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Abstract India is one of the worst hit regions by the second wave of COVID-19 pandemic and ‘Black
fungus’ epidemic. This paper revisits the Bombay Plague epidemic of India and presents six fractional-
order models (FOMs) of the epidemic based on observational data. The models reveal chaotic dispersion
and interactive coupling between multiple species of rodents. Suitable controllers based on fuzzy logic
concept are designed to stabilise chaos to an infection-free equilibrium as well as to synchronise a chaotic
trajectory with a regular non-chaotic one so that the unpredictability dies out. An FOM of COVID-19
is also proposed that displays chaotic propagation similar to the plague models. The index of memory
and heredity that characterise FOMs are found to be crucial parameters in understanding the progression
of the epidemics, capture the behaviour of transmission more accurately and reveal enriched complex
dynamics of periodic to chaotic evolution, which otherwise remain unobserved in the integral models. The
theoretical analyses successfully validated by numerical simulations signify that the results of the past
Plague epidemic can be a pathway to identify infected regions with the closest scenarios for the present
second wave of Covid-19, forecast the course of the outbreak, and adopt necessary control measures to
eliminate chaotic transmission of the pandemic.

1 Introduction

Under the clutches of the second wave of COVID-19
pandemic, India is struggling to deal with the imme-
diate crisis and emergency situation. The number of
COVID-19-infected cases which was 18000 per day on
5th March, 2021, accelerated exponentially to 0.4 mil-
lion in 2 months by 6th May in India, recording the
highest ever total for a single day [1]. The unprece-
dented steep rate of propagation of the pandemic led
to the over-burden of health infrastructure, saturation
of medical facilities, shortage of vaccines, oxygen sup-
ply, hospital beds, etc., so much so that the number of
deaths per day rose to a staggering 4454 by the end of
May 2021. To worsen complications is the rising insur-
gent threat of another growing epidemic, ‘Black fungus’
or Mucormycosis, reported to have 9000 cases in India
by May, 2021, particularly infecting post COVID vic-
tims with comorbidities such as Diabetes with a mortal-
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ity rate of 50% [2]. Increase in testing measures and eas-
ing lockdown restrictions until March, 2021, were most
likely the causes of the immediately following spikes in
number of cases in the second wave of COVID in India
by the month of April, 2021. These alarming figures
signify the urgency of an efficient mathematical anal-
ysis and modelling of COVID-19 propagation so that
its course of outbreak can be foreseen and controlled
through a solution driven approach. This paper hereby
proposes to study its complex dynamical evolution by
revisiting a past epidemic that was the cause of numer-
ous historically prominent pandemics: Plague.

The outbreak of Bombay (now Mumbai) Plague epi-
demic (1896–1911), India, was first reported in the
British medical Journal, 1896 [3]. The surge in the casu-
alties and infections dropped in 1897, but the epidemic
turned into an endemic and lasted for more than a
decade, returning every year with a seasonal dissemi-
nation. This has a close similarity with the COVID-19
pandemic, the first wave of which hit India in January
2020, and returned with a more severe second wave
in early 2021, though it is too early to say whether
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it is seasonal. The bubonic plague, called so because
of the development of buboes or sore lymph nodes in
the infected, did not stay confined to Bombay alone, it
hit all over India [4]. It is caused by bacillus Yersinia
pestis and develops symptoms such as fever, vomit-
ing, bleeding, organ failure, headache, weakness, etc.
which if untreated may prove fatal in the first 36 hours
of being infected [5]. Previous mathematical models of
the plague epidemic are demonstrated by compartmen-
tal models based on the three compartments: suscep-
tible, infected, recovered (SIR) [6] and fail to consider
the transition of the disease between rodents and fleas.
Plague is generally transmitted to humans by infected
rodents who had been bitten by a flea. In fact, numerous
species of rodents such as black rats, marmots, prairie
dogs, gerbils, and squirrels are known carriers of plague
[7]. Mathematical models of the epidemic based on non-
linear dynamics to study the interaction between a sin-
gle species of rat and flea is proposed in 2012 by Bacaër
et al. [8]. In 2015, a new model of plague was pro-
posed in [5] that took into account multiple epizootics
of rats such as Mus decumanus and Mus rattus. It led to
the finding that the progression of the plague epidemic
model displays chaotic behaviour. But all these models
based on chaos theory are confined only to integer-order
models (IOMs) which often fail to encompass in-depth
understanding of the dynamics of the epidemic such as
involvement of asymptomatic carriers, irregular trans-
mission, critical cases with comorbidities, complexity of
interaction amongst species, etc.

Fractional order models (FOMs), defined by frac-
tional calculus, have an additional parameter of the
non-integral derivative with an index of memory that
incorporates various unmodelled dynamics of real phys-
ical systems resulting in a closer and more accurate
interpretation of the model dynamics [9]. FOMs extract
the underlying randomness in various engineering appli-
cations as switching circuits [10], jerk oscillators [11],
hyperchaotic systems [12], homopolar disc dynamo [13],
secure communication [14], etc. FOSs are known to pro-
duce various enriched complexities as period doubling
route to chaos [15], oscillator dynamics [16], multista-
bility [17], memristive dynamics [18], etc. In epidemi-
ology, the memory and probability of transmission of
FO chaotic models are found to be crucial parameters
to capture the real dynamics of epidemic and infectious
diseases [19]. For example, the FO-SIR chaotic com-
partmental model of Dengue epidemic is found to gen-
erate a closer fit to the observational data as validated
from the Dengue cases of Malaysia [20]. The FO chaotic
epidemic model of HIV comprising AIDS related cancer
cells suggests that FOMs are better predictors and sig-
nificantly impact the dynamic progress [21]. Also, non-
linear dynamic approach has been used to analyse car-
diovascular diseases [22], a study especially relevant in
the present COVID situation where heart patients are
at greater risks of severe infections. Our work therefore,
applies the superior benefits of fractional calculus and
nonlinear dynamics approach to investigate the pres-
ence of chaos in the dispersal of plague epidemic and

help in better understanding of the physiological func-
tioning of infectious diseases.

Chaos, due to its high sensitivity to initial conditions,
aperiodicity, erratic permanence and unpredictability,
is an undesirable phenomenon in epidemiology [23].
This is why control of chaotic motion to stabilise it to
a disease-free equilibrium or synchronise it with regular
motion is a relevant area of research. Fuzzy logic control
(FLC) has been a very practical and effective technique
of controlling and synchronising chaos in nonlinear sys-
tems [24]. They are advantageous over conventional
controllers since they are flexible over a wide range
of operating conditions due to their soft logic princi-
ple and can be applicable to real-world systems with
uncertainties and external disturbances, thus consider-
ably reducing the tracking error and control effort [25].
The authors use the Takagi–Sugeno Fuzzy logic con-
trol (TS-FLC) [26] to suppress the undesirable effects
of chaotic oscillations in the epidemic models.

The remainder of the paper is as follows: Section 2
presents the proposed FOMs of plague epidemic and
relevant FO fundamentals, Sect. 3 depicts the design of
controllers for stabilisation and synchronisation of the
proposed models, and Sect. 4 presents the results and
discussion. The paper is finally concluded in Sect. 5.

2 Fundamentals of FO calculus and
proposed FO plague models (FOPMs)

The modelling of the epidemics and design of controllers
to suppress chaos are determined by FO stability theo-
rems whose preliminaries are presented below.

2.1 Preliminaries of FO

The Caputo fractional derivative, of order α of a con-
tinuous function f(t) is defined in (1).

D
α
t f (t) =

dαf (t)

dtα

=

⎧
⎨

⎩

1
Γ(w−α)

t∫

0

f(w)(τ)
(t−τ)α−w+1 dτ, w − 1 < α < w, w ∈ N

dw

dtw f (t) , α = w

(1)

Let us define an FO nonlinear system (FONLS) as in
(2),

Dα
t x (t) = f (x (t) , t) , (2)

where the FOs lie in 0 < α < 1 and x(t) =
[x1, x2, . . . , xn]T , (i = 1, 2, . . . , n).

Theorem 1 [27] Let x = 0 be an equilibrium point
for the FONLS (2), V (x) be a Lyapunov function, and
γi(i = 1, 2, 3) be functions of class K such that

(a) γ1(‖ x ‖) ≤ V (x) ≤ γ2(‖ x ‖),
(b) DαV (x) ≤ −γ3 (‖ x ‖),
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where α ∈ (0, 1), then, the equilibrium point x = 0 is
asymptotically stable.

For a quadratic positive definite function V (x) =
xT Qx, where Q is a positive definite matrix, the condi-
tion (a) of Theorem 1 is always satisfied [28].

Lemma 1 If x(t) ∈ R is a continuous and derivable
function, then, for any time instant ≥ 0,

1
2
Dαx2 (t) ≤ x (t) Dαx (t) , ∀α ∈ (0, 1],

where Dαx (t) is the Caputo fractional derivative of
x (t) of FO α.

The Adams–Bashforth–Moulton (ABM) method
established on the predictor–corrector technique [29] is
used to solve the FODEs.

2.2 FO plague models (FOPMs)

Recently, IOMs of chaotic plague epidemic models
are proposed in [5] derived from the observational
data on the number of deaths due to plague infec-
tion from September 1896 to December 1911 and cou-
pling between the epidemic and the epizootic of the
two main species of rodents using a global modelling
technique. Based on this, we explore the FO dynamics
of the models and propose six corresponding FOPMs
where, x1, x2 and x3 represent the number of fatal-
ities due to plague infection, infected rats of the M.
decumanus species captured and infected rats of the
M. rattus species captured, respectively.

a) FOPM P0

P0 is a 10-term chaotic model as in (3),

⎧
⎪⎨

⎪⎩

Dαx1 = −0.0976x2
3 + 0.045x2x3 − 12.6237ϕx1

Dαx2 = 0.0107x2
2 − 0.0237x1x2

Dαx3 = 0.0108x2
3 + 1.4512x2 − 5.912x1

−0.0147x1x3 + 0.0041x1x2,
(3)

where tuning parameter ϕ = 0.598.

b) FOPM P1

P1 is a 11-term chaotic model given as in (4), where
ϕ= 1.

⎧
⎪⎨

⎪⎩

Dαx1 = −0.0976x2
3 + 0.045x2x3 − 12.6237ϕx1

Dαx2 = 0.0107x2
2 − 0.0237x1x2

Dαx3 = 0.0213x2
3 + 2.0814x2 − 6.917x1

−0.0255x1x3 + 0.0078x1x2 − 0.0013x2
2

(4)
c) FOPM P2

P2 is also a 11-term chaotic model given as in (5),
where ϕ= 0.9.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx1 = −0.1434x2
3 + 0.0674x2x3

−12.7264ϕx1 − 0.0025x2
2

Dαx2 = 0.0107x2
2 − 0.0237x1x2

Dαx3 = 0.0108x2
3 + 1.4512x2 − 5.912x1

−0.0147x1x3 + 0.0041x1x2

(5)

d) FOPM P3

P3 is a 12-term chaotic model given as in (6), where
ϕ= 0.945.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx1 = −0.0936x2
3 + 0.0431x2x3 − 12.0677ϕx1

Dαx2 = 0.0103x2
2 − 0.0227x1x2

Dαx3 = 0.0318x2
3 + 1.7263x2 − 6.6007x1

−0.0355x1x3 + 0.005967x1x2

−0.004x2
1 − 0.00007x2

2

(6)
e) FOPM P4

P4 is a 10-term periodic model given as in (7).

⎧
⎪⎨

⎪⎩

Dαx1 = −0.0976x2
3 + 0.045x2x3 − 12.6237ϕx1

Dαx2 = 0.0107x2
2 − 0.0237x1x2

Dαx3 = 0.0108x2
3 + 1.4512x2 − 5.912x1

−0.0147x1x3 + 0.0041x1x2

(7)
This is the untuned P0 model with, ϕ = 1.
f) FOPM P5

P5 is a 11-term periodic model given as in (8).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx1 = −0.1434x2
3 + 0.0674x2x3

−12.7264ϕx1 − 0.0025x2
2

Dαx2 = 0.0107x2
2 − 0.0237x1x2

Dαx3 = 0.0108x2
3 + 1.4512x2 − 5.912x1

−0.0147x1x3 + 0.0041x1x2

(8)

This is the untuned P2 model with ϕ = 1.
Table 1 describes the initial conditions (ICs), equilib-

rium points, eigen values of the proposed FOPMs and
their Lyapunov exponents (LEs) calculated using the
algorithm proposed by Danca et al. [30].

3 Design of controllers for FOPMs

This section is dedicated to design controllers for two
types of control: (a) stabilisation of chaos and (b) syn-
chronisation of chaos.

3.1 Design of controllers for stabilisation of chaos in
FOPMs

Stabilisation controllers to suppress chaos are applied
only to the chaotic FOPMs, i.e., P0, P1, P2 and P3

as discussed in Table 1. As represented in Fig. 1a, TS
Fuzzy Logic Control (TSFLC) [26] is designed with a
rule base in which the consequents of each rule are func-
tions of inputs, the fuzzifier converts the crisp inputs
to linguistic variables using the membership functions
stored in the database, the inference engine enables
decision making by adequate reasoning and the defuzzi-
fier converts the fuzzy output values back into crisp
values.

Let the controlled FONLS be defined as in (9).

Dαx (t) = f (x (t) , t) + u (9)
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Table 1 Dynamical analyses of the FO plague epidemic models

Model ICs Equilibrium points Eigen values (λi, i = 1, 2, 3) FO LEs Dynamics

P0

(166.8903,
1070.193,
138.7208)

E1 = (− 2723.906, 0,
− 459.002)

λ1,2,3 = (64.556, − 9.44,32.0185) 0.98
LE1 = 0.059548
LE2 = 0
LE3 = − 3.0896

Chaotic

E2 = (0, 0, 0) λ1,2,3 = (− 7.5489, 0,0)

E3 =
(428.4239, 948.939,
97.436)

λ1,2,3 =
(− 7.2477,
2.8296 + 11.2178i,
2.8296 − 11.2178i)

P1

(895.9957,
2391.688,
312.7087)

E1 = (0, 0, 0) λ1,2,3 = (− 12.623, 0,0) 0.979
LE1 = 0.22158
LE2 = 0
LE3 = − 0.45977

Chaotic

E2 =
(− 1112.367, 0,
− 379.308)

λ1,2,3 = (26.363, − 19.1324, 18.7156)

E3 =
(533.355, 1181.3568,
200.333)

λ1,2,3 =
(− 7.8815,
1.4159 + 12.3523i,
1.4159 − 12.3523i)

P2

(836.9658,
1721.620,
328.9299)

E1 = (0, 0, 0) λ1,2,3 = (− 11.453,0,0) 0.996
LE1 = 0.32517
LE2 = 0
LE3 = − 6.099

Chaotic

E2 =
(− 2659.1148, 0,
−460.8589)

λ1,2,3 = (63.0210, − 14.0915, 31.7721)

E3 =
(512.1487, 1134.3856,
178.6772)

λ1,2,3 =
(− 7.9728,
2.4939 + 12.7008i,
2.4939 − 12.7008i)

P3

(344.0896,
627.7882,
101.5058)

E1 =
(810.5939, 1786.4544,
145.9542)

λ1,2,3 =
(− 17.624,
2.5635 + 19.2493i,
2.5635 − 19.2493i)

0.996
LE1 = 0.76966
LE2 = 0
LE3 = −15.0367

Chaotic

E2 =
(1125.8296, 2481.1972,
1006.1933)

λ1,2,3 =
(−6.9833 + 14.039i,
−6.9833 − 14.039i,
52.146)

E3 = (0, 0, 0) λ1,2,3 = (- 11.403, 0, 0)

P4

(166.8903,
1070.193,
138.7208)

E1 = (0, 0, 0) λ1,2,3 =
(− 12.623,
0, 0)

0.938
LE1 = 0
LE2 = − 0.33791
LE3 = −6.4779

Periodic

E2 =
(− 1911.3082, 0,
− 497.203)

λ1,2,3 =
(45.298,− 16.6145,
21.3474)

E3 =
(532.1154, 1178.6108,
200.9904)

λ1,2,3 =
(− 6.1764,
1.3416 + 12.8042i,
1.3416 − 12.8042i)

P5

(836.9658,
1721.620,
328.9299)

E1 = (0, 0, 0) λ1,2,3 = (− 12.726, 0,0) 0.962
LE1 = 0
LE2 = − 0.059592
LE3 = − 6.4876

Periodic

E2 =
(534.5436, 1183.9892,
203.8006)

λ1,2,3 =
(− 7.4083,
1.9474 + 13.0348i,
1.9474 − 13.0348i)

E3 =
(654.4082, 1449.4837,
486.6842)

λ1,2,3 =
(4.9346,
− 0.6295 + 19.7595i,
− 0.6295 − 19.7595i)

The control signal, u = (u1, u2, . . . , un)T, is calculated
by weighted sum defuzzification method.

The ith fuzzy control rule base for the TSFLC is
defined as in (10),

Rule i : IF x1 is Xi,1 AND... AND
xn is Xi,n, THEN u = ui (x) , i = 1, . . . , r, r ∈ N∗,

(10)

where Xi,1, Xi,2, . . . , Xi,n are fuzzy sets describing the
linguistic terms (LTs) of input variables, u = ui(x) is
the control input of rule i, function AND is a fuzzy
operator and r is the total number of fuzzy rules.

Each fuzzy rule defined in (10) generates a weight
defined as in (11).

ωi ∈ [0, 1] , i = 1, 2, . . . , r (11)
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Fig. 1 Fuzzy Logic
control system

(a) Block diagram of FLC (b) Membership function of FLC 

M
em

be
rs

hi
p 

fu
nc

tio
n 

From (10), it is assumed that for any x ∈ X in the input
universe of discourse X, there exists at least one weight
ωi among all rules that is non-zero. Applying weighted
sum defuzzification method, we obtain u as in (12).

u =
∑r

i=1 wiui
∑r

i=1 wi
(12)

Since a positive definite quadratic function always sat-
isfies Theorem 1, the Lyapunov candidate is chosen as
in (13).

V (x) = xTQx. (13)

Q ∈ Rnxn is a positive definite matrix, which implies
that V is positive definite, having continuous partial
FO derivatives.

Theorem 2 [26] Let the origin be an equilibrium of
the controlled epidemic (9) and there exists a Lya-
punov function, V (x) = xTQx, where Q is a posi-
tive definite matrix on domain X containing the ori-
gin of Rn such that DαV (x) ≤ 0, for x ∈ X. Let
S = {x ∈ X : DαV (x) = 0}. If except the trivial
solution x (t) ≡ 0, no solution of (9) exists identically
in S, then, the infection-free equilibrium at the origin
is asymptotically stable in the domain X.

Using Theorem 2 based on FO Lyapunov stability,
the stability of an infection free equilibrium may be
obtained.

On adding TSFLC to the FOPM P1 (4), we have
(14),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx1 = −0.0976x2
3 + 0.045x2x3 − 12.6237x1 + u1

Dαx2 = 0.0107x2
2 − 0.0237x1x2 + u2

Dαx3 = 0.0213x2
3 + 2.0814x2 − 6.917x1

−0.0255x1x3 + 0.0078x1x2

−0.0013x2
2 + u3

(14)

where u = (u1, u2, u3)
T are the TSFLCs.

The fuzzification module of TSFLC in Fig. 1b) shows
the triangular membership function of LTs of the cho-
sen linguistic variable x1 as antecedent. Notations P,Z
and N for the LTs represent ‘positive’, ’zero’ and ‘neg-
ative’, respectively, and the parameters are chosen as

b3 = 500, b2 = 490, b1 = 10, a1 = 10, a2 = 1990, a3 =
2000.

Table 2 describes the set of fuzzy control rules as per
the membership function.

The universe of discourse is X = [−500, 2000] ×
[0, 3500] × [−200, 600].

From (13), the Lyapunov function is chosen as (15).

V (x) =
1
2
(x2

1 + x2
2 + x2

3) (15)

Using Lemma 1 and Caputo fractional derivative in
(15), we have (16).

DαV (x) =
1
2
(Dα

x2
1 + Dαx2

2 + Dαx2
3)

≤ (x1D
αx1 + x2D

αx2 + x3D
αx3). (16)

From Theorem 1, we get

DαV (x) ≤ x1[−0.0976x2
3 + 0.045x2x3

−12.6237x1 + u1]
+x2[0.0107x2

2 − 0.0237x1x2 + u2]
+x3[0.0213x2

3 + 2.0814x2 − 6.917x1

− 0.0255x1x3 + 0.0078x1x2

− 0.0013x2
2 + u3]. (17)

Using Theorem 2, DαV (x) = 0 ⇔ x = [0, 0, 0]T which
implies S = {0, 0, 0}.

Next, the fuzzy rules are derived as follows.

(i) Fuzzy rule 1, R1: for antecedent x1 as P , we have
the consequent as

U1 =

⎡
⎢⎢⎣

u1

u2

u3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0.1231 x2

3 − 0.0528x2x3 + 6.9174x3

−0.0107x2
2+0.0237x1x2−x2−0.0213x3

3
x2

−2.0814x3

0.0013x2
2 − x3

⎤
⎥⎥⎦ ,

so that DαV (x) ≤ −12.6237x2
1 − x2

2 − x2
3 < 0, i.e. the

stability requirement is satisfied.

123



910 Eur. Phys. J. Spec. Top. (2022) 231:905–919

Table 2 Rule base of TSFLCs for the chaotic FOPMs

Rule Antecedent x1 Consequent u =

⎡
⎣

u1

u2

u3

⎤
⎦

1 P U1

2 N U2

3 Z U3

(ii) Fuzzy rule 2, R2: for antecedent x1 as N , we have
the consequent as

U2 =

⎡
⎣

u1

u2

u3

⎤
⎦

=

⎡
⎢⎣

0.1231 x2
3 − 0.0528x2x3 + 6.9174x3

−0.0107x2
2+0.0237x1x2−4.77x2−0.0213x3

3
x2

−2.0814x3

0.0013x2
2 − 2.12x3

⎤
⎥⎦ ,

so that DαV (x) ≤= −12.6237x2
1−4.77x2

2−2.12x2
3 < 0,

i.e. the stability requirement is satisfied.

(iii) Fuzzy rule 3, R3: for antecedent x1 as Z, we have
the consequent as

U3=

⎡
⎢⎢⎣

u1

u2

u3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
0.1231 x2

3 − 0.0528x2x3 + 6.9174x3

−0.0107x2
2+0.0237x1x2−1.3164x2−0.0213x3

3
x2

−2.0814x3

0.0013x2
2 − 6.247x3

⎤
⎥⎥⎦

so that DαV (x) ≤ −12.6237x2
1−1.3164x2

2−6.247x2
3 <

0, i.e. the stability requirement is satisfied.
Since Theorem 2 is satisfied in the FO sense, thus

the designed FLC converges the controlled epidemic P1

to an infection-free asymptotically stable equilibrium.
Similarly, the FLCs designed for the chaotic FOPMs
Pk, k = 0, ..., 3, and fuzzy rules, Ri , where i = 1, 2, 3
are enlisted in Table 3.

3.2 Design of TS-fuzzy logic synchronisation
controllers (TSFLSCs) for synchronisation of chaos
in FOPMs

The aim is to design a synchronisation controller u such
that the dynamics of the slave system synchronises with
the master system. Let the periodic and chaotic system
as master and slave be defined in (18) and (19), respec-
tively,

Dαy (t) = f (y (t) , t) , (18)

where y(t) = [y1, y2, ..., yn]T, (i = 1, 2, ..., n) and

Dαx (t) = f (x (t) , t) + us, (19)

where x (t) =[x1, x2, ..., xn]T ; us = (us1, us2, ..., usn)T

is the synchronisation controller added to synchronise
the slave with the master.

The error states e = [e1, e2, ..., en]T between the state
variables of the master and slave systems are defined as
in (20).

e = x − y. (20)

Thus, the FO error dynamics are obtained as in (21).

Dαe = Dαx − Dαy. (21)

Therefore, the goal is to design us such that e converge
to zero as t → ∞, i.e., the trajectory of the slave system
asymptotically approaches the trajectory of the master
system.

The ith fuzzy control rule for TSFLSC is defined as
in (22),

Rule i (Ri) : IF e1 is Ei,1 AND... AND en is
Ei,n, THEN usi = ui (e) , i = 1, . . . , r, r ∈ N, (22)

where Ei,1, Ei,2, . . . , Ei,n are fuzzy sets describing the
LTs of input variables, usi = usi(e) is the fuzzy logic
synchronisation control input of ith rule following the
same defuzzification process described in Sect. 3.1.

Each fuzzy rule defined in (22) generates a weight as
in (23).

∂i ∈ [0, 1] , i = 1, ..., r. (23)

From (23), it is assumed that, for any e ∈ E in the
input universe of discourse E, there exists at least one
weighted output among all rules that is non-zero. From
the weighted sum of the defuzzification process, the out-
put is as in (24),

usi =
∑r

i=1 ∂iui
∑r

i=1 ∂i
, (24)

where r is the total number of fuzzy rules.
A quadratic Lyapunov function is defined as in (25)

which satisfies condition (a) of Theorem 1.

V (e) =
1
2
(e21 + e22 + e23 + · · · + e2n). (25)

From Theorem 2, it can be concluded that, if the ori-
gin is an equilibrium of the controlled system (19) and
V (e) = 1

2 (e21 + e22 + e23 + · · · + e2n) is a positive defi-
nite function on domain X containing the origin of Rn

such that DαV (e) ≤ 0, for i = 1, 2, . . . , r and e ∈ E,
and S = {e ∈ E : DαV (e) = 0}, and suppose no solu-
tion of (19) can stay identically in S except the trivial
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solution e (t) ≡ 0, then, the equilibrium at the origin is
asymptotically stable in the domain E.

We now apply TSFLSC to synchronise the chaotic
FOPM P0 (3) as slave with the periodic P4 as master,
which is described in (26).

⎧
⎪⎨

⎪⎩

Dαy1 = −0.0976y2
3 + 0.045y2y3 − 12.6237y1

Dαy2 = 0.0107y2
2 − 0.0237y1y2

Dαy3 = 0.0108y2
3 + 1.4512y2 − 5.912y1

−0.0147y1y3 + 0.0041y1y2

(26)

From (21), the error dynamics are given by (27).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαe1 = −0.0976(x2
3 − y2

3) + 0.045(x2x3 − y2y3)
−7.5489726x1 + 12.6237y1 + us1

Dαe2 = 0.0107(x2
2 − y2

2)
−0.0237(x1x2 − y1y2) + us2

Dαe3 = 0.0108
(
x2
3 − y2

3

)
+ 1.4512e2 − 5.912e1

−0.0147(x1x3 − y1y3)
+0.0041(x1x2 − y1y2) + us3

.(27)

The parameters of Fig. 1b chosen are b3 = 1500, b2 =
1480, b1 = 20, a1 = 20, a2 = 1480, a3 = 1500 so that
E = [−1500, 1500] × [−2500, 2000] × [−800, 600].

From (25), the Lyapunov function is chosen as in
(28).

V (e) =
1
2
(e21 + e22 + e23). (28)

Using Caputo derivative in (28), we have (29).

DαV (e) =
1
2
(Dα

e21 + Dαe22 + Dαe23). (29)

The fuzzy rules are derived as follows.

(i) Fuzzy rule 1, R1: for antecedent e1 as P , we have
the consequent as

U1 =

[
us1

us2

us3

]

=

⎡

⎣
0.0976(x2

3 − y2
3) − 0.045(x2x3 − y2y3) + 7.5489726x1 − 12.6237y1 − e1 + 5.912e3

−0.0107(x2
2 − y2

2) + 0.0237(x1x2 − y1y2) − e2 − 1.4512e3
−0.0108

(
x2
3 − y2

3

)
+ 0.0147(x1x3 − y1y3) − 0.0041(x1x2 − y1y2) − e3

⎤

⎦ ,

then from (29), DαV (e) = −e21 − e22 − e23 < 0.

(ii) Fuzzy rule 2, R2: for antecedent e1 as N , we have
the consequent as

U2 =

[
us1

us2

us3

]

=

⎡

⎣
0.0976(x2

3 − y2
3) − 0.045(x2x3 − y2y3) + 7.5489726x1 − 12.6237y1 − 6.5e1 + 5.912e3

−0.0107(x2
2 − y2

2) + 0.0237(x1x2 − y1y2) − 9.5e2 − 1.4512e3
−0.0108

(
x2
3 − y2

3

)
+ 0.0147(x1x3 − y1y3) − 0.0041(x1x2 − y1y2) − e3

⎤

⎦ .

Then from (29), DαV (e) = −6.5e21 − 9.5e22 − e23 < 0.

(iii) Fuzzy rule 3, R3: for antecedent e1 as Z, we have
the consequent as

U3 =

[
us1

us2

us3

]

=

⎡

⎣
0.0976(x2

3 − y2
3) − 0.045(x2x3 − y2y3) + 7.5489726x1 − 12.6237y1 − 6.5e1 + 5.912e3

−0.0107(x2
2 − y2

2) + 0.0237(x1x2 − y1y2) − 9.5e2 − 1.4512e3
−0.0108

(
x2
3 − y2

3

)
+ 0.0147(x1x3 − y1y3) − 0.0041(x1x2 − y1y2) − 13e3

⎤

⎦ .

Then from (29),DαV (e) = −6.5e21 − 9.5e22 − 13e23 < 0.
Since DαV (e) = 0 ⇔ e = [0, 0, 0]T which implies

S = {0, 0, 0}. Thus, the errors, e = [e1, e2, e3]
T con-

verge to zero and the slave P0 synchronises with the
master P4. Similarly, the TSFLSC designed to synchro-
nise FOPMs, the chaotic P2 with the periodic P5 is as
in Table 4.

4 Results and discussion

Results obtained from numerical simulation are dis-
cussed in the following subsections.

4.1 Dynamical analyses of FOPM

The bifurcation analysis of FOPM P1 (4) is performed
in Fig. 2a for a varying FO α as the bifurcation param-
eter against x3 that represents the number of cap-
tured infected rats of M. rattus species. It is revealed
that plague follows a path of multiple period dou-
blings to finally give rise to chaos at α = 0.977. The
Period 1 attractor (P1A) that persists in the region
α ∈ [0.95, 954[ is shown in Fig. 2b. P1A doubles its
period to a Period 2 attractor (P2A) that persists in

123



Eur. Phys. J. Spec. Top. (2022) 231:905–919 913

T
a
b
le

4
P

ro
p
o
se

d
T

S
F
L
S
C

fo
r

sy
n
ch

ro
n
is

a
ti

o
n

in
F
O

P
M

s,
P

0
(s

la
v
e)

w
it

h
P

4
(m

a
st

er
);

a
n
d
P

2
(s

la
v
e)

w
it

h
P

5
(m

a
st

er
)

a
t

a
n
te

ce
d
en

t
e
1

M
a
st

er
sy

st
em

S
la

v
e

sy
st

em
R

u
le

i
C

o
n
se

q
u
en

t
sy

n
ch

ro
n
is

a
ti

o
n

co
n
tr

o
ll
er

P
4

P
0

R
1

U
1

=

⎡ ⎣0
.0

9
7
6
(x

2 3
−

y
2 3
)
−

0
.0

4
5
(x

2
x
3
−

y
2
y
3
)
+

7
.5

4
8
9
7
2
6
x
1
−

1
2
.6

2
3
7
y
1
−

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

e 3

⎤ ⎦

R
2

U
2

=

⎡ ⎣0
.0

9
7
6
(x

2 3
−

y
2 3
)
−

0
.0

4
5
(x

2
x
3
−

y
2
y
3
)
+

7
.5

4
8
9
7
2
6
x
1
−

1
2
.6

2
3
7
y
1
−

6
.5

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

9
.5

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

e 3

⎤ ⎦

R
3

U
3

=

⎡ ⎣0
.0

9
7
6
(x

2 3
−

y
2 3
)
−

0
.0

4
5
(x

2
x
3
−

y
2
y
3
)
+

7
.5

4
8
9
7
2
6
x
1
−

1
2
.6

2
3
7
y
1
−

6
.5

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

9
.5

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

1
3
e 3

⎤ ⎦

P
5

P
2

R
1

U
1

=

⎡ ⎣0
.1

4
3
4
(x

2 3
−

y
2 3
)
−

0
.0

6
7
4
(x

2
x
3
−

y
2
y
3
)
+

0
.0

0
2
5
(x

2 2
−

y
2 2
)
+

1
1
.4

5
3
7
6
x
1
−

1
2
.7

2
6
4
y
1
−

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

e 3

⎤ ⎦

R
2

U
2

=

⎡ ⎣0
.1

4
3
4
(x

2 3
−

y
2 3
)
−

0
.0

6
7
4
(x

2
x
3
−

y
2
y
3
)
+

0
.0

0
2
5
(x

2 2
−

y
2 2
)
+

1
1
.4

5
3
7
6
x
1
−

1
2
.7

2
6
4
y
1
−

7
.5

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

1
0
.5

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

e 3

⎤ ⎦

R
3

U
3

=

⎡ ⎣0
.1

4
3
4
(x

2 3
−

y
2 3
)
−

0
.0

6
7
4
(x

2
x
3
−

y
2
y
3
)
+

0
.0

0
2
5
(x

2 2
−

y
2 2
)
+

1
1
.4

5
3
7
6
x
1
−

1
2
.7

2
6
4
y
1
−

7
.5

e 1
+

5
.9

1
2
e 3

−0
.0

1
0
7
(x

2 2
−

y
2 2
)
+

0
.0

2
3
7
(x

1
x
2
−

y
1
y
2
)
−

1
0
.5

e 2
−

1
.4

5
1
2
e 3

−0
.0

1
0
8

( x
2 3
−

y
2 3

) +
0
.0

1
4
7
(x

1
x
3
−

y
1
y
3
)
−

0
.0

0
4
1
(x

1
x
2
−

y
1
y
2
)
−

1
5
e 3

⎤ ⎦

123



914 Eur. Phys. J. Spec. Top. (2022) 231:905–919

Fig. 2 Attractors and
bifurcation of period
doubling route to chaos in
FO plague model P1

(b) Period 1 attractor at 0.95 (c) Period 2 attractor at 0.96 (d) Period 4 attractor at 0.975 

(a) Bifurcation diagram with the FO  as the bifurcation parameter 

the region α ∈ [0.954, 0.972[ and is displayed in Fig. 2c.
Similarly, a Period 4 attractor (P4A) existing in the
range α ∈ [0.972, 0.9755[ is illustrated in Fig. 2d and
the final chaotic attractor from α = 0.977 onwards in
Fig. 3b.

Figure 3 depicts the dynamics of attractors of the
FOPMs as investigated in Table 1 of Sect. 2.2.

It is observed that P0, P1, P2, P3 display chaotic
dynamics and P4, P5 display periodic dynamics.

4.2 Stabilisation of chaos in FOPMs using TSFLC

Since, only the FOPMs, P0, P1, P2, P3 display chaotic
dynamics, hence the controllers designed using TSFLC
concept in Sect. 3.1 are added to the corresponding
plague models at 10 s. It is observed from the plots of
Fig. 4 that chaos dies out within 4 s once the controller
is applied.

4.3 Synchronisation of chaos in FOPM using
TSFLSC

Another way of suppressing chaotic dynamics in plague
epidemic model is using synchronisation controller. The
significance lies in the fact that the uncontrolled chaotic
dynamics of the slave epidemic model after controlled
synchronisation becomes asymptotically periodic which
means that the motion of its trajectories repeats after
fixed intervals of time with a constant period and is
imperturbable to minute changes in initial states of
physical parameters. In real situations, such definite
repetitive dynamics makes prediction of the epidemic
model easier. The numerical results of synchronisation
controllers designed in Sect. 3.2 are plotted in Figs. 5

and 6, where it is clear that on adding the TSFLSCs
at 10 s, the initially chaotic slaves P0 and P2 display
periodic dynamics once they are synchronised with the
masters P4 and P5, respectively.

4.4 Comparative analyses between the plague
epidemic and COVID-19 pandemic models

The IOM of chaotic COVID-19 pandemic is modelled
using global modelling technique [31] obtained from two
real data sets: the official data from the National Health
Commission of the People’s Republic of China [32] and
the data from the Johns Hopkins University [33]. The
FO COVID-19 model (FOCM) is proposed in (30),

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαx1 = −0.10530723x2
3 + 2.343 × 10−5x2

1−0.15204x2(x3 − 0.01451520x1)
Dαx2 = −0.20517824x1 + 0.44040714x2

+0.16060376x2
3

Dαx3 = −0.00011493x1x3 − 1.215 × 10−5x1x2

+0.2844499x3 + 2.38 × 10−6x1x2

(30)
where x1, x2, x3 are the numbers of confirmed cases,
critical cases under intensive care and cumulative num-
ber of fatalities per day, respectively.

In terms of dynamical analysis, it is observed that
the FOCM (30) undergoes period doubling bifurca-
tion to generate chaotic transmission with the gradual
increase in FO; similar to that of the plague model.
The bifurcation diagram plotted in Fig. 7 for the tra-
jectory corresponding to cumulative number of COVID-
19 infected deaths per day, reveals that it follows a rich
complex dynamical path through successive cascades of
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Fig. 3 Attractors of
proposed FO plague
models

(a)  at 1 (b)  at 

(c)  at (d)  at 

(e)  at (f)  at 

period doubling which otherwise remain unobserved in
the IO chaotic model. The FOCM displays a P1A in
αε [0.95, 0.96], which gets converted to a P2A in [0.96,
0.97]. It splits further to transform into a P4A that
gives birth to chaotic attractor after infinite doublings
from α = 0.974 onwards.

The corresponding attractors of FOCM are plotted in
Fig. 8 that shows asymptotically period doubling route
to chaos.

The above results and analyses lead to the following
qualitative comparisons between the plague epidemic
and the COVID-19 pandemic situation in India:

(i) Both plague and COVID-19 propagation dynamics
are governed by chaotic behaviour where an appar-
ently trivial event may trigger a series of divergent
events, indicating that a long-term prediction of the
spread of the epidemic is not possible. One of the
major shortcomings of recent mathematical models
to exactly predict the course of COVID-19 is that
they do not take into account the chaotic behaviour
of the spread [34].

(ii) COVID-19 is a multi-strain pandemic, a charac-
teristic similar to plague. More than 100 strains

of COVID-19 have been discovered as reported in
Brazil [35], the United Kingdom [36], South Africa
[37], etc. The Covid-19 virus has undergone multiple
mutations of which the variants named as ‘Kappa’
and ‘Delta’ by WHO [38], first discovered in India,
in October, 2020 are far more contagious than their
predecessors having a transmission rate of 2.5 times
faster.

(iii) The plague epidemic sustained repeated seasonal
waves lasting for over 15 years (1896–1911), while
the ongoing COVID-19 pandemic too has repeated
waves of resurgence pointing towards the possibility
of a third wave in India [39].

(iv) Both plague and COVID-19 dispersal in India have
displayed close similarities demographically as well
as geographically. The Bombay Plague first hit
Mumbai in 1896 and then spread all over India
[5]. Similarly, Mumbai was one of the first and
worst hit cities in India in both the first and sec-
ond waves of Covid-19 which gradually dissemi-
nated with a rapid transmission rate throughout the
country.
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Fig. 4 Stabilisation of
chaos in FO plague
epidemic models when
controller is added at 10 s

(a) Chaos stabilisation in  (b) Chaos stabilisation in  

(c) Chaos stabilisation in  (d) Chaos stabilisation in  

Fig. 5 Synchronisation
control between
P4(master) and P0(slave)
plague epidemic models
using TSFLSC

(c) (d) Synchronisation error states 

(a) (b)
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Fig. 6 Synchronisation
control between
P5(master) and P2(slave)
plague epidemic models
using TSFLSC

(a) (b)

(c) (d) Synchronisation error states

Fig. 7 Period doubling bifurcation of FO COVID-19 pan-
demic model

The control framework in real scenario may reflect
cost effective treatments, social mobility restrictions,
injection of vaccines and prophylactic drugs, delays,
effective planning on medical infrastructure as hospital
beds, ventilators, oxygen cylinders, ICU berths, ambu-
lance, etc. and providing other health facilities. In our
future scope of work, we shall explore the design of
the controllers based on these actual control measures.
Sensing and control strategies can be applied for close
monitoring of the epidemic activities using real time
technology such as remote sensors, web-based tools for
surveillance, tracking individual movements, e- govern-
ment initiatives such as the Aarogya Setu [40], high
throughput sequencing technology, etc. [41]. In fact,
lower-middle income countries like India need judi-
cious planning on executing control policies to evaluate

the risk and cost of prophylactic strategies and public
health policies depending on the short-term estimation
of the chaotic course of the pandemic based on past
experience.

5 Conclusions

This paper investigates the complex dynamics of
fractional-order models of the past plague epidemic
which hit India over a hundred years ago and lasted
for more than a decade. We also analyse the FOM
of COVID-19 pandemic and found that both epi-
demics are multi-strain models, have probable seasonal-
ity, drastic transmission rate in high population density
areas of India, manifest chaotic wave of propagation,
all striking close similarities demographically and geo-
graphically. Both plague and COVID-19 are found to
exhibit chaotic behaviour, which means a small change
in a trivial event may activate a series of divergent
unpredictable events due to their hyped sensitivity to
initial states of driving parameters. Two types of con-
trollers are proposed to suppress chaos in the epidemic:
first, stabilisation control, where a TS fuzzy logic con-
troller is designed that successfully stabilises the chaotic
dynamics of the epidemic by minimizing the numbers
of infections, critical cases and fatalities to a disease-
free equilibrium, and second, synchronisation control,
where the proposed controller efficiently synchronises
the chaotic dynamics of the slave with the regular peri-
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Fig. 8 Phase portraits of
FO COVID-19 pandemic
model

(a) Period 1 attractor at 0.955 (b) Period 2 attractor at 0.967

(c) Period 4 attractor at 0.973 (d) Chaotic attractor at 0.975 

odic dynamics of the master. It is significant since after
synchronisation, the originally chaotic slave epidemic
model transforms into a periodic one which means that
its flow repeats after fixed intervals of time with a con-
stant period and is no longer sensitive to small pertur-
bations of parameters. In real situations, such repeated
regular dynamics facilitates prediction of the course of
outbreak, since the next surge or spike in infections
occurring at a periodic regular interval can be esti-
mated beforehand and an early alarm can be set. The
proposed FOMs, possessing the features of flexibility,
heredity and memory, can provide more accurate mod-
els of the chaotic pandemics by incorporating unmod-
elled dynamics that often fail to be encompassed by
integer-order models. It was discovered that in both
plague and COVID-19 models, with stronger index of
memory (lower values of fractional-order), chaos sub-
sides into regular periodic dynamics, while as memory
weakens and fades away towards an integral order, the
route to chaos in transmission dynamics is evident. In
our future scope of work, we shall explore the design
of the controllers based on real control measures Thus,
the authors are hopeful that the results on the chaotic
dynamics of propagation of the epidemic will be helpful
to recognise regions with high risk of contamination and
initiate timely action on crisis assessment, hazard man-
agement, policy making, emergency planning and eco-

nomic control measures, i.e. learning from the knowl-
edge of the past.

Data Availability Statement This manuscript has asso-
ciated data in a data repository. [Author comments’: Inter-
ested readers may contact the authors for details.]
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