut micro-

biome with US immigration, dietary intake, and obesity were also examined.

Results
US exposure, obesity, and gut microbiome diversity

Among 2640 US Hispanics/Latinos (age ranged from 23 to 83 years), 368 (14%) were

born in the mainland USA. Severity and prevalence of obesity were highest for those

born in USA, as well as being positively associated with duration of US residence. De-

tailed study participant characteristics are shown in Additional file 1: Table S1.

Higher levels of obesity were associated with lower α-diversity Faith’s phylogenetic

distance (PD) after multivariable adjustment in weighted linear regression (Additional

file 1: Figure S1A). Consistently, α-diversity Faith’s PD index was lowest in those born

in USA, and inversely associated with duration of US residence (Additional file 1: Fig-

ure S1A). Principal-coordinates analysis (PCoA) of weighted UniFrac distances indi-

cated that both host obesity and US exposure (US born and duration of US residence)

significantly co-varied with the β-diversity of gut microbiome and explained moderate

proportion of variance (PERMANOVA analysis by adonis function from vegan package,

R2 = 0.9% and 1.8% respectively, both P < 0.001) (Additional file 1: Figure S1B). These

results are in line with previous findings in US immigrants from Thailand [10]. In

addition, we also examined associations of other participant characteristics with β-

diversity, and most variables were significantly associated with β-diversity, while all

these R2 values were relatively small (R2 < 2.0%), including those for obesity and US ex-

posure (Additional file 1: Figure S2). These results are consistent with those observed

in our previous analyses using 16S data [11] as well as previous findings observed in

large population-based studies in which multiple host factors showed significant associ-

ations with β-diversity but only explained a very small proportion of variation in β-

diversity [6].

US exposure, obesity, and gut bacterial genera

We then examined associations of individual gut microbial taxa at a genus level with

obesity and US exposure after controlling for demographic, socioeconomic, behavioral,

and clinical variables using weighted linear regression models. Of the 84 predominant

gut bacterial genera included in this analysis (relative abundance ≥0.01%), 38 were sig-

nificantly associated with BMI (FDR < 0.05; 26 under Firmicutes phylum, 6 under

Wang et al. Genome Biology          (2021) 22:336 Page 3 of 22



Actinobacteria, and 3 under Proteobacteria), and 49 genera were significantly associated

with US exposure (FDR < 0.05; 33 under Firmicutes phylum, 6 under Proteobacteria,

and 6 under Bacteroidetes) (Fig. 1A and Additional file 2: Table S2). Cross-classification

of these two sets of results identified 23 bacterial genera that showed significant associ-

ations with both BMI and US exposure (Fig. 1A, B and Additional file 1: Table S3).

Despite a strong positive association between BMI and US exposure (Fig. 1C), we found

that a majority of genera (17 of 23) showed paradoxical associations with obesity and

US exposure, including nine genera (e.g., Roseburia, Prevotella, and Dorea) associated

with higher BMI but less US exposure, and the other eight genera (e.g., Anaerotruncus

and Eggerthella) associated with lower BMI but greater US exposure. After further ad-

justment for Hispanic background, the associations of gut bacterial genera with obesity

and US exposure did not change materially (Additional file 3: Table S4). In addition, in

consideration of close correlations between US exposure and the covariates included in

our regression models, we also compared associations of gut bacterial genera with US

exposure and these covariates. Forty-nine genera were significantly associated with US

exposure independently of these covariates, and their associations with these covariates

are also shown in Additional file 4: Table S5.

To explore potential explanations for the observed paradoxical associations, we first

examined these associations stratified by age, sex, geographic location, and Hispanic

background as these factors may influence associations between gut microbiome fea-

tures and human phenotypes. However, we did not find significant heterogeneity in as-

sociations of these bacterial genera with obesity (Additional file 1: Figure S3, and

Additional file 5: Table S6) or US exposure (Additional file 3: Figure S4, and Additional

file 6: Table S7) across strata. We also examined the associations of these bacterial gen-

era with obesity and US exposure among the first-generation Hispanic/Latino immi-

grants according to the place of birth (i.e., Dominica, Cuba, Puerto Rica, Mexico,

Central America, and South America), and did not find significant heterogeneity in

these associations (Additional file 7: Table S8 and Additional file 8: Table S9). In

addition, we performed sensitivity analyses by excluding individuals with antibiotic use

during the past 6 months, and the results on the associations of gut bacteria genera

with obesity and US exposure were similar to those of the primary analyses after adjust-

ment for antibiotic use in the regression models. These results suggest that these host

factors are less likely to explain the observed paradoxical associations.

We also examined a total of 88 species within these 23 genera but found little evi-

dence suggesting that variation in species levels explain the observed paradoxical

associations.

Results at the genus level were mostly driven by one or two major species under cor-

responding genera (Additional file 1: Table S10). For example, Prevotella copri, the

most predominant species in Prevotella genus (mean relative abundance: 11%, account-

ing for 88.3% of Prevotella species), was associated with higher BMI but less US

exposure.

We then examined correlations among these 23 genera associated with both obesity

and US exposure. Given the compositional data, we applied multiple methods including

Spearman, Pearson and SparCC to calculate correlation coefficients among bacteria

genera [31], which showed generally consistent results (Additional file 1: Figure S5). As

gut microbiome data tend to be zero-inflated, this may influence the correlation
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Fig. 1 (See legend on next page.)
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estimates. Thus, we performed sensitivity analyses after excluding samples with absent

bacteria genera, and similar correlations among these genera were observed (Additional

file 1: Figure S5). The 17 bacterial genera which showed paradoxical associations

formed two clusters which were inversely correlated (Fig. 2A). Cluster A included cor-

related bacteria (Spearman r = 0.06–0.77) that were associated with higher BMI and

less US exposure. Cluster B included correlated bacteria (Spearman r = 0.18–0.46) that

were associated with lower BMI and greater US exposure.

Given the moderate correlations among many of these genera, we hypothesized that

the observed paradoxical associations might be due to correlations/co-occurrence

among these genera. To test this hypothesis, we performed conditional analyses includ-

ing all genera associated with both BMI and US exposure in the same model, except

for Cellulomonas which was excluded due to its high correlation with Prevotella (r =

0.77), to identify potentially independent bacterial taxa associated with obesity and/or

US exposure. After controlling for other genera, nine genera remained significantly as-

sociated with obesity, and 10 genera remained significantly associated with US exposure

(Fig. 2B, and Additional file 1: Table S11). No paradoxical associations remained after

conditional analyses. Among six bacteria outside of clusters A and B, Acidaminococcus

and Parasutterella were associated both with higher BMI and greater US exposure,

while Intestinimonas and Holdemania were associated with lower BMI and less US ex-

posure. Among nine members of Cluster A, Coprococcus and Dorea were associated

with higher BMI only, and Roseburia, Prevotella and Senegalimassilia were associated

with less US exposure only. Among eight members of Cluster B, Faecalicatena and

Eggerthella were associated with lower BMI only, and Anaerotruncus, Eisenbergiella,

and Erysipilatoclostria were associated with greater US exposure only. To minimize po-

tential influences of over-adjustment, we conducted conditional analyses which only in-

cluded four independent BMI-associated genera (Coprococcus, Dorea, Faecalicatena,

and Eggerthella) in the models. The associations of other 13 genera in clusters A or B

with BMI were not significant after adjustment for these four independent BMI-

associated genera (Additional file 1: Table S11). Similarly, the associations of other 11

genera in cluster A or B with US exposure were not significant after adjustment for six

independent US exposure-associated genera. In addition, we examined the associations

of these genera with two other obesity measurements, body fat percentage, and waist

circumference (Additional file 1: Figure S6), as well as severity of obesity (normal

(See figure on previous page.)
Fig. 1 Associations of gut bacterial taxa with host obesity and US exposure. A Integrated tree of microbial
communities associated with host obesity and US exposure. Taxa from inner to outer circle represent bacteria
kingdom to genus level; 84 predominant genera (average relative abundance > 0.01%) were included. The
branch widths reflect the relative abundance of each detected taxon. Red/blue colors of the rings depict
significant positive/inverse associations and the gradient colors reflect the ranks of effect sizes estimated in
linear regression models after adjustment for demographic, socioeconomic, behavioral, and clinical factors,
while white color indicates non-significant associations. The inner ring shows 38 genera significantly associated
with host body mass index (BMI) (FDR P < 0.05), and the outer ring shows 49 genera significantly associated
with US exposure (defined by place of birth and duration of residence in the US) (FDR P < 0.05). A total of 23
genera were significantly associated with both BMI and US exposure and the genera names are indicated. B
Venn diagram of gut bacterial genera associated with BMI and US exposure. The symbol “+”/“−” depict
significant positive/inverse associations in linear regression models (FDR P < 0.05). C Associations between host
obesity and US exposure. Data are adjusted mean (SE) of BMI across US exposure groups estimated in linear
regression models after adjustment for demographic, socioeconomic, behavioral, and clinical factors
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Fig. 2 Relationships among the identified gut microbial genera associated with both obesity and US exposure. A
Spearman correlation heatmap for the 23 identified bacterial genera associated with both obesity and US exposure. B
Associations of 23 gut bacteria genera with obesity and US exposure. These associations were estimated in linear
regression models after adjustment for demographic, socioeconomic, behavioral, and clinical factors (multivariable
adjustment, FDR P < 0.05 level) and further adjustment for other bacterial genera (conditional analysis, mutual
adjustment). Red/blue colors depict significant positive/inverse associations and the gradient colors reflect the ranks of
effect sizes estimated in linear regression models, while white color indicates non-significant associations. Triangle and
square indicate the microbial genera that were independently associated with obesity and US exposure after mutual
adjustment, respectively. C Co-occurrence network representing the structure of microbial composition. The size of
node reflects the cumulative sum scaling normalized abundance of each taxon. Red/green nodes indicate genera
positively/inversely associated with host obesity after mutual adjustment (P < 0.05), and orange/ blue nodes indicate
genera positively/inversely associated with US exposure after mutual adjustment (P < 0.05). Positive (red lines) and
inverse (blue lines) correlations were obtained between predominant genera using Spearman rho based co-
occurrence network analysis
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weight, 18.5 ≤ BMI < 25 kg/m2; overweight, 25 ≤ BMI < 30 kg/m2); obese I, 30 ≤ BMI <

35 kg/m2; obese II, 35 ≤ BMI < 40 kg/m2; and obese III, BMI ≥ 40 kg/m2). The results

on the associations of these genera with body fat percentage, waist circumference, and

severity of obesity in the conditional analyses were generally consistent with those on

the associations between these genera and BMI (Additional file 1: Figure S6, and

Additional file 1: Table S12).

In order to explore the relationship among microbial genera in a compositionally co-

herent manner, we also applied differential ranking analysis using songbird pipeline

[32] in which the natural log-ratio of microbial genera data was calculated using

Clostridium as the reference. We built a Spearman correlation heatmap using these

log-ratio data (Additional file 1: Figure S6), and the correlations among microbial gen-

era were generally consistent with those estimated using the CSS transformed data. For

examples, we also observed significant positive correlations among Coprococcus, Rose-

buria, Prevotella, and Dorea, suggesting potential bacterial co-occurrence of these

genera.

We also performed co-occurrence network analysis [33, 34] to visualize potential bac-

terial co-occurrence relationships among gut bacterial genera in our study samples.

This analysis indicated potential bacterial co-occurrence relationships among these

genera which showed associations with both obesity and US exposure (Fig. 2C), and

their associations might be driven by some key genera associated with obesity or US ex-

posure. For example, among Cluster-A bacterial genera which showed bacterial co-

occurrence relationships, Coprococcus and Dorea were associated with higher BMI,

while Roseburia, Prevotella, and Senegalimassilia were associated with less US expos-

ure. Interestingly, either phylogenetically closely related bacterial genera, or those be-

longing to different phyla, could be clustered in the bacterial co-occurrence network.

For example, Roseburia, Coprococcus, and Dorea are in the Lachnospiraceae family,

while Prevotella and Senegalimassilia belong to the Bacteroidetes phylum and the Acti-

nobacteria phylum, respectively (Fig. 1A). Taken together, these results suggested that

the observed associations of individual gut microbial taxa with obesity and US exposure

might be due to bacterial co-occurrence, and these paradoxical associations were re-

solved after taking bacterial co-occurrence into account.

US exposure, dietary intake, and gut microbiome

To further clarify the relationships of individual gut microbial taxa with obesity and US

immigration, we attempted to account for diet, a behavioral factor that tends to change

after immigration and that can profoundly influence both body habitus and gut micro-

biome features [11]. Compared to US-born Hispanics/Latinos, Latin America-born in-

dividuals, especially those who had relative shorter duration of US residence, showed

higher consumption of dietary fiber, and generally more favorable eating habits, as evi-

denced by higher levels of the 2010-AHEI as well as individual food/nutrient compo-

nents (e.g., higher intakes of vegetables, fruits, nuts, and legumes, and lower intakes of

red/processed meat, sugar-sweetened beverages, sodium, and trans-fat) (Fig. 3A, B).

We then related individual bacteria genera with host dietary intake and found that 30

out of 84 predominant bacteria genera were significantly associated with 2010 -AHEI as

well as individual food/nutrient components, especially with healthy fiber-rich foods (e.g.,
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Fig. 3 (See legend on next page.)
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whole grain, vegetables, fruits, nuts, and legumes) (Additional file 1: Figure S8). Consistent

with the relationship between US exposure and host dietary intake, bacterial genera asso-

ciated with less US exposure were associated with relatively healthier diet pattern and

higher intakes of fiber-rich foods, while bacterial genera associated with greater US expos-

ure were associated with relatively unhealthier diet pattern and lower intakes of fiber-rich

foods, regardless of their associations with obesity (Fig. 3C). We then focused on the asso-

ciations of these bacteria genera with dietary fiber intake and found some unexpected as-

sociations. Particularly, Dorea and Coprococcus, which were independently associated

with obesity, were associated with higher fiber intake (Fig. 3D). After including all 15 bac-

teria genera in a conditional analysis model (mutual adjustment) on fiber intake, no para-

doxical associations remained. Six bacteria genera were independently associated with

dietary fiber intake, and directions of these associations were in line with those of their as-

sociations with US exposure and/or obesity (Fig. 3D).

US exposure, fiber intake, and gut microbiome functional components

Lastly, we examined microbial function contents to better understand the interrelation-

ship among US immigration, dietary intake, gut microbiome, and obesity. The gut

microbiome functional profiles were obtained using SHOGUN [35] and annotated by

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database Release 94.0 [36],

and a total of 1952 known enzymes with specific Enzyme Commission numbers (EC

number) were identified and included in the analyses. We first examined associations

between US exposure and KO groups for 1952 known enzymes using weighted linear

regression models and identified 260 KO groups associated with US exposure (all FDR

P < 0.1). We then performed an enrichment test for these KO groups at EC level II en-

zyme category and found an enrichment of enzymes belonging to the glycosylases asso-

ciated with US exposure (Additional file 1: Table S13).

We thus focused on the glycosylases and found 12 KO groups associated with US ex-

posure (all FDR P < 0.1, Fig. 4A; and Additional file 1: Table S14). These KO groups

formed two clusters and KO groups within each cluster were highly correlated with

each other (Fig. 4A). The first cluster which was associated with less US exposure in-

cluded KO groups encoding enzymes related to degradation of dietary fibers. For ex-

ample, oligosaccharide reducing-end xylanase (K15531; EC3.2.1.156) was known as a

(See figure on previous page.)
Fig. 3 US exposure, dietary intake, and gut microbial genera. A Associations of US exposure with dietary fiber intake
and AHEI-2010 score. Data are adjusted means (SEs) of dietary fiber intake and AHEI-2010 score across US exposure
groups estimated in linear regression models after adjustment for demographic, socioeconomic, behavioral, and
clinical factors. B Heatmap for overall dietary quality and individual dietary factor associated with US exposure.
Gradient colors reflect the ranks of adjusted means of AHEI-2010 score and 11 food/nutrition component of AHEI-
2010 across US exposure groups estimated in linear regression models after adjustment for demographic,
socioeconomic, behavioral, and clinical factors. C Heatmap for overall dietary quality and individual dietary factor
associated with gut microbial genera. This heatmap includes 15 microbial genera that were independently associated
with obesity and/or US exposure. Data are effect sizes of dietary factors on gut microbial genera estimated in linear
regression models after adjustment for demographic, socioeconomic, behavioral, and clinical factors. D Associations of
gut microbiota with dietary fiber intake, US exposure, and host obesity. These associations were estimated after
adjustment for demographic, socioeconomic, behavioral, and clinical factors (multivariable adjustment, FDR P < 0.05
level) and further adjustment for other bacterial genera (conditional analysis, mutual adjustment). Red/blue colors
depict significant positive/inverse associations and the gradient colors reflect the ranks of effect sizes estimated in
linear regression models, while white color indicates non-significant associations
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Fig. 4 Gut microbial functional components associated with both US exposure and dietary fiber intake, and
their associations with obesity and gut bacterial genera. A Correlation heatmap for 12 microbial functional
enzymes associated with both US exposure and dietary fiber. B Association of 12 microbial functional enzymes
with US exposure, dietary fiber intake and BMI. These associations were estimated in linear regression models
after adjustment for demographic, socioeconomic, behavioral, and clinical factors. Red/blue colors depict
significant positive/inverse associations (FDR P < 0.05) and the gradient colors reflect the ranks of effect sizes
estimated in linear regression models, while white color indicates non-significant associations. C Levels of gut
microbial enzyme K15531 xylanase according to US exposure, dietary fiber intake, and host obesity. Data are
adjusted mean (SE) of enzyme K15531 xylanase (centered log-ratio transformed) across US exposure groups,
levels of dietary fiber intake, and host obesity status estimated in linear regression models after adjustment for
demographic, socioeconomic, behavioral, and clinical factors. D Associations of 15 gut bacterial genera with
gut microbial enzyme K15531 xylanase. Data are effect sizes and P values estimated in linear regression models
after adjustment for demographic, socioeconomic, behavioral, and clinical factors (multivariable adjustment)
and further adjustment for other bacterial genera (conditional analysis, mutual adjustment)
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high molecular mass xylanases which can degrade xylan, a type of dietary fiber found

in plant cell walls [37, 38]. Consistently, these KO groups were associated with higher

fiber intake. The second cluster which was associated with greater US exposure in-

cluded KO groups encoding enzymes related to starch degradation (e.g., Pullulanase,

K01200, EC3.2.1.41) or carbohydrate metabolism associated with obesity and insulin re-

sistance (e.g., alpha- mannosidase, K01191, EC3.2.1.24) [39]. These results suggest that,

compared to those with a shorter duration of US residence, US-born Hispanics/Latinos

and those with a longer duration of US residence may have gut microbiota with de-

creased capacity for fiber degradation and increased capacity for starch degradation and

simple carbohydrate utilization, potentially related to decreased consumption of fiber-

rich foods and increased consumption of refined grains and sugary foods. We then re-

lated these KO groups with BMI and found expected associations showing that all KO

groups associated with less US exposure and higher fiber intake were associated with

lower BMI, and some KO groups associated with greater exposure and lower fiber in-

take were associated with higher BMI (Fig. 4B). For example, levels of oligosaccharide

reducing-end xylanase (K15531) deceased with greater US exposure, increased with

higher fiber intake, and deceased with higher BMI/severity of obesity (Fig. 4C). The in-

verse association between oligosaccharide reducing-end xylanase and US exposure

might be mainly driven by relatively lower levels of oligosaccharide reducing-end xyla-

nase in US-born Hispanics/Latinos compared to immigrant Hispanics/Latinos, as we

only found a trend for the inverse association between oligosaccharide reducing-end

xylanase and years of US residence among immigrant Hispanics/Latinos (P = 0.10).

We then explored potential contributions of these 15 bacterial genera that were inde-

pendently associated with US exposure, fiber intake, and/or obesity to these KO groups.

As these KO groups were highly correlated with each other, we focused on xylanase

(K15531) as an example, given its well-known biological function in fiber degradation.

While we found expected positive associations between bacterial genera (e.g., Roseburia

and Prevotella which were associated with higher fiber intake) and xylanase, Dorea and

Coprococcus which were positively associated with obesity were also positively associ-

ated with xylanase (Fig. 4D). We performed conditional analysis by including all 15

genera in the same regression model on xylanase. This greatly attenuated or abolished

most of the associations of these genera, especially Dorea and Coprococcus, with xyla-

nase, while the association between Roseburia and xylanase was only slightly attenuated

and remained the strongest (Fig. 4D). These results suggest that Roseburia might be a

major bacteria contributing to xylanase, and the observed positive associations of Dorea

and Coprococcus with xylanase might be due to their correlations with Roseburia. Our

genomic analyses provided further evidence supporting the presence of xylanase gene

on representative Roseburia genomes but not on representative Dorea or Coprococcus

genomes (Additional file 1: Table S15). In support of our results, Roseburia species

from the human gut have been reported to produce xylanases and display high xylano-

lytic activity [38].

Discussion
Taken together, these data from a large population-based cohort study of Hispanics/La-

tinos living in the US demonstrated that US immigration was associated with alter-

ations in gut microbiome diversity, individual taxa, and functional profiles, which is
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consistent with previous findings observed in immigrants from Thailand to the USA

[10]. Further extending prior work, this study linked these US immigration-associated

gut microbiome features with obesity, a major health burden among US Hispanics/Lati-

nos and other US immigrants from lower-to-middle income countries [12]. In particu-

lar, we focused on individual gut microbial taxa associated with both US immigration

and obesity. We identified several gut bacterial genera associated with US immigration,

host dietary intake, and obesity in expected directions, suggesting a potential involve-

ment of these bacteria linking US immigration with obesity, though potential mecha-

nisms underlying these associations remain unknown. For example, Acidaminococcus

which was associated with obesity in the current study and other populations [40, 41]

was found to be more abundant in US-born Hispanics/Latinos and those with a longer

duration of US residence, compared to those with a shorter duration of US residence,

potentially related to increased consumption of animal-based protein-rich foods (e.g.,

red/processed meat intake; Fig. 3B), since Acidaminococcus is known to use amino

acids as energy source [42]. However, it remains unknown how increased gut Acidami-

nococcus may influence host obesity.

Another major contribution of this study is to demonstrate that considering potential

microbial co-occurrence may help clarify the paradoxical associations of individual gut

microbial taxa with US immigration and obesity. Our current analysis suggested that

the observed associations of some gut microbioal taxa with US immigration or obesity

might be due to their co-occurrence with other taxa. For example, we found that Rose-

buria along with Prevotella were the most common genera associated with US immi-

gration in this population, and their paradoxical associations with obesity might be due

to their correlations with Dorea and other key obesity-associated taxa. Unlike Prevo-

tella, the influence of immigration on Roseburia was not reported before, although

Roseburia is known to degrade and use xylans and other dietary fibers [38, 43, 44] and

the potential beneficial role of Roseburia in health has also been suggested [43, 45].

Our data indicate that Roseburia, like Prevotella, might be another gut microbiome sig-

nature of non-industrialized populations and might decrease during westernization. On

the other hand, the paradoxical association between Dorea, an obesity-associated bac-

terial genus in ours and other studies [46, 47], and less US exposure might be related

to Roseburia and other key taxa associated with US immigration. Although it is un-

known how Dorea may influence host obesity, our data suggested that this might not

be related to US immigration.

It has been suggested that high strain-level diversity of Prevotella might explain the

inconsistent associations of Prevotella with human health and disease across popula-

tions [22, 23]. However, there are scant data on Prevotella strains in relation to human

disease traits given the difficulties of strain-level analysis in large human population-

based studies. A recent study reported that Prevotella copri, the most abundant species

of Prevotella in the human gut, may encompass four distinct clades, but there was little

evidence suggesting these four clades to be differentially associated with obesity, dia-

betes, or other human diseases [21]. Our study provides another potential explanation.

The inconsistent associations between Prevotella and human diseases (e.g., obesity)

might be due to variation in correlations between Prevotella and some true disease-

associated taxa across populations. For example, the observed association between Pre-

votella and obesity in this US Hispanic/Latino population might be due to the
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correlation between Prevotella and Dorea, an obesity-associated bacterial genus. How-

ever, more studies are needed to clarify whether the inconsistent associations between

Prevotella and human diseases are due to strain-level diversity of Prevotella, correla-

tions between Prevotella and disease-associated bacteria, or both.

The observed bacterial co-occurrence relationships might reflect some positive bac-

terial interactions that generate increased benefits for the group, such as mutualism

(e.g., antibiotic resistance conferral), commensalism (e.g., cross-feeding on compounds

produced by other members), and synergism (e.g., syntrophic cooperation) [9]. Our re-

sults are also supported by the previously reported co-occurrence relationship between

Coprococcus and Roseburia, both in the Lachnospiraceae family [34, 48]. These data

suggest that the phylogenetically closely related genera could also have co-occurrence

relationship rather than always compete against each other due to their similar habitat

preference [34]. However, due to the poor mechanistic understanding of the human

gut microbial community, the ecological links among gut bacteria should be interpreted

with caution. Although the underlying mechanisms for the bacterial co-occurrence net-

work need to be elucidated, our findings may have important implications in the future

studies investigating associations of gut microbiome with human health and disease.

We have shown that the associations of individual taxa with environmental factors

(e.g., US exposure) and host phenotypes (e.g., obesity) could be confounded by other

taxa due to potential bacterial co-occurrence, and thus, conditional analysis using mu-

tual adjustment model is needed to examine the independent associations of individual

taxa with environmental factors and host phenotypes. Furthermore, microbial co-

occurrence network analysis [28] might be a useful approach to examine the bacterial

co-occurrence relationship and its potential influences on the associations between gut

microbiome and human health and disease.

This study has several limitations. Data on diet were assessed prior to the gut micro-

biome assessment, although we obtained dietary information using rigorous methods

based on two 24-h dietary recalls and a food propensity questionnaire designed to cap-

ture habitual long-term diet [49] and detected strong associations between host dietary

intake and gut microbiome features. The potential urban-rural differences could not be

evaluated in our study due to the lack of detailed information on place of origin. Due

to limitations of shallow shotgun metagenomics, we were unable to examine strain-

level data and determine individual taxa contributing to gut microbiome functional

components using SHOGUN pipeline [35]. Given the observational nature of this

study, causal inference could not be established without further evidence.

Conclusions
In conclusion, this study in US Hispanics/Latinos found that US immigration was associ-

ated with reduced gut microbiome diversity, reduced gut microbiome functions of fiber

degradation, and alterations in individual gut microbial taxa (e.g., increased Acidamino-

coccus, decreased Roseburia, and Prevotella), potentially related to westernized diet during

acculturation process. The US immigration-related alterations in gut microbiome features

were also associated with obesity, suggesting a potential role of gut microbiome in the de-

velopment of obesity among US immigrants from Latin America. Of note, a majority of

gut bacterial genera showed paradoxical associations with US immigration, host dietary

intake, and obesity, which could be resolved into directionally consistent associations after
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accounting for potential microbial co-occurrence. Thus, potential microbial co-

occurrence may be an important factor to consider in future studies relating individual

gut microbial taxa to environmental factors and host health and disease.

Methods
Study population

HCHS/SOL is a prospective, population-based cohort study of 16,415 Hispanic/Latino

adults (aged 18–74 years at the time of recruitment during 2008–2011) who were se-

lected using a two-stage probability sampling design from randomly sampled census

block areas within four US communities (Chicago, IL; Miami, FL; Bronx, NY; San

Diego, CA) [11, 29, 30]. A comprehensive battery of interviews and a clinical assess-

ment with blood draw were conducted at in-person clinic visits. Information on demo-

graphics, behaviors, health status, family and medical histories, and medication use was

collected using structured questionnaires, and blood pressure and anthropometric traits

were measured. Blood biomarkers including blood lipids and glycemic traits were mea-

sured by standard methods [50]. The HCHS/SOL Gut Origins of Latino Diabetes

(GOLD) ancillary study was conducted to examine the role of gut microbiome in the

development of multiple health outcomes, enrolling 3035 participants from the HCHS/

SOL approximately concurrent with the second in-person visit period from 2014 to

2017 [11]. This study included participants of diverse Hispanic/Latino backgrounds, in-

cluding Dominican, Cuban, Puerto Rican, Mexican, Central American, and South

American. The study was approved by the institutional review boards of corresponding

site institutions. Written informed consent was obtained from all participants.

Fecal specimen collection and Shotgun metagenomics sequencing

Enrolled GOLD participants were provided with a stool collection kit. For each partici-

pant, a single fecal specimen was self-collected using a disposable paper inverted hat

(Protocult collection device, ABC Medical Enterprises, Inc., Rochester, MN). Two fecal

samples were self-collected by each participant, with one sample collected by a What-

man FTA card (GE Healthcare, Chicago, IL) and another one placed in a tube of RNA-

later (Invitrogen, Carlsbad, CA). Detailed procedures have been described elsewhere

[11]. In addition, use of antibiotics or probiotic supplements within the prior 6 months

and stool characteristics were ascertained by self-administered questionnaire at the

time of stool sample collection.

Metagenomics Sequencing was performed on DNA extracted from fecal samples col-

lected by FTA card using a novel shallow-coverage method of shotgun sequencing-based

Illumina NovaSeq platforms [51]. The adapters and barcode indices are processed follow-

ing the iTru adapter protocol [52]. De-multiplexing was applied to generate Shallow shot-

gun per-sample FASTQ data and the adapter sequences were trimmed. The human-

filtered FASTQ reads were further trimmed to remove low-quality bases that had a

PHRED quality score of 25 or less using prinseq-lite 0.20.4 (https://edwards.sdsu.edu/cgi-

bin/prinseq/prinseq.cgi) [53]. For the final analytical set, two Illumina sequencing runs

were pooled. Samples with a coverage depth less than 500,000 reads per sample were ex-

cluded. Of 3035 samples, 2640 samples passed all QC metrics and were used in the

current analysis. The coverage depth ranged from 500 to 8945 k reads per sample and
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average depth was 955 k reads per sample. The quality-controlled paired end data was

then concatenated and aligned against the NCBI RefSeq representative prokaryotic gen-

ome collection (release 82) [54] using default SHOGUN [35] settings. Bowtie2 [55] was

selected as the alignment tools in SHOGUN pipeline (https://github.com/knights-lab/

SHOGUN). The reads that mapped to a single reference genome is labeled with the NCBI

taxonomic annotation at the species level. Those reads that mapped to multiple reference

genomes are labeled as the last common ancestor (LCA) of each label according to the

NCBI taxonomy [35]. The α-diversity indices (Faith’s phylogenetic distance), and β-

diversity weighted UniFrac distances were calculated using Qiita (https://qiita.ucsd.edu/)

[56], Metaphlan3(https://huttenhower.sph.harvard.edu/metaphlan/) [57], and R phyloseq

/ vegan packages (https://github.com/joey711/phyloseq/ https://github.com/vegandevs/

vegan) [58, 59]. Functional profiles were obtained using SHOGUN and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database release 94.0 [36].

Assessment of US exposure, obesity, and dietary intake

Information on Hispanic/Latino background, place of birth, and years living in the

mainland USA (with the US territory of Puerto Rico considered to be part of Latin

America) was collected using structured questionnaires [11, 29, 30]. US exposure was

defined based on place of birth and duration of US residence: mainland US born, US

residence of 0–< 15 years, US residence of 15–< 25 years, US residence of 25–< 35

years, US residence of 35–< 45 years, and US residence of ≥ 45 years. Body mass index

(BMI) was calculated as measured weight (kg) divided by measured height squared

(m2). Obesity status was defined by BMI: normal weight (18.5 ≤ BMI < 25 kg/m2), over-

weight (25 ≤ BMI < 30 kg/m2), obese I (30 ≤ BMI < 35 kg/m2), obese II (35 ≤ BMI <

40 kg/m2), and obese III (BMI ≥ 40 kg/m2). Other obesity measures included waist cir-

cumference, and body fat percentage obtained from the Tanita body composition

analyzer (model TBF-300A; Tanita Corporation, Arlington Heights, IL).

Usual dietary intake was estimated using the National Cancer Institute methodology

based on dietary data collected from two 24-h dietary recalls and a food propensity ques-

tionnaire (FPQ), as described previously [60]. In brief, the first dietary recall was adminis-

tered through in-person interviews conducted at the time of the baseline visit, whereas

the second was performed primarily via telephone approximately 30 days after the first

interview. The FPQ, which was administered at the 1-year follow-up call, asked partici-

pants to report frequencies of foods eaten in the previous year. Foods and nutrients were

analyzed using the multiple-pass methods of the Nutrition Data System for Research soft-

ware (version 11) from the Nutrition Coordinating Center at University of Minnesota.

Overall dietary quality for each participant was estimated by the 2010 Alternative Healthy

Eating Index (AHEI-2010) which was established based on extensive epidemiologic find-

ings linking foods and nutrients to chronic disease outcomes [61]. The AHEI-2010 con-

sists of 10 food/nutrient components in addition to alcohol consumption, with each of

the 11 components being given 0–10 points according to predetermined criteria.

Statistical analysis

Clinical and demographic characteristics of the study population were described by

reporting means with standard deviations (SDs) or medians with interquartile ranges
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for continuous variables and absolute frequencies with percentages for categorical

variables.

Weighted linear regression models were applied to examine associations of microbial

α-diversity indices (Faith’s phylogenetic distance) with BMI and US exposure, adjusting

for age, sex, study center, education level, income, antibiotic use in the last 6 months,

moderate-to-vigorous physical activity, total energy intake, diabetes, and metformin

use. Permutational multivariate analysis of variance (PERMANOVA) and principal-

coordinate analysis (PCoA) were carried out with weighted UniFrac distances for the

microbial β-diversity analyses.

For metagenomics taxonomic analyses, a total of 84 predominant bacterial genera

with average relative abundance ≥0.01% were included (a total of 596 species belonged

to these predominant genera). Cumulative sum scaling (CSS) normalization was con-

ducted [62] for each of taxonomic variables before analyses. Associations of bacterial

taxonomic features with BMI and US exposure were examined using weighted multi-

variable linear regression, with adjustment for the aforementioned covariates. Further-

more, we further adjusted for Hispanic background in additional multivariable

regression models. All the models incorporated the sampling weights from the complex

survey design of the HCHS/SOL [29, 30]. We constructed integrated hierarchical tree

using iTol (https://itol.embl.de/) [63].

In order to explore the relationship among microbial genera in a compositionally co-

herent manner, we applied differential ranking (DR) analysis using songbird pipeline

(https://github.com/biocore/songbird ) [32]. Read counts were summarized at the genus

level and inputted into Songbird [32] for multinomial regression. To ensure proper

model fit while guarding against potential model overfitting, a null model was gener-

ated using similar parameters. Comparing this null model to the fitted model demon-

strated better fit for the latter (pseudo-Q2 = 0.022301), enabling further utilization of

the differentials [32]. These differentials were then inputted into Qurro for visualization

[64]. Then we selected the genus Clostridium as the reference, since it was stable (with

minimum absolute ranks) across experimental conditions (BMI) and present across

most samples. The natural log-ratio of microbial genera data was calculated using

Clostridium as the reference and we also built Spearman correlation heatmap using

these log-ratio data.

We examined associations of bacterial genera with BMI and US exposure stratified

by sex, age group dichotomized at the median age of study participants (age < 55 or ≥

55 years), study center (Chicago, Miami, Bronx, or San Diego), Hispanic/Latino back-

ground (6 strata: Dominican, Cuban, Puerto Rican, Mexican, Central American, and

South American; 2 strata: Mainland or Caribbean), place of birth (US born or non-US

born; BMI analysis only), and obesity status (obese or non-obese; US exposure analysis

only). We also examined the associations of bacterial genera with obesity and US ex-

posure among the first-generation Hispanic/Latino immigrants according to the place

of birth (i.e., Dominica, Cuba, Puerto Rica, Mexico, Central America, and South

America). In addition, we performed sensitivity analyses by excluding individuals with

antibiotic use during the past 6 months.

To identify potential independent bacterial genera associated with BMI or US expos-

ure, we included all 23 genera which were associated with both BMI and US exposure

in the same regression model on BMI or US exposure (mutual adjustment, conditional
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analysis). We applied multiple methods including Spearman, Pearson, and SparCC to

calculate correlation coefficients among bacteria genera [31]. In addition, we performed

hierarchical clustering approach to identify the clusters. Microbial co-occurrence net-

work, which infer ecological associations based on taxonomic composition data ob-

tained from high-throughput sequencing techniques [28], are widely used to visualize

the statistically significant associations between microbes in microbial communities

and predict the potential microbe interactions [9]. In this study, we performed

Spearman rho based co-occurrence network analysis with Cytoscape (https://cytoscape.

org/) [33], to explore the relationships among the identified bacterial taxa and to better

describe the overall structure of microbial components. Nodes and edges represent bac-

terial genera and statistically significant correlations between these genera, respectively.

Associations of dietary fiber intake, AHEI-2010 score, and 11 food and nutrient com-

ponents of AHEI-2010 with US exposure and 84 predominant gut bacterial genera were

examined using weighted multivariable linear regressions, with adjustment for the

aforementioned covariates. The conditional analysis with mutual adjustment further in-

cluded 15 identified genera which were independently associated with BMI and/or US

exposure, to further examine independent associations between bacterial taxa and

dietary fiber intake.

For metagenomics functional analyses, centered log-ratio transformation was applied

to the KEGG ortholog group abundances. Weighted linear regression models were ap-

plied to examine associations of KEGG ortholog groups with US exposure, dietary fiber

intake, and BMI, after controlling for the aforementioned covariates, and incorporating

the sampling weights from the complex survey design. An enrichment analysis using

Fisher’s exact test was performed for the 1952 annotated enzymes at EC level II enzyme

category. Partial spearman correlation analysis was use to estimate correlation coeffi-

cients between bacterial genera (CSS normalized) and KO groups (centered log-ratio

transformed). Associations of 15 genera which were independently associated with

obesity and/or US exposure with xylanase (K15531) were examined using linear regres-

sion models after multivariable adjustment. We further included all 15 genera in the

same model (mutual adjustment, conditional analysis) to examine potential independ-

ent associations of these genera with xylanase (K15531).

The Benjamini-Hochberg false discovery rate (FDR) method was used for multiple

testing correction. Statistical analyses were performed using R 3.6.1. unless otherwise

stated.
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