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Abstract

The driving passion of molecular cell biologists is to understand the molecular mechanisms that 

control important aspects of cell physiology, but this ambition is often limited by the wealth of 

molecular details currently known about these mechanisms. Their complexity overwhelms our 

intuitive notions of how molecular regulatory networks might respond under normal and stressful 

conditions. To make progress we need a new paradigm for connecting molecular biology to cell 

physiology. We suggest an approach that uses precise mathematical methods to associate the 

qualitative features of dynamical systems, as conveyed by ‘bifurcation diagrams’, with ‘signal–

response’ curves measured by cell biologists.

The Curse of Complexity and the Curse of Parameter Space

By gathering information from molecular genetics, biochemistry, and cell physiology, 

molecular biologists construct complex gene–protein interaction networks that they believe 

may underlie the vital and often mysterious behavior of living cells. These networks –for 

example, the molecular interaction map of the budding yeast cell cycle [1] – pose some 

serious challenges. How can we envisage, from a static diagram, the astonishing array of 

temporal responses of a living cell? Can we be sure that the proposed network accounts fully 

for the cell functions that it purports to explain? And can we count on the network to make 

reliable, accurate predictions about the behavior of a cell under novel conditions?

Because of the complexity of these diagrams, with multiple feedback and feed-forward 

loops and crosstalk, it is impossible to answer these questions with any confidence by 

intuitive reasoning alone. The human mind cannot keep track of all possible interactions that 

percolate through the network under any given conditions.

One way to get around this ‘curse of complexity’ is to convert the network diagram into 

a set of ordinary differential equations (ODEs; see Glossary), using well-established 

principles of biochemical kinetics, which associate the rates of chemical reactions with the 

concentrations of the reactant species (the ‘variables’ in the ODEs). We then solve these 

equations numerically, letting the computer work out the implications of the crosstalk among 

signaling pathways and the complex feedback and feed-forward loops in the network. There 
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are two problems with this approach. It is no trivial task to write the ODEs in the first 

place. The network diagram itself may be uncertain: do we know all the essential molecular 

components and their interactions? However, the process of building a mathematical ‘model’ 

of biological reality has its own virtues: it forces us to be specific about the molecular 

players and interactions that we believe to be important in understanding some aspect of cell 

physiology. The model may be relatively simple, with only a few ODEs, or very complex, 

with 50–500 variables and equations; in either case it is a precise representation of what we 

believe to be true. Our challenge is to determine whether it is good/useful representation of 

the truth. To achieve this, we must solve the ODEs and compare the computed behavior of 

the model with the actual behavior of cells.

The second problem is that, before doing a numerical simulation, the modeler must know 

the numerical values of all the kinetic constants (the ‘parameters’) for every reaction 

in the proposed network, and these values are never known beforehand. They must be 

estimated from the same data that the model is trying to explain. For realistic models, 

with up to 100 unknown parameters, it is impossible to estimate parameter values from 

available experimental data by a systematic search of parameter space (were we to limit 

each parameter to 10 possible values, we would need to do 10100 simulations to search the 

parameter space completely – a Sisyphean task given that there are only ∼1080 hydrogen 

atoms in the known universe). This approach replaces the curse of complexity by the worse 

‘curse of parameter space’.

In this article we describe an approach that bypasses these curses by employing a technique 

from the qualitative theory of dynamical systems. In that theory, a bifurcation diagram 
correlates the output of an ODE model (e.g., the level of a regulatory protein) with an input 

parameter (e.g., the total concentration of a transcription factor). We propose to associate a 

bifurcation diagram with a signal–response curve as measured experimentally. By making 

this association we can use the power of dynamical systems theory to connect molecular 

mechanisms to cell physiology. We will illustrate this idea with two examples: switch-like 

activation of mitosis-promoting factor in frog egg embryos, and circadian oscillations in 

mammalian cells. We intend that this ‘dynamical’ paradigm will help both modelers and 

experimentalists to better understand the complexities of molecular regulatory systems.

Bypassing the Curses

The qualitative theory of dynamical systems does not regard a set of ODEs primarily as 

a challenge for straightforward numerical simulation on a computer. Instead, dynamical 

systems theorists understand that the ODEs define a ‘vector field’ in a multidimensional 

state space (the n-dimensional Cartesian coordinate system spanned by the n variables – the 

mRNAs and proteins – that comprise the underlying biochemical network). To each point 

in this state space, the ODEs attach a small vector indicating the direction and speed in 

which the control system will change in the next small increment of time (Δt) (Figure 1A). 

By following these vectors, namely by stringing together a sequence of small Δt steps, we 

could, in principle, solve the ODEs from any initial condition and be led, for example, to a 

stable steady-state solution of the ODEs (indeed, this is exactly what a computer does in 

calculating a numerical solution from any particular initial condition). However, instead of 
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trying to walk from point to point along the directions of the arrows, we want a global view 

of where all the arrows are pointing; in other words, we want to see the final states that can 

be adopted by the dynamical system from all possible initial states. These final states are 

called the attractors (if they are stable) or repellers (if they are unstable) of the dynamical 

system. This ‘global view’ is analogous to the topographic map in Figure 1B, where the 

lakes and peaks are the attractors and repellers (respectively) experienced by a mountaineer 

who prefers to walk downhill.

The precise flow lines of a vector field are, of course, dependent on the values assigned 

to the parameters in the ODEs. However, the qualitative features of the attractors and 

repellers of the vector field are usually independent of these exact parameter values. Small 

perturbations of the parameter values may change the flow lines, but are unlikely to destroy 

the attractors and repellers. In the same way, a little erosion of the landscape in Figure 1B 

may alter the slopes and drainage patterns of the terrain, but will not remove the lakes or 

peaks of the countryside. Nonetheless, a sufficiently large change of parameter values may 

cause qualitative changes in the number and character of the attractors and repellers of a 

dynamical system, in the same way that an earthquake may shift the landscape so as to 

drain one of the lakes. In dynamical systems theory, such changes of the qualitative nature 

of the attractors and repellers of a system of ODEs are called ‘bifurcations’. As a dynamical 

system moves past a bifurcation point there is a dramatic change in the properties of the 

attractors and repellers of the system. For example, for values of a parameter p less than a 

critical value pcrit, the system may have one steady-state (a single attractor), but for p > pcrit 

the system may have three steady-states (two attractors and one repeller).

Dynamical systems theorists have characterized all the possible bifurcations that can occur 

in systems of nonlinear ODEs [2] and have devised convenient ways to visualize them. 

A one-parameter bifurcation diagram is a plot of how the final states (the attractors and 

repellers) of a dynamical system depend on one of the parameters in the ODEs. To 

connect this abstract mathematical notion to cell physiology we must recognize that a 

mathematician’s one-parameter bifurcation curve is closely related to the cell physiologist’s 

signal–response curve. In a physiology experiment, the biologist measures how some 

behavior of the cell (the response; e.g., the activity of an important regulatory protein) 

depends on the value of an experimentally controlled signal (e.g., the concentration of a 

hormone in the growth medium). The signal is held at a constant value until the response 

settles on a definitive value, then the signal is changed to a new value and the new response 

is recorded. Signal–response curves carry information about how particular combinations 

of signals and responses are embedded in the entire regulatory network. A one-parameter 

bifurcation diagram shows how the final states of a mathematical model (e.g., the activity of 

a protein kinase in the reaction network) depend on one of the parameters in the model (e.g., 

the concentration of a hormone in the equations). Bifurcation diagrams carry information 

about how particular combinations of variables and parameters are connected through the 

full array of regulatory signals in the network. In particular, one-parameter bifurcation 

diagrams identify values of the parameter, pcrit, where the dynamical system undergoes a 

qualitative change in behavior, analogous to dramatic changes in the response of a cellular 

system to continuous changes in an experimental signal.
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Although it is too much to expect a one-to-one correspondence between the two curves 

(given the variety of ways that experimentalists characterize how cells respond to specific 

signals), the bifurcation diagram provides theoretical insights into the observed behaviors of 

cells, thereby alleviating the curse of complexity. In addition, the bifurcation diagram may 

suggest novel physiological experiments to test the theoretical connections (as illustrated 

below).

Bifurcation diagrams also afford a way around the curse of parameter space because they 

provide the modeler with information about parameter values where the model shows the 

same type of behaviors that are observed in cell physiology; for example, the sudden 

appearance of a new stable steady-state during cell differentiation. With this information as a 

starting point, the theoretician can use numerical solutions of the ODEs to simulate hundreds 

or thousands of experimental scenarios, to investigate the adequacy of the model to explain 

all known properties of a particular aspect of cell physiology, and to predict how the cell will 

respond under novel experimental conditions. This approach, summarized in Figure 2 (Key 

Figure), is what we call a ‘dynamical paradigm for molecular cell biology’.

Bistability

As an example, consider the control of mitotic division cycles in frog eggs and frog egg 

extracts (Figure 2, upper right). The hypothetical network controlling these cycles (upper 

left of the figure) is based on the activity of a cyclin-dependent kinase (Cdk1:CyclinB 

heterodimer, also known as MPF) and its interaction partners (Wee1, Cdc25, APC/C, etc.). 

The network diagram can be converted into a set of 10 differential equations, involving 26 

ill-defined parameter values [3]. The key to understanding the dynamics of this network 

is the observation of a ‘cyclin threshold for MPF activation’ [4]: the solid red curve in 

the signal–response diagram in the lower right of the figure. By incrementally increasing 

the total amount of cyclin in a frog egg extract, Solomon et al. [4] observed, at first, 

no MPF activity and then an abrupt jump to high MPF activity for cyclin concentrations 

above a distinct threshold. To a dynamical systems theorist, this behavior is suggestive of 

a bistable switch. Novak and Tyson [3] showed that the MPF control network can indeed 

function as a bistable switch (the bifurcation diagram in the lower left of Figure 2). A plot 

of the steady-state activity of MPF (the dynamical variable) as a function of total cyclin 

level (the parameter value) is S-shaped, and contains two stable steady-states (low MPF 

activity, i.e., interphase; and high MPF activity, i.e., M phase) separated by an unstable, 

intermediary activity of MPF. The region of bistability is bounded by two ‘bifurcation 

points’ at the turning points of the S-shaped curve. Starting on the lower branch of the 

curve and increasing total cyclin B (as done by Solomon et al.), one observes little or no 

MPF activity until the level of cyclin B exceeds the right-most bifurcation point, beyond 

which the control system switches abruptly to the upper steady-state (the solid red curve 

on the bifurcation diagram). The right-most bifurcation point is Solomon’s ‘cyclin threshold 

for MPF activation’. The one-parameter bifurcation diagram immediately suggests a novel 

experiment to test the mathematical model: start on the upper steady-state (i.e., in mitosis) 

and reduce the level of cyclin in stages (the red dashed line), and the extract will remain in a 

mitotic state until cyclin level drops below a lower threshold (the left-most turning point of 

the S-shaped curve, i.e., a lower ‘cyclin threshold for MPF inactivation’). This prediction of 
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the model was confirmed 10 years later by two groups independently [5,6], whose results are 

indicated schematically by the dashed red curve on the signal–response diagram in the lower 

right of the Figure 2.

Bistable behavior, such as this, is a consequence of positive feedback in molecular 

regulatory networks: either +/+ interactions (mutual activation) or −/− interactions (mutual 

inhibition). Bistability has been widely invoked as a basis for cell differentiation, as has been 

insightfully reviewed by Huang [7].

Solomon’s experiments were designed so that the total cyclin concentration in the frog egg 

extract could be held at a constant value to measure the steady-state activity of MPF at 

that particular cyclin concentration. In an intact frog embryo, the concentration of cyclin 

oscillates up and down during each mitotic cycle owing to a fundamental negative feedback 

in the reaction network. When MPF activity is low, the embryo synthesizes cyclin protein 

from maternal stores of cyclin mRNA, and cyclin concentration increases. As the cyclin 

concentration increases, MPF activity remains low because it continuously adjusts to a 

pseudo-steady-state value that tracks closely to the lower branch of the signal–response 

curve (Figure 2, solid red curve in the lower right corner). Eventually, the total concentration 

exceeds the bifurcation point on the signal–response curve, and MPF is rapidly activated 

(the up-arrow). The frog egg enters mitosis, and subsequently APC/C is turned on. As cyclin 

molecules are rapidly degraded by APC/C, cyclin concentration decreases, following the 

dashed red arrow on the signal–response curve. During this phase, MPF activity remains 

large because it is now tracking the upper branch of the signal–response curve. When cyclin 

concentration drops below the lower threshold for MPF inactivation, MPF activity drops 

abruptly (the down-arrow), cyclin degradation turns off, and cyclin concentration starts to 

increase again, to repeat the process of DNA synthesis, mitosis, and cell division. The 

analogous curves on the bifurcation diagram (Figure 2, lower left) describe a ‘hysteresis 

loop’ or (as a dynamical system theorist would say) a ‘stable limit cycle oscillation’.

Oscillations

Sustained oscillations are observed in many features of cell biology, from cAMP oscillations 

in cell signaling, to hormonal oscillations in organismal physiology, to ubiquitous circadian 

rhythms in the majority of organisms exposed to day/night cycles [8]. Cellular oscillations 

have been a favorite topic of mathematical biologists, and we shall use a recent model of the 

mammalian circadian clock by Kim and Forger [9] to illustrate the ‘dynamical perspective’. 

The circadian system in our body synchronizes and phase-locks most of our physiological 

functions to the 24 h cycle of light and darkness. Our underlying circadian ‘clock’ is an 

autonomous oscillator that has a free-running period close to 24 h (‘circa diem’).

The core interactions of this clock comprise a negative feedback loop between a 

heterodimeric transcription factor, BMAL1:CLOCK, and a regulatory protein, PERIOD1/2 

(Figure 3A). BMAL1: CLOCK binds to transcriptional regulatory sites (E-boxes) in front 

of hundreds of genes that are subject to circadian regulation. Among these are the genes 

that encode PER1/2; these proteins are synthesized in the cytoplasm, bind to partner proteins 

(CRY1/2), and return to the nucleus to bind to BMAL1:CLOCK and inhibit its transcription-
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promoting activity. The negative feedback of PER proteins on their own expression induces 

periodic synthesis of PER1/2 and periodic inactivation of BMAL1:CLOCK. Consequently, 

all the genes regulated by BMAL1:CLOCK are expressed periodically at the same ∼24 

h rhythm. In the following model we combine PER1/2 and CRY1/2 into single protein 

variables, PER and CRY. We also drop the 1 from BMAL.

The Kim and Forger (KF) model of this control system (Figure 3B) consists of three 

ODEs (for PER mRNA, and PER protein in the cytoplasm and nucleus) and three 

parameters (AT = total concentration of BMAL:CLOCK, Kd = dissociation constant of 

the BMAL:CLOCK::PER:CRY complex, and β = a rate constant that sets the timescale of 

the feedback loop). The KF model has a single steady-state for all values of the parameters, 

and this steady-state is stable for most values of the parameters. Oscillations are possible, 

but only over a restricted range of parameters. As is evident in the one-parameter bifurcation 

diagram in Figure 3C, the control system oscillates only over a range of values of AT (0.031 

< AT < 0.116, for the case Kd = 10−4; the range is slightly larger for smaller values of 

Kd). The oscillatory domain is bounded by two ‘Hopf’ bifurcation points [9]. At a Hopf 

bifurcation, a stable steady-state solution of a system of ODEs loses stability and gives 

rise to a family of oscillatory solutions, illustrating the defining feature of a bifurcation 

point: that the solutions of the ODE system undergo a qualitative change as a parameter 

passes through the bifurcation point. In this case, as AT passes through the value 0.031, 

the steady-state of the control system loses stability and gives birth to stable oscillations. 

These oscillations are tiny at first, but soon achieve a sizable amplitude. In Figure 3D we 

illustrate the waveforms of the oscillations for AT = 0.05; we have chosen β = 0.15 to 

produce oscillations with a circadian period of 25 h.

The KF model oscillates only over a restricted range of AT values because oscillations 

require a stoichiometric balance of BMAL:CLOCK and PER:CRY. If there is too little 

BMAL:CLOCK (AT < 0.031), then most BMAL:CLOCK heterodimers will be bound to 

PER:CRY, and the transcription of E-box-regulated genes will be permanently turned down. 

On the other hand, if there is too much BMAL: CLOCK (AT > 0.116), then the excess of 

BMAL:CLOCK over PER:CRY will ensure that all E-box-regulated genes are constitutively 

expressed.

From this model of a simple negative-feedback loop, Kim and Forger built up a ‘detailed’ 

model of the mammalian circadian rhythm, including additional negative and positive 

feedback loops (through REV-ERB and ROR proteins, respectively). Readers should consult 

the paper of Kim and Forger to see how the detailed model provides an excellent fit to 

experimental measurements of gene expression during mammalian circadian oscillations and 

the phenotypes of circadian mutants. Other groups have proposed similar ‘detailed’ models 

of mammalian circadian rhythms [10–12]. Battogtokh and Tyson [13] have published a 

detailed bifurcation analysis of Relogio’s model [12].

Extending the Paradigm

If this ‘paradigm’ is correct, then an understanding of the basic principles of cellular 

signaling is closely entwined with the theory of bifurcations in dynamical systems. Although 
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cell behaviors may seem bewilderingly complex, they are all consequences of underlying 

molecular control systems that are adequately described by the nonlinear differential 

equations of biochemical kinetics. The signal–response characteristics of cells must derive 

from the types of bifurcations that are possible in such dynamical systems; and it is a 

remarkable and reassuring fact that there are only a small number (∼10) of elementary 

bifurcations of dynamical systems [2] from which all the complexities of cell responses must 

arise.

Not all signal–response curves show indications of bifurcations. Some curves exhibit a 

simple ‘linear’ or ‘hyperbolic’ response to increasing signal strength, or more interesting 

‘sigmoidal’ responses. Other signal–response curves may be ‘bell-shaped’, where the 

response increases at low signal strength and then decreases at higher signal strengths. 

‘S-shaped’ curves (e.g., in Figure 2) are typical of cases where a cell must make a binary 

‘decision’ (e.g., to enter mitosis or to differentiate into a new cell type). Cellular oscillations 

arise from Hopf bifurcations (as in the example in Figure 3) or from more complex 

bifurcations, as illustrated in [14]. Examples of all these types of signal–response curves 

can be found in [15].

Although not widely recognized or understood by molecular cell biologists, this dynamical 

paradigm has been practiced by mathematical biologists for decades, as documented in 

Table 1. Some highlights: Goldbeter and Lefever [16] used bifurcation diagrams to find 

conditions under which glycolysis in yeast cells would exhibit sustained oscillations; 

Mackey and Glass [17] linked physiological dysfunctions of cells with dynamical 

bifurcations in the underlying biochemical control systems, a phenomenon they called 

‘dynamical diseases’; Goldbeter and Segel’s [18] concept of a ‘developmental path’ 

associated physiological states of a differentiating cell with changes in parameter values 

that carry the control system past bifurcation points on a two-parameter bifurcation diagram; 

and recently Heldt et al. [19] used a one-parameter bifurcation diagram to illuminate the 

phenomenon of multiple-fission cycles in photosynthetic algae.

An excellent review of the classical literature of mathematical cell biology is provided 

by Mogilner et al. [20]. For book-length treatments of dynamical systems theory and 

bifurcation diagrams with applications to cell physiology we refer the reader to Goldbeter 

[8], Strogatz [21], Keener and Sneyd [22], Forger [23], and Alon [24].

Concluding Remarks and Future Perspectives

A living cell is a dynamical system that is governed by nonlinear interactions among genes, 

proteins, and metabolites in time and space. It is extremely difficult – if not impossible – 

for the human mind to comprehend how such cellular control systems respond to the variety 

of conditions experienced by cells under laboratory conditions, or to predict how the system 

will react to novel conditions in the laboratory or in the wild. The only way to begin to make 

accurate, reliable assessments of cell behavior – based on the underlying interactions of 

genes and proteins – is to create realistic mathematical models of these dynamical systems, 

and to employ the well-established tools of analysis and simulation of nonlinear differential 

equations.
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The path to useful mathematical models of molecular control systems – models that are 

realistic, accurate, and predictive – is barred by the twin roadblocks of network complexity 

and parameter uncertainty. We suggest that some basic ideas from dynamical systems theory 

– bifurcation diagrams in particular – provide a way around these roadblocks. Bifurcation 

diagrams tie dynamical properties, such as bistability and oscillations, to the interactions in 

underlying molecular networks, such as positive and negative feedback, respectively. The 

task of the modeler is to discover, among the myriad reactions of a molecular network, 

those interactions that are potentially responsible for the observed behaviors of a cell. After 

these reactions are cast in mathematical form, as a system of nonlinear ODEs, the theory 

of bifurcations of vector fields can determine, first of all, whether the system of ODEs 

does indeed exhibit the desired bifurcations, and second, the ranges of parameter values 

where these bifurcations occur. Once we have this level of detail, then numerical solutions 

of the ODEs can be used to fit the model in quantitative detail to a variety of experimental 

observations. This is the route we and others have taken to develop successful mathematical 

models of many aspects of cell physiology (Table 1). There is much work remaining to be 

done (see Outstanding Questions).

This approach to modeling has relied, in the past, on a degree of ‘modularity’ of molecular 

control systems. That is, complex networks of reactions have been dissected, to a first 

approximation, into smaller ‘units’ of control, for example, distinct bistable switches and 

oscillators [25]. These smaller control units are easier to analyze by the paradigm described 

here because there are fewer variables and parameters to keep track of. The subunits can 

then be combined into a larger set of equations, which can be studied numerically if not 

analytically (by bifurcation theory). The advantages of invoking modularity are two-fold. 

First, modular thinking is almost a prerequisite for gaining insight into the workings of 

a complex control system. Second, applying bifurcation theory to the modules helps the 

modeler to estimate parameter values in smaller, more manageable groups. When the 

modules are assembled, these initial estimates of parameter values provide a good first-guess 

for parameter values of the full system. Computational studies of the full system can then 

be carried out to adjust the parameter values to obtain good agreement with experimental 

observations.

Some limitations and extensions to the paradigm proposed here must be acknowledged. 

First, not all cellular responses to applied signals can be described in terms of steady-

state behaviors or oscillations. Some interesting responses are transitory (e.g., perfectly 

adapting responses, such as odor detection). However, transitory responses are dynamical 

transitions between repellers and attractors in the state space of the system, and therefore 

characterization of the long-term steady-state and oscillatory behaviors of the system can 

shed considerable light on the qualitative trajectory of a transitory response. Although a 

trajectory can often be predicted from the locations of attractors and repellers, the timescale 

of the transition cannot. It will depend on particular values of the kinetic parameters in the 

model.

Second, our approach focuses on the regulation of physiological responses ‘in time’ and 

the description of underlying molecular mechanisms by nonlinear ODEs (i.e., biochemical 

kinetics in ‘well-stirred’ reaction vessels). Far from being well-stirred reaction vessels, 
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eukaryotic cells are subdivided into distinct compartments, which may need to be modeled 

individually, with realistic rules for the movement of molecules between compartments. 

This complication can be handled by extending the set of ODEs to include all the 

relevant subcellular compartments (where each is considered to be a well-stirred vessel). 

However, this approach is inappropriate for nonmembrane-bounded, liquid–liquid phase-

separated compartments that require a different paradigm based on equilibrium statistical 

mechanics, as described in the exceptional review by Hyman et al. [26]. Furthermore, some 

physiological processes (such as cell polarity, motility, and embryogenesis) are governed in 

part by physical movements of molecules in space (diffusion and motor-driven transport), 

and the description of these mechanisms requires nonlinear ‘partial differential equations’ 

(PDEs; i.e., reaction–diffusion–convection equations), a subject requiring a separate review 

(e.g., the textbook by Murray [27]).

Third, modeling cell physiology with ODEs or PDEs presumes a ‘deterministic’ view of 

molecular interactions and trafficking within cells and tissues, even though living cells are 

very small and stochastic fluctuations in molecular abundances and movements are likely 

to be significant. Furthermore, even in the context of deterministic models of cell behavior, 

individual cells within a tissue will make different decisions because they differ in terms 

of molecular constitution (initial conditions) and gene expression (parameter values). There 

are well-developed theories to account for such stochastic effects. Nevertheless, building 

effective ‘stochastic models’, in our experience, requires (i) a solid foundation based on a 

preliminary deterministic model, and (ii) substantial amounts of additional quantitative data 

about cell constituents (e.g., counts of mRNA and protein numbers within cells) and cell 

behavior (e.g., statistical distributions of cell responses to a particular signal). The roles of 

stochastic fluctuations in determining the variability of cell behavioral responses have been 

reviewed by Rao et al. [28], Paulsson [29], and Shahrezaie and Swain [30].

Our dynamical paradigm for molecular cell biology is not a sure-fire cure for all our 

uncertainties, but it is a systematic way to begin to ground our understanding of cellular 

behavior on molecular mechanisms. For this approach to be successful, cell biologists and 

mathematicians must learn to speak a common language. Our goal in this opinion article 

has been to introduce molecular cell biologists to the basic principles of dynamical systems 

theory such that they can collaborate effectively with computational cell biologists.

Acknowledgments

The authors are grateful for support from the National Institutes of Health USA, grant 5R01GM078989–12, and 
from the Biotechnology and Biological Sciences Research Council UK, strategic LoLa grant BB/M00354X/1.

Glossary

Attractor
a stable steady-state solution of a system of ordinary differential equations. A steady-state is 

stable if any small perturbation away from the steady-state returns to the steady-state as time 

proceeds

Bifurcation diagram
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a plotted curve specifying how some characteristic property of a dynamical system (e.g., the 

steady-state value of a variable) depends on particular values of a parameter

Bistable switch
a dynamical system with three steady-state solutions (two stable steady-states separated by 

an unstable steady-state) is said to be bistable. The bifurcation diagram of a bistable system 

is S-shaped, where the upper and lower branches define the stable steady-states, and the 

middle branch defines the unstable steady-state. The property of bistability, which usually 

appears over a restricted range of parameter values, is often associated with decision-making 

in cellular control systems.

Dynamical system
a set of interacting components (mechanical, electrical, chemical, biological) that are 

governed by the basic laws of physics, chemistry, and biology, and that specify how the 

system will evolve in time from a given set of initial conditions. The system is composed 

of time-dependent variables (positions, currents, concentrations, population densities) and 

time-independent parameters (masses, resistances, rate constants, intrinsic growth rates).

Ordinary differential equations (ODEs)
equations of the form dx/dt = f(x,y,z,…) are often used to describe the time-evolution of a 

dynamical system. The function f(x,y,z,…) describes the rate of change of a variable x(t) 
as a function of (potentially) all the variables x,y,z,…that define the dynamical system. 

f(x,y,z,…) is typically a nonlinear function of its time-dependent variables and of a number 

of time-independent parameters.

Repeller
an unstable steady-state solution of a system of ordinary differential equations. A steady-

state is unstable if some small perturbations move away from the steady-state as time 

proceeds.

Signal–response curve
a plotted curve specifying how some characteristic output of a physiological control system 

(e.g., the activity of an enzyme) depends on some aspect of the system that is under 

experimental control (e.g., the concentration of a hormone in the growth medium of the 

cells).

Steady-state solution
a dynamical system is at a steady-state for fixed values for the variables (x0, y0, …) if dx/dt 
= f(x0,y0,...) = 0, dy/dt = g(x0,y0,…) = 0, etc.
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Highlights

A dynamical system of interacting genes, proteins, and metabolites underlies the 

physiological properties of every living cell.

To understand the behavior of these molecular mechanisms requires a disciplined 

mathematical theory of biochemical reaction networks.

The proper approach to this problem is based on the ‘qualitative theory’ of nonlinear 

differential equations.

The link between theory and experiment is the identification of the mathematician’s 

‘one-parameter bifurcation diagram’ with the physiologist’s signal–response curve.
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Outstanding Questions

To model and understand complex molecular regulatory networks demands that they have 

a certain modular character. To what extent are the networks modular? How weak or 

strong are the interactions among the modules?

How do we process the information from omics studies into network diagrams that are 

sufficiently comprehensive to cover the details of a particular aspect of cell physiology 

without being weighed down by extraneous information?

Who will develop the next generation of useful computational tools to assist both 

theoreticians and experimentalists in building, analyzing, and simulating realistic 

mathematical models of molecular regulatory networks?
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Figure 1. The Vector Field of a Dynamical System.
(A) The differential equations, dx/dt = f(x,y) and dy/dt = g(x,y), define a direction and rate 

of change at each point in the ‘state space’ (x,y). A solution of the differential equations 

follows the arrows from some starting point until the trajectory (any one of the green dashed 

lines) reaches a stable attractor (one of the two stable steady-states represented by the black 

circles). The white circles represent repellers, and the x marks a ‘saddle point’. (B) The 

vector field in panel A can be associated with this ‘topographic map’, where the contours 

are plotted at 20 m intervals above the ‘lake’ in the upper left corner. The stable attractors 

are lakes (blue zones) in two depressions (at elevations of 0 and 20 m), and the repellers are 

mountain peaks (the white circles, at elevation 260 m). In the middle of the landscape is a 

saddle point (at an elevation of 130 m), which lies on the boundary (the grey dashed line) 

between the watersheds of the two lakes.
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Figure 2. Key Figure A Dynamical Paradigm for Molecular Cell Biology
Biologists gather information from many types of experiments to propose a molecular 

mechanism for the control of some aspect of cell physiology; for example, the regulation 

of cyclin-dependent kinase (upper left) as an explanation of the early embryonic divisions 

of frog eggs (upper right). Nowadays, these mechanisms are so complex that intuitive 

arguments alone are insufficient to understand the full behavioral repertoire of cells (the 

‘curse of complexity’, represented by the upper ‘no passage’ sign). In principle, one could 

convert the mechanism into a set of differential equations and use computer simulations 

to deduce the temporal responses of cells to signals (lower right), but this approach is 

stymied by our ignorance of the values of the rate constants and binding constants that 

enter into the kinetic equations (the ‘curse of parameter space’ – the lower ‘no passage’ 

sign). The curses can be bypassed by ‘dynamical systems theory’ which considers kinetic 

equations as defining a vector field in state space (Figure 1). The vector field defines key 

attractors, repellers, and transients of the dynamical system, which can be characterized by 

a one-parameter bifurcation curve (lower left) The theoretician’s bifurcation curve is directly 

comparable with the physiologist’s signal–response curve. By making this connection, 

dynamical systems theorists can work their way backward to the parameter values that 

are necessary to account for the signal–response characteristics of the cells, and from there 

to comprehensive simulations of the molecular mechanism under a variety of experimental 

conditions, including novel tests of the model. Abbreviation: P, phosphorylation.
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Figure 3. Kim–Forger Model of Circadian Rhythms.
(A) The core negative feedback loop of the mammalian circadian rhythm (main text 

for details). (B) Ordinary differential equations (ODEs) embodying the mechanism in 

panel A. M(t) = concentration of PER mRNA, Pc(t) = concentration of PER protein in 

cytoplasm, Pn(t) = concentration of PER:CRY complex in nucleus, AT = total concentration 

of BMAL:CLOCK in nucleus, and Af = nuclear concentration of ‘free’ BMAL:CLOCK 

(not bound to PER:CRY). Kd = dissociation constant of the BMAL:CLOCK::PER:CRY 

complex. (C) One-parameter bifurcation diagram plotting the attractor states for PER mRNA 

(M) as a function of total BMAL:CLOCK concentration (AT). For these calculations, Kd 

= 10−4 and β = 1. Solid and dashed black lines denote (respectively) stable and unstable 

steady-states of the network. The green dashed lines denote the maximum and minimum 

levels of PER mRNA during the course of an oscillation at any fixed value of AT in the 

interval 0.0305< AT <0.1159. The arrows indicate the positions of two Hopf bifurcation 

points. (D) Circadian oscillations of PER mRNA (green), active BMAL:CLOCK (blue), and 

PER:CRY (red). Parameter values: AT = 0.05, Kd = 10−4, β = 0.15; period = 25 h.
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Table 1.

Selective Survey of Applications of the Dynamical Paradigm (1972–2020)

Year Authors Physiology Molecular Mechanism

1972 Goldbeter and Lefever [16] Glycolytic oscillations in yeast cells Allosteric regulation of phosphofructokinase

1977 Mackey and Glass [17] Pathological oscillations in blood cell 
counts

Negative feedback on gene expression

1980 Goldbeter and Segel [18] Developmental transitions in the cAMP 
signaling system

Control of cAMP level by adenylate cyclase and 
phosphodiesterase

1987 Martiel and Goldbeter [31] cAMP oscillations in Dictyostelium cells Receptor desensitization in the cAMP signaling system

1989 Edgar et al. [32] Patterns of gene expression in Drosophila 
embryos

Bistability generated by mutual inhibition of pair-rule 
genes

1991 Tyson [33] Mitotic division cycles in fission yeast 
cells

Cyclin-dependent kinase regulation by Wee1, Cdc25, and 
APC/C

1995 Bertram et al. [34] Bursting oscillations of pancreatic β cells Fast inward Ca2+ current and slow outward K+ current

1998 Borisuk and Tyson [35] Maturation and early division cycles in 
frog eggs

Regulation of activity of M phase-promoting factor (MPF)

2004 Battogtokh and Tyson [36] Cell division cycles in budding yeast Cdk1 regulation by cyclin synthesis and degradation

2004 Yates et al. [37] Differentiation of Th1 and Th2 helper T 
cells

Expression of the master regulators Tbet and GATA3

2005 Ciliberto et al. [38] Oscillations in the p53/Mdm2 network Positive and negative feedback loops create oscillations of 
p53

2005 Ma et al. [39] Digital response of p53 to DNA damage Influence of double-strand breaks on p53 oscillations

2006 Legewie et al. [40] Programmed cell death (apoptosis) Inhibition of caspase-3 by IAPs (inhibitors of apoptosis)

2007 Dodd et al. [41] Epigenetic memory by nucleosome 
modification

Positive feedback and cooperativity provide epigenetic 
memory

2008 van den Ham and de Boer
[42]

Differentiation of helper T cells (Th1, Th2, 
Th17, …)

Expression of multiple master regulators

2008 Yao et al. [43] The restriction point in the G1 phase of the 
mammalian cell cycle

A bistable E2F–Rb switch underlies the decision between 
quiescence and proliferation

2012 Hong et al. [44] Heterogeneous differentiation of CD4+ T 
cells

Positive and double-negative feedback signals among the 
master-regulatory transcription factors

2012 Okaz et al. [45] Yeast meiotic prophase–metaphase 
transition

Positive and double-negative feedback controlling entry 
into metaphase I

2013 Binder et al. [46] Transcriptional regulation by histone 
modifications

Chromatin reorganization during cell differentiation

2014 Zhang et al. [47] Epithelial-mesenchymal transition in 
human breast cells

Double-negative feedback loops between SNAIL1 and 
miR-34, and between ZEB1 and miR-200

2016 Barr et al. [48] G1/S transition of human cells A bistable switch controlling the initiation of DNA 
replication

2016 Mochida et al. [49] Regulation of Cdk1-counteracting protein 
phosphatase

Bistability of the Greatwall–ENSA–PP2A:B55 pathway

2016 Kunche et al. [50] Self-organizing morphogenesis Positive and negative diffusible signals acting on tissue 
progenitor cells

2016 Tian et al. [51] Cell fate decisions Reciprocal regulation of mRNA and microRNA enables 
bistability

2018 Rata et al. [52] Mitotic control in mammalian cells Two interlinked bistable switches

2019 Nijhout et al. [53] Robustness of homeostatic mechanisms in 
development

One-carbon metabolism: folate cycle, methionine cycle, 
and glutathione synthesis

2020 Heldt et al. [19] Multiple-fission cycles in green alga cells Cdk1 regulation by a bistable switch and a mitotic 
oscillator
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