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Abstract

Cancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes
and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a
genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing,
which produces admixed populations of cells, can only provide an average expression signal for one cell population,
ignoring differences between individual cells. Important advances in sequencing have been made in recent years.
Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity.
This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in
tumors, which may help us understand tumor occurrence and development and improve our understanding of the
tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments,
especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize
the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in
different clinical procedures.
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Introduction
Malignant tumors are a common disease, and the inci-
dence is increasing yearly. Cancer has become a consider-
able threat to human health [1]. The use of sequencing
technology to analyze tumor genetic variation, metabolic
activity, and evolutionary processes have played a major
role in improving our understanding of tumor initiation
and progression and has provided a theoretical basis for
the development of clinical treatments. However, bulk se-
quencing is only helpful for obtaining average information
of cells, whereas it cannot examine the heterogeneity be-
tween cells in tissues, and it is limited for studying gene
expression. The reason for this is that the tissue samples
used for traditional sequencing contain thousands of cells
that are mixed to obtain whole genome sequence informa-
tion of all cells [2]. However, cancer is not only a complex

disease involving a series of pathological factors, but there
is also significant heterogeneity within each tumor and be-
tween different cells [3]. Single cell sequencing (SCS) tech-
nology was developed to overcome these challenges.
Single cell cDNA amplification was first reported in 1990.
In 2009, Tang reported high-throughput single-cell tran-
scriptome sequencing (scRNA-seq) [4]. In 2011, Nature
methods listed SCS as one of the expected technologies of
the year, and in 2013, Science magazine (Science) listed
SCS as one of the six research hotspots.
At the same time, a new generation of sequencers pro-

vide powerful tools, and an increasing number of studies
related to SCS have been published in top journals, indi-
cating that SCS has gradually become a hotspot of scien-
tific research. It is expected to become the most
noteworthy sequencing technology in the future. SCS is
an up-to-date technique for high-throughput sequencing
analysis of genome, transcriptome, and epigenetic groups
at the single cell level. Compared with bulk sequencing,
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SCS technology can reflect the gene structure and gene
expression status of individual cells, as well as providing
information on the heterogeneity between cells. More spe-
cifically, SCS can identify cell types, discover rare cell
groups, reveal intratumoral heterogeneity, and define a
series of cell states and evolutionary histories [5, 6]. The
development of SCS technology has enabled researchers
to directly examine the laws of tumorigenesis and growth,
understand the causes of differences between various
tumor cells and individuals, and explain the mechanism of
tumorigenesis. Here, we summarize SCS technology and
the existing techniques for single cell separation and amp-
lification. We also describe the recent application of SCS
to tumors and we compare the differences between sensi-
tive and inert tumor microenvironments.

Overview of the SCS technique
Each cell is unique. It is the core unit of structure and
function. Similar to the different sized gears in a clock,
cells work in close and precise coordination to maintain
homeostasis in the body. SCS is accurate for exploring dis-
ease mechanisms and biological processes. Sequencing of
single cells provides information on somatic mutations at
the single cell level with high precision, thereby improving
our understanding of the composition and interpretation
of cell types in the same sample, which is widely used in
cancer research. SCS mainly includes DNA-sequencing
and RNA-sequencing. This technique allows analysis of
the functions and features of cells at different stages and
from different angles. Advances in technology have grad-
ually improved epigenetic sequencing and single cell
multi-group parallel sequencing techniques.

SCS of tumor tissues can be summarized in the follow-
ing steps: (1) simple collection; (2) single cells are iso-
lated or add a unique barcode to each cell (3) amplified,
(4) and sequenced; followed by (5) bioinformatics and
statistical analyses [7]. (Fig. 1).

Acquisition of single cells
The difference between population sequencing and SCS is
that the latter requires isolating a single cell in good condi-
tion. There are several methods for isolating single cells. The
limited dilution method is a commonly used technique in
which a cell suspension is passed through a moving pipette
and a liquid transfer machine for separation. Microdroplets
is another popular method. It is the encapsulation of individ-
ual cells in μl-level droplets, which are piggybacked onto the
enzyme used to build the library, and each microdrop con-
tains a unique barcode [8]. Micromanipulation is the manual
separation of individual cells under a microscope [9]. In
flow-activated cell sorting (FACS), cells are labeled with
fluorescent monoclonal antibodies that recognize specific
surface markers, which enables the classification and recov-
ery of different populations [10]. Microfluidic technologies
manipulate microliter to microliter samples through micron-
level flow channels [11]. Laser capture microdissection
(LCML) involves identifying the target cells to be manipu-
lated through a microscope, and the laser will excise and sep-
arate the extracted cells from the marked area according to
the trajectory [12]. Here are some powerful platforms for
high-efficiency or high-throughput single-cell Isolation too,
such as 10x Genomics [13]. All in all, different methods can
be selected according to the clinical needs. (Table 1).

Fig. 1 Flow chart of single-cell sequencing technology. SCS of tumor tissues can be summarized in the five steps: (1) simple collection; (2) single
cells are isolated or add a unique barcode to each cell; (3) amplified; (4) and sequenced; followed by (5) bioinformatics and statistical analyses
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Single cell DNA sequencing
In 2011, Navin invented the first single-cell nuclear DNA
sequencing method for sequencing mammalian cell ge-
nomes [6]. Since then, single-cell genome sequencing
technologies have flourished. Single-cell DNA sequencing
can provide information on genetic heterogeneity and cell
pedigree [14, 15]. However, compared with RNA sequen-
cing, genome sequencing is challenging because each cell
has many RNA molecules, whereas it has two copies of
DNA. Each cell contains approximately 6 pg of genomic
DNA. The genetic material extracted from a single cell is
inadequate for whole genome sequencing and analysis.
Therefore, single cell whole genome amplification (WGA)
is necessary for single cell DNA sequencing, and ideally,
the amplification procedure should have minimal devi-
ation and sequence errors [7]. The most frequent methods
are multiple displacement amplification (MDA) [16],Poly-
merase chain reaction (PCR) [17], or a combination of
two methods of gene amplification, such as multiple an-
nealing and looping based amplification cycles (MALBAC)
[16] or Linear Amplification via Transposon Insertion
(LIANTI) [14]. There are also several potential problems
about WGA, such as allelic deletion (the two alleles are
not amplified at the same time), low genome coverage and
lack of methods to count DNA molecules, or inherent
chemical instability of nucleic acids. Jay and Andrew have
developed a tagmentation-based sequencing method that
fragments DNA by using Tn5 transposons [18]. This
method uses less DNA, but still provides a fair amount of
coverage. More research efforts have provided effective so-
lutions to some of these problems [19]. (Table 2).

Single cell RNA sequencing
The genotypes of cells from the same tissue are almost
the same, whereas gene expression varies among differ-
ent cells. This constitutes heterogeneity of gene

expression, which is caused by differences in the gen-
ome, cell cycle, and microenvironment. Single cell tran-
scriptome sequencing can dynamically represent the
total RNA produced by strains or a particular cell at a
certain functional stage, and is thus better for defining
the cell type [20]. However, only 1–10 pg of RNA is con-
tained in each cell, which does not meet the minimum
sample requirement of the existing sequencers. There-
fore, the first problem that needs to be solved for
scRNA-seq is RNA amplification. The CEL-seq tech-
nique was published in Cell Reports in 2012 to replace
PCR with in vitro transcription for amplification [21].
The MARS-seq released in 2014 is similar to CEL-seq
[22]. Smart-Seq (switching mechanism at the 5′ end of
the RNA transcript) is a landmark technology that can
cover full length transcripts and achieve transcript iso-
mer analysis and single nucleotide variant detection.
Smart-seq2 is an improved version of smart-seq that can
produce full-length transcripts and is fit for the detec-
tion of selective splicing events and allele-specific ex-
pression [23].
Advances in technology have enabled analysis of com-

plex organs by sequencing tens of thousands of cells
simultaneously; however, low cost and large-scale se-
quencing methods are needed. Drop-seq technology has
marked a high-throughput era in single-cell transcrip-
tome sequencing [24]. These methods can be roughly di-
vided into two categories, full-length sequencing,
represented by Smart-seq2, and label sequencing, which
only captures the 3′ terminus (e.g., Drop-seq) or 5′
terminus (e.g., STRT-seq) of the sequence [23]. Com-
pared with the methods that capture only the 3′ or 5′
end, the full-length scRNA-seq method has advantages
for subtype analysis, allele expression detection, and
RNA editing and identification. For detecting genes
expressed at low levels, the full-length scRNA-seq

Table 1 Main methods for isolating single cells

Advantage Disadvantage Throughput Effciency Price Ref

Limiting dilution Simple Time-consuming, easy
to pollute

Low Low Low [9]

Microdroplets convenient High cost high high high [8]

Micromanipulation Visual, High success
Rate

High technical
requirements for
operators,
possible pollution

Low Low Low [9]

FACS Wide application、Can sort tumor cells with complex molecular
markers, Technical maturity, Standard unification

Damage to cells,
requaire large initial cell
count

High High Low [10]

Microfluidcis High degree of automation, reduced
pollutants,
low sample consumption

High cost High High High [11]

LCM Spatiality fast Easy to destory cells,
accuracy is poor

low low High [12]
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method is superior to the 3′ end sequencing method.
However, full-length sequencing is not suitable for high-
throughput sequencing platforms and does not allow in-
sertion of a unique molecular identifier (UMI). Tag-
based sequencing can combine UMI molecules for high-
throughput sequencing at low cost. However, the disad-
vantages include poor sensitivity for sequencing com-
parison and the identification of gene isomer analysis
and shear events [25]. Nowadays, 10x Chromium has
been generally recognized as the most commonly-used
method among high-throughput methods. It is simple,
convenient, integrated cell sorting, amplification and li-
brary building. In the research conducted by Ding [25],
10x Chromium detected the most UMIs and genes per
cell and showed the best quality for both the number of
cell types identified and the average AUCs (the area
under the receiver operating characteristic curves) across
cell types.
The development of scRNA-seq technology and ad-

vances in bioinformatics methods will promote bio-
logical and clinical research and provide an important
theoretical basis for further understanding the hetero-
geneity and dynamic mechanisms of gene expression.
There are several questions that remain unanswered.

For example, because of the dynamic nature of the cell

transcriptome, whether the gene expression pattern of a
single cell obtained by various isolation methods is
equivalent to the gene expression pattern in the original
environment remains unclear [7]. To solve this problem,
many studies have fixed the transcriptional state of cells
with aldehydes or alcohol before isolation and process-
ing [26]. (Table 3).

Spatial transcriptome technologies
When we discuss gene expression patterns, there are
two dimensions of the concept, one is the spatial dimen-
sion and the other is the temporal dimension. The tem-
poral dimension can be obtained by sampling at
different time points and then sequencing the single cell
transcriptome, but the spatial information of tissue sam-
ples is lost in the process of applying scRNA-seq only,
so spatial transcriptomics was born [31]. There are cur-
rently four main strategies, one is to use computer
algorithms to simulate the spatial morphology of recon-
structed tissues based on single cell transcriptome data.
The second is laser microdissection combined with
second-generation sequencing, but this method requires
a high level of researcher skill. The third is in situ se-
quencing based on high-resolution images, the most
classical method being smFISH. finally, there is spatial

Table 2 Technical characteristics of single cell genomic amplification methods

Advantage Disadvantage Throughput Ref

DOP-
PCR

Good uniformity A large amount of sequence information is lost, a bias
in amplification, low coverage

Low [17]

MDA Simple, high coverage A bias in amplification, may lead to gene fusion and
allele loss.

Higher [16]

MALBAC Good uniformity, high accuracy, good fidelity, both fresh and
fixed single-cell samples can use

Efficiency is relatively low. High [16]

LIANTI High coverage, good uniformity, low error rate High false positive rate of C-T base pairs High [14]

Table 3 Technical characteristics of single-cell transcriptomic sequencing technologies

Transcript
coverage

Amplification UMI Advantages Disadvantage Ref

Tang2009 Nearly full-
length

PCR No Sensitive, accurate Less cell flux, expensive [4]

Smart-seq Full-length PCR No Sequence coverage is better Amplification of non-chain specificity [23]

Smart-
seq2

Full-length PCR No Increased output, simplified steps Less cell flux, more expensive [23]

CEL-seq2 3′-only IVT (In vitro-
transcribed)

Yes Reduced contamination between samples Existence
Sequence preference

[21]

Drop-seq 3′-only PCR Yes Low cost, rapid library preparation, single cell high
throughput, multiple possibilities

Needed microfluidic platform, low
sensitivity of single cell genes

[24]

MARS-seq 3′-only IVT Yes High throughput, Strictly control amplification bias expensive [22]

10x
Chromium

Full-length PCR Yes Simple and convenient, High throughput require large initial cell count [27–
29]

Quartz-
seq

Full-length PCR No reduce PCR by-products、Reducing contamination
of small fragments

Amplification bias [30]
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transcriptome technology based on spatial barcoding.
The common techniques used for spatial transcrip-
tome include slide-seq, LCM-seq, seqFISH, etc. 10×
Genomics has introduced Visium spatial gene expres-
sion which is a high-throughput commercial technol-
ogy [32]. Spatial transcriptome technologies can give
us timely insights into the metastasis of tumor cells
and span the molecular signature of the cancer and
normal tissue boundaries [33].

Single-cell transcriptomics combined with TCR
The TCR is a specific molecular marker of T cells that is
widely used to monitor the clonality and diversity of T
cells and that changes considerably under different disease
conditions. By combining TCR and single cell transcrip-
tome sequencing, it is possible to link T cell phenotypes
(e.g., activation, memory, and depletion) to individual spe-
cificity and TCR clonotype [5]. The 10X Genomics plat-
form has now developed the 10X Genomics Single Cell
Immune Profiling Solution technology, which allows sim-
ultaneous high-throughput sequencing of transcriptomic
gene expression and adaptive immune receptor libraries at
the individual cell level. It is important to help us explore
the tumor immune microenvironment, capture changes in
the immune microenvironment during tumorigenesis, and
find new targets for immunotherapy [34].

Single cell epigenetics
Epigenetics refers to heritable information other than gen-
omic DNA sequences, including DNA methylation, RNA
methylation, and histone modification. Although different
cells have the same DNA sequence, if the epigenetic level
changes, the function of the cells changes accordingly
[35]. Therefore, in addition to the genome itself, epigen-
etic modifications regulate gene expression, especially
DNA methylation. Normal methylation can regulate cell
growth and metabolism, whereas abnormal DNA methy-
lation can induce tumor formation [36]. Common current
technologies include single cell reduced-representation bi-
sulfite sequencing (scRRBS) [37], combinatorial barcoding
and targeted chromatin release (CoBATCH) [38], ChIP-
seq [39] and single-cell assay for transposase-accessible
chromatin (ATAC-seq) [40]. Among these methods
ATAC-seq is the one with sufficiently high throughput
and is therefore widely used [5].

Single cell multi-omics sequencing
Advances in SCS technology allow obtaining informa-
tion on the genome, transcriptome, and epigenome
from the same cell. It is helpful to study the relation-
ship among the three to study the process of tumor
occurrence and development [41]. Current representa-
tive technologies include DR-seq, G&T-seq, scM&T-
seq, and scTrio-seq [42].

Tumor ecology
The tumor microenvironment
The tumor microenvironment is the internal environ-
ment in which tumor cells grow and survive. It is com-
posed of the tumor cells themselves, as well as
endothelial cells, immune cells, fibroblasts, and other
cells around tumor cells. It also includes the stroma,
microvessels, and biomolecules infiltrated in the adjacent
area. It has an important impact on tumor growth,
angiogenesis, immune escape, distant metastasis, and the
response to various treatments [43]. Compared with
traditional sequencing, SCS can effectively distinguish
the genomes of tumor cells from those of normal cells
in the microenvironment. Accurate identification of dif-
ferent cell groups in the microenvironment and the bio-
markers that can be used to describe these cells can
reveal their developmental and functional state. For ex-
ample, a team developed copy number karyotyping of
aneuploid tumors (CopyKAT), which can classify tumor
cells and other cells according to aneuploid copy num-
ber spectrum, and even correctly analyze the genomic
location of interstitial chromosome breakpoints [44].
This has improved our understanding of the tumor
microenvironment [45]. Analysis at the single cell level
not only describes the tumor microenvironment at an
unprecedented resolution, but also allows determining
how immunosuppression develops in the tumor
microenvironment.

Immune cells in the tumor environment
Tumor-infiltrating immune cells are an important part
of the tumor environment. These immune cells play a
role in the occurrence and development of tumors, al-
though our understanding of these cells remains limited.
SCS technology can specifically identify certain types of
cell in the tumor environment and their corresponding
gene expression characteristics, thereby revealing their
developmental and functional status. We list some appli-
cations of single-cell sequencing in the microenviron-
ment by immune cell type. CD8 + T cells can kill tumor
cells by secreting cytotoxic factors. Single cell level ana-
lysis revealed the presence of many exhausted CD8+ T
cells expressing high levels of inhibitory receptors (IRs)
in the microenvironment, such as PD-1, TIM-3 (T cell
immunoglobulin-3), and LAG-3(Lymphocyte-activation
gene 3). It provides an immunosuppressive environment
for tumor growth [46]. Hepatoma cytotoxic CD8+ T
cells continue to evolve at different stages. The rate of
CD8+ T cells in early liver cancer cells is higher, show-
ing a strong cytotoxic effect, whereas in advanced liver
cancer cells, the proportion of depleted CD8+ T cells
increases, the proportion of cytotoxic CD8+ T cells
decreases, and the killing ability decreases [47]. The
combination of scRNA-seq and scTCR-seq shows that

Huang et al. Biomarker Research            (2021) 9:88 Page 5 of 14



pre-existing T cell receptors (TCRs) in tumors are differ-
ent from most TCRs, indicating that CD8+ T cells are in
a state of constant renewal [48]. Another combined
scRNA-seq和scTCR-seq study found an increase in the
number of both activated and depleted CD8+ T cells
after treatment in patients with advanced basal cell car-
cinoma or squamous cell carcinoma treated with anti-
PD1 antibodies. And depleted TIL clones present before
treatment did not expand after treatment and did not
transition to an undepleted phenotype [49]. CD4+ T
cells also play a critical role in cancer immunology [50].
Marco et al. found that tumor-infiltrating Treg cells are
upregulated in several immune checkpoints and express
specific signaling molecules on the cell surface [51], such
as interleukin-1 receptor 2 (IL1R2), programmed death
(PD)-1 LIGAND1, PD-1 LIGAND2, and CCR8 (C-C
Motif Chemokine Receptor 8) chemokines, which con-
tributed to the immunosuppressive tumor microenviron-
ment in non-small cell lung cancer (NSCLC) and
colorectal cancer. The ST2 (Suppression of Tumorigen-
icity 2) gene is similarly upregulated in lung adenocar-
cinoma (LUAD) [52]. B cells are abundant in the tumor
microenvironment, although the type of B cells present
in tumor tissues and the existence of subtypes remain
unclear. SCS can infer populations of B cells that cannot
be detected by other analytical methods [53, 54]. In
addition, tumor-infiltrating myeloid cells play an import-
ant role in tumor growth and progression. These cells
are diverse and may promote or limit tumor growth.
However, because TIM (Tumor-infiltrating myeloid)
cells lack unique cellular markers and conservation be-
tween human and mouse models remains controversial,
our understanding of this cell type is limited. SCS allows
sampling the entire transcriptome of a single cell, free of
predefined cell surface markers and species status [48].
TAMs (Tumor-associated macrophages) make up the
majority of TIMs. SCS of immune cells in NSCLC re-
vealed that there is a transformation process between
M1 and M2 macrophages, and the upregulation of Inter-
feron Regulatory Factor 2 (IRF2), IRF7, IRF9, and
STAT2 (Signal transducer and activator of transcription
2) transcription factors may promote differentiation to
M2 [55]. Other studies have shown that TAM groups
can promote tumor growth [56, 57].Moreover, The ad-
vent of the spatial transcriptome has provided more spe-
cific insight into the tumor microenvironment, and
investigators have found that in cutaneous squamous
cell carcinoma, macrophages and Treg were found to be
most abundant at the interstitial boundary of the tumor,
while CD8 T cells and neutrophils were largely excluded
from the tumor, suggesting that Treg localization may
prevent effector lymphocytes from entering the tumor
causing the presence of immunosuppression in the
microenvironment [58].

Non-immune cells in the tumor microenvironment
Among the components of the tumor microenvironment,
in addition to immune cells, non-immune cells such as fi-
broblasts and endothelial cells are also involved in the de-
velopment of tumors. Endothelial cells are the main
components of the blood vessels in the tumor and signifi-
cant components of the tumor microenvironment. Acti-
vated fibroblasts near tumor cells, which are called
cancer-associated fibroblasts (CAFs), are the most abun-
dant host cell components in most tumors [59]. SCS pro-
vides the possibility to further identify non-immune cells.
One of the most important applications of SCS tech-

nology is to distinguish subtypes that have never been
found in various non-immune cells [60]. In a breast can-
cer study, SCS technology helped researchers identify a
variety of CAF subtypes, including vCAFs that originate
from perivascular cells and are invasive [61]. Similar
studies were performed for pancreatic ductal adenocar-
cinoma (PDAC) [62].
SCS can also compare the functional changes in

normal tissues by analyzing the expression factors of
non-immune cells in the tumor microenvironment.
Tirosh et al. found that CXCL2, CCL9 ((C-C motif)
ligand 9), and other chemokines expressed by CAFs,
as well as the immunoregulatory genes PD-L2 and
complement factor, are involved in the regulation of
tumor infiltration of T cells [61]. Baryawno et al.
demonstrated that fibroblasts expressing CXC chemo-
kine ligands 2 (CXCL2) are associated with aggressive
solid tumors [63].
Downregulation of MHC I (Major histocompatibility

complex I), MHC II, and ICAM1 (intercellular adhe-
sion molecule) in tumor endothelial cells suggests
that the antigen presentation and homing abilities of
immune cells are decreased, thereby promoting tumor
immune tolerance. In a study of metastatic LUAD,
endothelial cells have high levels of VEGF (Vascular
endothelial growth factor) and Notch signaling, indi-
cating that tumor endothelial cells may undergo re-
modeling and their immune-stimulating function is
inhibited, leading to tumor immune tolerance [64].
(Fig. 2).

Tumor evolution
Tumors are clonal diseases that result from the mutation
and progressive accumulation of cellular genetic mater-
ial. Single-cell sequencing technology can help us iden-
tify many abnormal genetic alterations associated with
tumorigenesis and development as well as subpopula-
tions of cells that play a key role in tumor development,
driving the development of individualized therapy [65].
For example, Using ATAC-seq, the researchers identi-
fied many extrachromosomal circular DNAs in different
cancer species, many with known cancer driver genes.
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And if eccDNA contains oncogenes, then amplification
of such eccDNA in tumor cells would increase the fit-
ness of tumor cells. Increasing our insights into the evo-
lution of tumor cells [66]. Yang using single-cell
sequencing of specimens from three bladder cancers
identified six genes not previously found in bladder can-
cer and revealed that co-mutations in ARID1A [67],
GPRC5A and MLL2 enhanced the self-following ability
of bladder cancer cells. In 2011, researchers sequenced
breast cancer cells, and the finally results suggest that
tumor evolution may have occurred intermittently [6].
In addition, single-cell sequencing helps to reconstruct a
more comprehensive and accurate tumor cell lineage
tree, which in the past was often based on data from
multicell sequencing and ignored certain trace genes,
which can be well avoided by single-cell sequencing [68].

Clinical application of single cell sequencing
Advances in technology have led to the increased use of
SCS as a clinical guide. Here, we discuss its use in diag-
nosis, treatment, and prognosis prediction.

Single cell sequencing for diagnosis
SCS is used for the diagnosis of several diseases. Various
tumor-related gene mutations are used in the clinic as
biomarkers for the diagnosis of specific types of tumors
[69]. SCS can identify markers related to tumor diagno-
sis, and it can detect copy number variation to differenti-
ate malignant from benign cells, thereby providing a
basis for early diagnosis.
Bladder cancer (BC) is a common tumor with a high

incidence of relapse. A simple and convenient screening
method is needed to facilitate early diagnosis. The

Fig. 2 Immunosuppressive tumor microenvironment. The internal environment of tumor is a dynamic process during the development of tumor.
Single cell sequencing can monitor the changes in the internal environment during the development of tumors and quantitative determination
of the number of immune cells in different types of tumors
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common method is to test exfoliated tumor cells (ETCs)
in the urine. However, when the number of ETCs is too
small or the sample contains other types of cells, the
sensitivity of this method is limited. Surveying oncogenic
driver mutations (e.g., FGFR3 and TERT) or genome-
wide copy number variations in ETC can be accurately
detected by SCS [70]. Similarly, SCS can be applied to
detect BRAF gene mutations in melanoma [71], KRAS
gene mutations in colon cancer, and EGFR gene muta-
tions in NSCLC [72, 73]. SCS provides a basis for eluci-
dating the mechanism of cancer and helps find new
markers that can be used for early diagnosis. Schlesinger
et al. sequenced pancreatic cancer cells at different
stages in a mouse model and found that ONECUT2 may
be a driving factor for early progression [74]. Zhu et al.
sequenced the tRNA derived small RNAs (tsSRNAs) of
hepatic cancer patients and healthy controls and found
that the plasma levels of four kinds of tsRNA (tRNA-
valta-3, tRNA-glyTCC-5, tRNA-valaac-5, and tRNA-
glucTC-5) were elevated in hepatic cancer patients, indi-
cating that plasma exosome tsRNA can be used as a new
diagnostic biomarker [75] . HOXA11-AS/LINC00964/
MALAT1 long noncoding RNAs are used in the diagno-
sis of head and neck squamous cell carcinoma [76]. Al-
though additional clinical studies are needed, we believe
that SCS may play in identifying diagnostic markers.
Another application of SCS in tumor diagnosis is the

combination with the liquid biopsy. Advances in sequen-
cing technologies have allowed a large amount of molecu-
lar information to be generated in a single cancer
specimen, bringing clinical oncology into the era of preci-
sion medicine, but still relying on tissue biopsy. Cancer is
a spatially and temporally dynamic disease that cannot be
captured by tissue biopsy. Liquid biopsy refers to the use
of various body fluids, including blood, urine, pleural fluid,
and other body fluids to detect circulating elements from
the tumor. It allows dynamic and timely observation of
changes in the tumor. One of the most studied is CTC
[77]. CTCs are isolated from a primary tumor or meta-
static tumor and scattered in the patient’s blood; this rep-
resents a relatively easy to obtain cancer tissue sample
that can reflect the actual status of the tumor. SCS can

detect CTC single nucleotide variation, CNV, or exon
group insertion/deletion mutations in peripheral blood,
which provides a noninvasive, highly specific, and sensitive
detection method for tumor diagnosis. Some clinical trials
have explored the use of CTC to assist in cancer diagnosis.
For more details, see [78–81].

Single cell sequencing for treatment
Although there are many treatments available for cancer,
efficient treatments are lacking, which is largely due to
tumor heterogeneity and the dynamic evolution of
tumors.
Immunotherapy has always been a popular therapy,

and it is also an important part of cancer treatment. Its
therapeutic principle is to overcome the immune sup-
pression caused by the tumor and its microenvironment
to allow the immune system to reactivate and kill the
cancer cells [82]. However, immunotherapy is not effect-
ive for all tumors. The immune environment around the
tumor can be comprehensively characterized by SCS.
We found that tumor types that respond differently to
immunotherapy have different immune cell composi-
tions. Their similarities and differences can be analyzed
to identify breakthroughs in immunotherapy. Table 4
lists a few simple examples. In addition, SCS can be used
to analyze changes in the microenvironment before and
after treatment [83]. (Table 4).
SCS technology enables the identification of targets for

immunotherapy. Immune therapy currently focuses pri-
marily on T cells (PD1/PD-L1, Cytotoxic T-lymphocyte-
associated protein 4) or Tumor-associated macrophages
(Colony-stimulating factor 1 receptor). SCS can help iden-
tify immunotherapy targets beyond these cells. One study
found that CAFs can be tested in nearly all patients with
advanced bladder cancer using SCS. Because CAFs secrete
various tumor growth factors in the tumor microenviron-
ment, targeting CAFs may be an ideal treatment [84]. A
similar study includes pancreatic ductal carcinoma. PDAC
is characterized by fibrosis and a large number of CAFs.
Elimination or inhibition of CDH11 (expressed by CAFs
in the pancreatic tumor stroma) can reduce the growth of
pancreatic tumors and enhance their response to

Table 4 The main composition of immune cells in different tumor species

T B Macrophages DC NK REF

Clear-cell renal cell carcinoma +++ + ++ + + [109]

Breast cancer +++ + + + + [34]

Liver cancer + +++ ++ \ \ [110]

Nasopharyngeal carcinoma +++ +++ + \ + [111]

Colorectal cancer +++ ++ \ \ \ [112]

Esophageal cancer +++ + ++ + + [88]

NSCLC +++ ++ ++ + + [113]
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gemcitabine by sc-RNA [85]. Tumor infiltrating myeloid
cells are another research hotspot. Macrophages are one
of the main components of the tumor microenvironment.
In gastric cancer, tumor cells control the anti-
inflammatory properties of tumor associated macro-
phages, and combination therapy targeting cancer cells
and macrophages could have a cooperative effect [86]. For
example, M2-like macrophages induce RhoA, which regu-
lates the migratory and invasive ability of cancer cells, and
these effects can be weakened by Rho-associated protein
kinase inhibitors. Therefore, blocking the Rho-GTPase
RhoA is a feasible method [87].
SCS was used to sequence the infiltrating immune

cells in esophageal squamous cell carcinoma, resulting in
a detailed characterization of immune cells and the iden-
tification of many potential therapeutic targets. For ex-
ample, macrophages express high levels of LILRB1
(Leukocyte Ig-like receptor B1), enhancing the phago-
cytic function of tumor cells in vivo and in vitro, and
blocking this pathway may enhance the antitumor im-
munity of esophageal squamous cell carcinoma. NKs ex-
press high levels of checkpoint molecules such as
NKG2A and CD49. Isolated blocking of NKG2A and
CD49D or in combination with anti-PD1/PDL1 can im-
prove the efficacy of immunotherapy [88]. Similarly,
studies have identified a number of potential immuno-
therapeutic strategies for analyzing innate lymphoid cell
transformation in colorectal cancer by scRNA-seq [89].
SCS technology revealed that during the process of

tumor occurrence and development, the expression of
some genes or proteins is upregulated or downregu-
lated, suggesting that these genes could be therapeutic
targets. Osteosarcoma is a common bone tumor with
a poor prognosis. Zhou et al. sequenced 100,987 indi-
vidual cells from 11 cases of osteosarcoma and
showed that T-regs, CD8+ T, CD4+ T, and NK T
cells express high levels of TIGIT (T cell immuno-
globulin and ITIM domain) [90]. Blocking the expres-
sion of TIGIT can enhance the killing effect of
primitive CD3+ T cells, as there is a high proportion
TIGIT+ cells in osteosarcoma. Patients with OS may
benefit from TIGIT blocking therapy. One study used
scRNA-seq to depict the diversity of conventional
CD4+ T cells and regulatory T cells involved in the
development of lung cancer in a mouse model. The
results showed that Treg-specific inhibition of ST2
signaling can improve the anti-tumor CD8+ T cell ac-
tivity and reduce the tumor burden [87]. Another
study found that the Laylin gene can inhibit the kill-
ing function of CD8+ T cells [91]. Kim et al. deter-
mined that Tox is an independent factor promoting
tumor-infiltrating (TI) CD8+ T cell exhaustion in hu-
man cancer by analyzing sc-RNA data [92]. Because
immune checkpoint inhibitors (ICIs) merely revive the

stem cell-like progenitor exhausted T cells, inhibiting
the process of exhaustion may increase the effect of
immunotherapy. TOX promotes cell exhaustion in
tumor-infiltrating CD8+ T cells by expressing IC mol-
ecules, such as PD-1, TIM-3, TIGIT, and CTLA-4.
Therefore, TOX inhibition may suppress the cell dif-
ferentiation process of T-cell exhaustion, thus improv-
ing the efficacy of immune checkpoint inhibitors.
These findings provide ideas for the development of
targeted therapy for CD8+ T cells. The emergence of
a spatial transcriptome allows us to further investigate
functional differences in gene expression between
cancer centers and peripherals, and how signals from
tumors stimulate adjacent endothelium, facilitating
the search for more suitable targets [93].
The vulnerability of malignant tumors to metastasis is

also a major bottleneck in the treatment process, and
single-cell sequencing can help us identify and target the
mechanisms of tumor metastatic progression. Using
ACAT-seq, one researcher compared the differences be-
tween primary and hepatic metastatic non-small cell
lung cancer and found that NFI family transcription fac-
tors were enriched in differential chromatin open sites,
suggesting that NFI family transcription factors are in-
volved in regulating tumor cell metastasis. And Nfib ex-
hibited functions of maintaining chromatin and distal
regulatory regions open and promoting neural gene ex-
pression, suggesting an important role of Nfib in pro-
moting cancer cell proliferation and migration [94].
SCS also facilitates accurate therapy, and targeted

treatments can be designed according to the molecular
phenotype of each patient [7]. For example, a recent SCS
program developed the maximum likelihood calculation
framework MULAN (Mutability Landscape Inference),
which infers mutation rates of subclones instead of indi-
vidual genes. It was able to use the results obtained to
test and quantify genomic interactions. This provides a
theoretical basis for doctors to make individualized
treatment plans in the future [95].

Single cell sequencing in drug resistance
Another reason for the high failure rate of cancer treat-
ment is that tumor cells are prone to drug resistance.
However, the molecular mechanism of drug resistance
remains unclear [96]. SCS is an important tool to exam-
ine the mechanisms underlying drug resistance in can-
cer. For example, A study combining RNA-seq and
ATAC-seq confirmed two mechanisms of early resist-
ance to cetuximab in head and neck squamous cell car-
cinoma, TFAP2A transcription factor and epithelial
mesenchymal transition [97]. Wang et al. performed
SCS and showed that T cells and NK cells are the major
infiltrating cells in reactive breast tumors, whereas im-
mature myeloid cells are the main infiltrating cells in
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drug-resistant tumors [98]. Another study showed that
in resistant cells, epithelial-mesenchymal transition and
stemness genes are upregulated [99]. In endocrine resist-
ant breast cancer, an scRNA-seq study showed that
KDM5 inhibitor resistance was due to an acquired epi-
genetic state, and estrogen-resistant ER+ cells had high
expression of KDM5 [100]. In esophageal cancer, SCS
showed different keratin 19 gene expression levels be-
tween resistant and normal cell lines, suggesting inher-
ent paclitaxel resistance in cells [101].
In summary, SCS technology can detect different cell

groups in tumor samples and gain information about the
typical gene expression patterns of every cell type, as
well as determine the interactions between cells [102].
This provides a technical basis to identify potential
therapeutic targets and explore mechanisms of tumor
resistance.

Single cell sequencing for predicting prognosis
Accurate evaluation of the prognosis of cancer patients
is important. First, there are many cancer treatment
methods, and accurate prognostic markers are necessary
to determine the efficacy of treatments and for doctors
to adjust the treatment plan. Second, accurate prognos-
tic indicators can be useful for analyzing the occurrence
and metastasis of cancer and to promote the develop-
ment of new treatment plans. Third, knowledge of the
prognosis can help patients and their families prepare
psychologically for follow-up treatment in time. Below
are several examples of the application of SCS to the
prognosis of tumors.
According to the global cancer statistics released by

the International Agency for Research on Cancer in
December 2020, breast cancer has surpassed lung
cancer to become the most common type of cancer
in the world. Finding accurate prognostic markers for
breast cancer would be a big step forward in curing
breast cancer and reducing the waste of medical re-
sources. The γδ T cells are a subtype of T cells. A
study used scRNA-seq of γδ T cells from human
blood and breast tumor samples. They identified five
subsets of human blood γδ T cells, and three sub-
types were identified in human breast cancer samples.
Two of the three types of T cells found in breast tu-
mors have corresponding subtypes in the blood. The
other subtype is the only one related with better
overall survival in a large cohort of breast cancer pa-
tients characterized by TCGA (The Cancer Genome
Atlas) consortium [103]. Another study applied SCS
technology to identify various cell types present in
the normal breast. The outcome indicated that there
were 10 cell types in normal breast tissue. Compari-
son of the gene signature of each cell type with the
breast tumor gene expression profile in TCGA data

set indicated that the Cluster 9 (EPCAM, * KRT6B,
KRT15, KRT16, KRT81, KRT23) cell type was re-
markably linked with poor prognosis in triple negative
breast cancer. These cells or genes may become po-
tential prognostic biomarkers for the survival of pa-
tients with breast cancer [104].
Lung cancer currently ranks second in incidence in

the world. Chen et al. detected 159,219 cells from LUAD
patients based on scRNA-seq [105]. They found that 57
genes were only detected in cancer cells, of which 51
were upregulated and six were downregulated. The ex-
pression of some of these genes was associated with
prognosis. Analysis of TCGA and Gene Expression
Omnibus (GEO) databases showed that high expression
levels of HMGA1 and EMC6 were associated with poor
prognosis. Another study found that the expression of
the MHC-II gene was heterogeneous in LUAD by
scRNA-seq, and high expression of MHC-II was associ-
ated with good prognosis [106].
SCS shows that the number and nature of immune

cells in the tumor environment is closely related to the
prognosis of the tumor. A study performed in-depth
scRNA-seq of 12,346 T cells from 14 untreated patients
with NSCLC. The study found two CD8+ T cell groups
(CD8-C4-GZMK and CD8-C5-ZNF683). The position of
CD8-C4-GZMK and CD8-C5-ZNF683 is more central
than that of CD8-C6-LAYN in the one-cycle trajectory,
and their fatigue score is lower than that of CD8-C6-
LAYN, suggesting that they may be in the state of “pre-
exhaustion”. Analysis of a LUAD cohort from TCGA
showed that the higher the ratio of these two kinds of
cells, the better the prognosis [107]. SCS of immune
cells from hepatocellular carcinoma confirmed the exist-
ence of a subgroup of CD3 + CD8+ T cells. This sub-
group of T cells secretes a large amount of XCL1, which
participated in antigen presentation and attracts CD8+
T cells to exert cytotoxic effects. Patients with higher
cell density had a better prognosis [47]. Recent scRNA-
seq studies showed that TAMs in malignant ascites of
gastric cancer had a strong M2-like phenotype, which
was related to the poor prognosis of gastric cancer.
Therefore, the prognosis of advanced gastric cancer can
be predicted by real-time monitoring of TAMs in can-
cerous ascites [86].
The heterogeneity of tumors is closely related to poor

prognosis. Wang et al. analyzed the single cell transcrip-
tome map of peritoneal carcinomatosis (PC) in 15 pa-
tients with gastric adenocarcinoma [108]. According to
sequencing results, PC samples were divided into two
types: the gastric type dominated by gastric cells and the
mixed type of gastric cells and colorectal-like cells. The
prognosis of the gastric type was poor Although clinical
proof is needed, we believe that SCS has a promising fu-
ture in predicting tumor prognosis. (Table 5).
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Conclusion
In this review, we summarized the major SCS types and
the application of SCS in the field of oncology. SCS
deepens our understanding of tumors and promotes the
progress of oncology. However, with the opportunity
comes the challenge. There are many problems

associated with SCS technology. Some issues include
that it is time-consuming, associated with a high cost,
the potential for technical error, and the high sample re-
quirements, in addition to the loss of spatial structure
and that only a small section of tissue can be sequenced.
We believe that with the development of technology,

Fig. 3 Application of single-cell sequencing in cancer research

Table 5 Findings obtained from single cell sequencing

Cancer type Key findings Ref

Bladder cancer Accurately detect genetic mutations or copy number changes in exfoliated urine cell.
ICAF can be detected in patients with advanced bladder cancer.

[70]
[84]

Pancreatic cancer ONECUT2 may be a driving factor for early progression; CAFs expressing CDH11 promote the growth of
pancreatic tumors.

[74]
[85]

Gastric cancer M2-like macrophages induce RhoA, which regulates the metastasis and invasion of cancer cells.
M2-like phenotype of TAMs is related to poor prognosis in gastric cancer.
The prognosis of the gastric type is worse than that of the mixed type.

[86]
[87]
[88]

Esophageal squamous cell
carcinoma

Macrophages express high levels of LILRB1, enhancing the phagocytic function of tumor cells;
NKs express high levels of checkpoint molecules, such as NKG2A and CD49d.
KRT19 expression is related to drug resistance.

[88]

Osteosarcoma Increased expression of TIGIT enhances the killing effect of primitive CD3 + T cells and high proportion of TIGIT+
cells are present in osteosarcoma.

[90]

Lung cancer inhibition of ST2 signaling can improve anti-tumor CD8 + T cell activity and reduce tumor burden.
In TCGA and GEO databases, high expression levels of HMGA1 and EMC6 are associated with poor prognosis.
High expression of MHCII is associated with good prognosis.
Based on CD8+ T cell phenotypes, a higher ratio of pre-exhaustion cells is associated with better prognosis.

[87]
[105]
[106]
[107]

Liver Cancer Plasma exosome TSRNA can be used as a new diagnostic biomarker.
Laylin gene can inhibit the killing function of CD8 + T cells

[75]
[91]

Melanoma TOX promotes cell exhaustion in tumor-infiltrating CD8 + T cells by expressing IC molecules. [92]

Breast cancer One subtype of γδ T was associated with better overall survival.
A cluster of cells characterized by EpCAM, * KRT6b, KRT15, KRT16,KRT81, and KRT23 is associated with a better
prognosis.
Infiltration of immature myeloid cells is associated with tumor drug resistance.
In resistant cells, EMT and stemness genes are upregulated.
High expression of KDM5 and ITH in estrogen-resistant ER+ cells.

[98]
[100]
[103]
[104]
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these problems will be solved. Overall, SCS technology
provides a better understanding of the tumor as a whole
from the perspective of a single cell. We believe that
with continuous re-optimization, SCS technology will
continue to promote the development of oncology and
improve the tumor diagnosis and treatment systems to
pave the way for individualized treatment of tumors.
(Fig. 3).
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