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a b s t r a c t 

There is an urgent need for automated methods to assist accurate and effective assessment of COVID- 

19. Radiology and nucleic acid test (NAT) are complementary COVID-19 diagnosis methods. In this pa- 

per, we present an end-to-end multitask learning (MTL) framework (COVID-MTL) that is capable of auto- 

mated and simultaneous detection (against both radiology and NAT) and severity assessment of COVID-19. 

COVID-MTL learns different COVID-19 tasks in parallel through our novel random-weighted loss function, 

which assigns learning weights under Dirichlet distribution to prevent task dominance; our new 3D real- 

time augmentation algorithm (Shift3D) introduces space variances for 3D CNN components by shifting 

low-level feature representations of volumetric inputs in three dimensions; thereby, the MTL framework 

is able to accelerate convergence and improve joint learning performance compared to single-task mod- 

els. By only using chest CT scans, COVID-MTL was trained on 930 CT scans and tested on separate 399 

cases. COVID-MTL achieved AUCs of 0.939 and 0.846, and accuracies of 90.23% and 79.20% for detection of 

COVID-19 against radiology and NAT, respectively, which outperformed the state-of-the-art models. Mean- 

while, COVID-MTL yielded AUC of 0.800 ± 0.020 and 0.813 ± 0.021 (with transfer learning) for classifying 

control/suspected, mild/regular, and severe/critically-ill cases. To decipher the recognition mechanism, we 

also identified high-throughput lung features that were significantly related ( P < 0.001) to the positivity 

and severity of COVID-19. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

As firstly reported in December 2019 [1] , COVID-19 was iden- 

ified as a novel coronavirus (SARS-CoV-2) with severe respiratory 

ymptoms similar to pneumonia and seasonal flu, such as fever, 

ough, fatigue, and myalgia [2] . The outbreak of the disease has 

riggered the World Health Organization (WHO) to declare it as a 

andemic. This human-to-human transmission disease has resulted 

n more than 119 million infections worldwide with over 2.6 mil- 

ion deaths as of March 2021 according to statistics released by 

ohns Hopkins University. 

To constraint the spread of COVID-19 pneumonia, besides per- 

onal protection, WHO recommended preventive measures includ- 

ng quickly identifying suspect cases, timely testing, isolating infec- 
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ious people, and more importantly, identifying all close contacts of 

he infected [3] . Nucleic acid test (NAT) via real-time polymerase 

hain reaction (RT-PCR) is considered as an operational “gold stan- 

ard” for detection of the causative agent of COVID-19 [4] . How- 

ver, the RT-PCR test suffers from a relatively higher false-negative 

ate especially in initial disease presentation and asymptomatic 

eople [5] which may due to prolonged nuclei acid conversion [6] , 

ack of sufficient test kits, and the low quality of the swab samples 

4] . 

It was reported that SARS-CoV-2 affects lung lobes and pa- 

ients infected with COVID-19 pneumonia are widely exhibited 

round-glass opacities (GGO), consolidation, or both in their chest 

omputer tomography (CT) scans [7] . Naturally, such anatomical 

hanges can also be captured by measuring imaging features, es- 

ecially texture features, and used for COVID-19 diagnosis. Besides, 

he chest CT scan is suggested to be able to detect COVID-19 in the 

arly stage, especially useful for screening asymptomatic patients 

r patients with negative NAT results [8] . More importantly, signs 

https://doi.org/10.1016/j.patcog.2021.108499
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108499&domain=pdf
mailto:guoqing.bao@sydney.edu.au
mailto:xiu.wang@sydney.edu.au
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f disease progression can also be observed from chest CT images, 

nd as reported [9] that GGO, GGO plus reticular pattern or con- 

olidation were all common in the early rapid progressive stage, 

GO plus consolidation dominated the advanced stage, and GGO 

lus consolidation sharply decreased in the recovery (absorption) 

tage. Consequently, the chest CT scan has become a complemen- 

ary strategy of NAT and is widely used in clinical practice. 

Considering the widespread of COVID-19 across 192 coun- 

ries/regions, the rapid increase of the number of new cases, and 

he success of deep learning in medical image analysis, there 

s an urgent need to develop a deep learning-based system for 

utomated assessment of COVID-19. Several methods have been 

roposed and achieved promising results. For instance, Li et al. 

10] proposed a ResNet50-based COVNet model, from which a se- 

ies of CT image slices were fed into different network branches, 

nd the feature maps obtained from individual branches were fi- 

ally concatenated, for detection of COVID-19 and community- 

cquired pneumonia. Later, Harmon et al. [11] proposed an arti- 

cial intelligence (AI) system to detect COVID-19 pneumonia using 

ultinational chest CT datasets, which achieved up to 90.8% ac- 

uracy. Similar performance was achieved by Sun et al. [12] , they 

rst extracted imaging features from volumetric CT scans and pro- 

osed a deep forest network guided by adaptive feature selection 

or COVID-19 classification. Wang et al. [13] developed a tailored 

D convolutional neural network, named COVID-Net, for the detec- 

ion of COVID-19 using chest X-ray images. This model was later 

edesigned in [14] for COVID-19 CT image slice classification. More 

ecently, Shorfuzzaman and Hossain [15] used a fine-tuned pre- 

rained convolutional encoder to capture feature representations of 

OVID-19 from limited X-ray training samples, and then adopted 

 Siamese network for classification of COVID-19. Besides the bi- 

ary classification of COVID-19, Wang et al. [16] developed a deep 

earning model that can simultaneously localize the infectious re- 

ions of COVID-19 on chest X-ray images. Tang et al. [17] extracted 

adiomic features from CT images and then combined them with 

linical indices for classification of severe vs. non-severe COVID-19 

n a small cohort using a random forest model. Very recently, Ning 

t al. [18] made their COVID-19 dataset publicly available and pro- 

osed to use CT imaging data as well as clinical features for the 

etection and severity assessment of COVID-19. They have manu- 

lly labeled 19,685 CT slices to train their single-task CNN mod- 

ls. Meanwhile, Wang et al. proposed deCoVnet based on Facebook 

lowFast to harness 3D CNN for COVID-19 diagnosis [19] . 

The existing works mainly focused on detecting COVID-19 us- 

ng CT or X-ray images against either radiology or NAT. Given the 

elatively higher false-negative rate of NAT in asymptomatic de- 

ection, the prediction results only against NAT might have bi- 

ses. More seriously, though people with NAT-negative infection 

ay not present any symptoms, they still carry the virus and may 

ave a big chance to transmit among their contacts, which there- 

fter poses an even greater risk to the communities since it is 

arder to do contact tracing for asymptomatic transmissions. Ra- 

iology, especially computer tomography, which is more sensitive 

han other imaging modalities for early diagnosis of COVID-19, is 

ow served as an essential complementary method for more ac- 

urate diagnoses. Thus, automated detection of COVID-19 against 

oth NAT and computer tomography is increasingly needed and 

aybe more useful in clinical practice. While CT slice-based solu- 

ions may not be applicable in mass practice because the selection 

f proper CT slices for model inference requires expert involve- 

ent. Thus, methods that directly utilize volumetric CT images to 

educe the heavy workload of experts are more clinically feasible 

nd in high demand. Besides diagnosis, automated and fast sever- 

ty assessment of COVID-19 may be especially beneficial for severe 

atients given the extreme shortage of hospital beds to handle the 

nexpected surge of COVID-19 admissions across many countries. 
2 
To address these challenges, we propose a multitask-learning 

MTL) framework to ensemble 3D CNN and auxiliary feed-forward 

eural network (FNN) to harness volumetric CT inputs and high- 

hroughput CT lung features for automated and simultaneous de- 

ection of COVID-19 pneumonia against both radiology (diagnosed 

y radiologists using CT scans) and NAT (RT-PCR) as well as assess- 

ng the severity of the infection. Due to the imbalance of task dif- 

culty, more difficult tasks such as severity assessment are prone 

o slow-convergence in the MTL learning procedure. To tackle this 

ssue, a novel random-weighted loss function is proposed to pri- 

ritize vulnerable COVID-19 tasks that aims to alleviate task dom- 

nance and enhance joint learning performance. COVID-MTL uses 

hest CT scans as inputs that are more stable compared to the 

lice-based approach since its inference process is fully automated. 

o overcome the hurdle faced by conventional 3D CNNs when pro- 

essing volumetric CT inputs, we proposed a novel Shift3D that in- 

roduces space variances on low-level volumetric feature represen- 

ations to alleviate overfitting and improve convergence and ac- 

uracy for state-of-the-art 3D CNN components. In addition, ac- 

urate lung segmentation is necessary for automated diagnosis, 

e thereby design a novel unsupervised algorithm to address the 

nder-segmentation of crucial and diagnostic-relevant structures 

ike GGO in COVID-19 CT scans. 

. Related work 

.1. Lung segmentation from COVID-19 CT scans 

Lung segmentation is a necessary and critical step for the di- 

gnosis and treatment of lung diseases, especially in the early 

tage. Conventionally, U-net, a symmetric model architecture that 

s widely used in medical image segmentation, is applied for 

ung [20] and lung lesion/nodule segmentation [21] . However, this 

ethod requires lung delineation masks that are paired to each 

nput CT slice for training. Recent studies have shown that peo- 

le infected with SARS-CoV-2 may undergo ground-glass opacities 

r GGO in their lungs within a few weeks after symptom onset 

nd thus subsequently demonstrate a white lung appearance in CT 

cans [22] . The white lung areas may introduce additional diffi- 

ulties for some of the existing lung segmentation methods, es- 

ecially for algorithms involving intensity or thresholding, where 

nder-segmentation of GGO may occur. 

To tackle those problems, different strategies have been pro- 

osed more recently. For instance, Oulefki et al. improved a mul- 

ilevel thresholding algorithm based on Kapur entropy for auto- 

atic segmentation of COVID-19 infected lung regions from chest 

T scans [23] ; Fan et al. proposed a semi-supervised framework 

or segmentation of lung infections from COVID-19 CT scans, from 

hich limited labeled images and randomly selected propagation 

trategies were used to train an Inf-Net CNN model [24] . 

However, given the shortage of radiologist engagement during 

he pandemic, an unsupervised segmentation algorithm is more 

avorable and more viable for mass studies and applications on 

OVID-19. In this research, we intended to improve a classical un- 

upervised lung segmentation algorithm [25] , which was widely 

dopted by the community (e.g., Kaggle competition, Data Science 

owl 2017), for the following tasks, i.e., detection and severity as- 

essment of COVID-19. 

.2. 3D convolutional neural network 

The convolutional neural network was initially proposed to pro- 

ess 2D images, including handwriting recognition and natural im- 

ge classification. Besides extracting features from the spatial di- 

ensions, 3D convolution was later introduced for simultaneously 
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andling the temporal dimensions of an input series, such as mo- 

ion information captured from multiple adjacent video frames, 

and pose signals that are estimated from the single depth image, 

nd organ tissue segmented from volumetric medical images. Re- 

arding processing CT images, one can either take a single CT slice 

s input using 2D CNNs which fail to leverage temporal context 

rom adjacent slices, or harness inter-slice context from volumetric 

nput with 3D convolution kernels. Although 3D CNNs can lead to 

mproved performance in comparison to their 2D counterparts, the 

enefit comes with an extreme memory and computational cost 

ue to the complexity of 3D convolution and the increased number 

f network weights. To tackle the problem, well-known resource- 

fficient 2D CNNs have been recently converted to 3D CNNs to 

everage the capability of spatio-temporal features [26] , such as 

esNet3D, SqueezeNet3D, and MobileNet3D. SqueezeNet is one of 

he lightweight CNN architectures, which can achieve similar ac- 

uracy to AlexNet by only using 50 times fewer parameters [27] . 

n this work, we build our 3D CNN model with SqueezeNet as the 

ackbone. 

.3. Multitask learning 

Multitask learning (MTL) is referred to as a learning paradigm 

hat aims to improve the generalization performance of multiple 

elated tasks by leveraging their relational information [28] . To har- 

ess the power of MTL, the learning tasks or a subset of tasks are

ssumed to be related. For example, a task to detect the positivity 

f COVID-19 is related to the task designed to assess the severity 

f the infection. Given the nature of different tasks (imbalance of 

ask difficulty), tasks such as the assessment of the severity can 

e more difficult to learn than a task to detect infection. Depend- 

ng on how the hidden layers are shared, there are two different 

ypes of MTL approaches, i.e., hard and soft parameter sharing [28] . 

n the hard parameter sharing, which is more common and capa- 

le of greatly reducing the risk of overfitting, hidden layers were 

hared between all tasks, and each task has its own task-specific 

utput layer(s) [29] . In comparison, the soft parameter sharing ap- 

roach comes with regularizations to reduce the distance between 

ifferent task models (each task has its own model and parame- 

ers) [28] . Both the two MTL approaches are prone to unnecessar- 

ly emphasize easier tasks which can lead to convergence problems 

or difficult tasks [30] . As a result, specific tasks may dominate the 

ntire learning procedure. Different strategies have been proposed 

o tackle the problem, for example, Guo et al. introduced adaptive 

eight adjustment to automatically prioritize more difficult tasks; 

endall et al. adopted homoscedastic uncertainty (task-dependent 

ncertainty) as a basis for weighting losses [31] ; Tian et al. re- 

ently proposed to use two sets of Eigenfunctions (the common 

ne shared by different tasks and unique ones used in individual 

asks) to approximate MTL objective function [32] . Recently, mul- 

itask learning approach was utilized for medical diagnostics, for 

xample, Huang et al. adopted graph-based feature selection and 

roposed a multi-gate mixture-of-experts model for joint diagno- 

is of autism spectrum disorder and attention deficit hyperactivity 

isorder from resting-state functional MRI data [33] ; Amyar et al. 

ntroduced a multitask learning workflow based on U-Net for le- 

ion segmentation and classification of COVID-19 CT slices [34] . 

. COVID-19 CT studies 

A total of 1329 studies with chest CT scans and correspond- 

ng diagnosis and severity assessment results were enrolled from 

 public dataset 1 [18] (collected by Wuhan Union Hospital and 
1 http://ictcf.biocuckoo.cn/HUST-19.php 

t

C

r

3 
uhan Liyuan Hospital). 761 patients were confirmed as COVID- 

9 positive by nucleic acid test (COVID-NAT). 998 studies were 

iagnosed as COVID-19 by radiologists using chest CT images 

COVID-CT). 237 studies diagnosed as COVID-19 using CT scans 

ut yet confirmed by the nucleic acid test were regarded as “sus- 

ected” cases. 331 COVID-19 negative cases were served as “con- 

rol”. The severities of the COVID-19 patients were assessed by 

hysicians based on the infection, symptoms, disease progres- 

ion, and patient conditions, which can be categorized into con- 

rol/suspected (type I), mild/regular (type II), and severe/critically 

ll (type III) (COVID-Severity). The cohort was split arbitrarily into 

raining/cross-validation (70%, n = 930) and testing dataset (30%, 

 = 399). The split was stratified by COVID-NAT. The two datasets 

ave similar class distributions. A summary of the study distribu- 

ion and training/cross-validation vs testing split is shown in 

. Methodology 

As illustrated in Fig. 1 , the proposed multitask learning frame- 

ork (COVID-MTL) consists of six major components for diagnosis 

nd severity assessment on COVID-19 CT inputs. An unsupervised 

D lung segmentation module is first used to extract lung volumes 

rom chest CT scans. Then, a feature extractor is to obtain high- 

hroughput CT features including intensity, texture, and wavelet 

eatures from the segmented lung volumes. Next, the segmented 

ung volumes and extracted lung features are fed into a ShiftNet3D 

nd a feed-forward neural network (FNN), respectively, to leverage 

oth raw CT data as well as high-throughput imaging features. A 

ard parameter sharing approach is adopted to construct the MTL 

odel. 

As the major component of COVID-MTL, ShiftNet3D includes a 

hift3D layer to boost network performance through introducing 

pace variances on low-level feature representations of the volu- 

etric inputs and 8 consecutive 3D Fire modules (the backbone 

f SqueezeNet [27] ) are used as shared hidden layers between all 

asks. To learn task-specific representations, each task has its own 

utput layer (TSL layers) and loss function. High-level feature rep- 

esentations obtained from CT imaging features through the auxil- 

ary FNN (AFNN) are concatenated with each TSL layer for perfor- 

ance enhancement. As such, there are two backpropagation paths 

n the overall MTL network. Last, a random-weighted loss function 

s attached to calculate the combined task loss so that different 

OVID-19 tasks can be trained simultaneously by using weighted 

otal loss as guidance. Key modules of COVID-MTL will be disclosed 

n Sections 4.1 – 4.3. 

.1. Unsupervised lung segmentation and high-throughput lung 

eature extraction 

To avoid the heavy burden on manually labeling lung vol- 

mes from chest CT scans during the pandemic, an unsupervised 

ung segmentation algorithm is more favorable and more viable 

or mass studies of COVID-19 compared to learning-based meth- 

ds. However, the widely-adopted unsupervised lung segmentation 

lgorithm [25] , which is based on intensity and region connec- 

ion, is not able to properly handle white lung areas (e.g., GGO) 

n COVID-19 CT scans. To address this problem, we propose an 

ctive contour-based algorithm to refine the initial segmentation 

esults produced by the classical method. The inflated contours 

f the initially segmented lungs are used as seeds for the re- 

nements. The energy-minimizing refinement method evolves us- 

ng the given seeds and stops at the boundary of the respec- 

ive lungs. Thus, avoided inherited under-segmentation defects of 

hresholding-based methods when dealing with more complicated 

OVID-19 lung regions. The corresponding pseudocode is summa- 

ized in Algorithm 1 . 

http://ictcf.biocuckoo.cn/HUST-19.php


G. Bao, H. Chen, T. Liu et al. Pattern Recognition 124 (2022) 108499 

Fig. 1. Overview of COVID-19 Multitask Learning Framework. 

Algorithm 1 

Pseudocode code of unsupervised refinement method. 
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Given the limited engagement of radiologists during the out- 

reak, over a thousand (1056) instead of hundreds of thousands of 

T slices were arbitrarily selected from the cohort (which covered 

atients with various states) and manually delineated as ground- 

ruth under a senior radiologist’s supervision for performance com- 

arison. Segmentation masks produced by different state-of-the- 
4 
rt and proposed methods were compared with ground-truth. The 

egmentation performance was measured by standard metrics, in- 

luding Dice similarity coefficient, Jaccard index, Matthews corre- 

ation coefficient (MCC), and precision, which are defined as: 

ice = 

2 T P 

2 T P + F P + F N 

accard = 

Dice 

2 − Dice 

CC = 

T P ∗ T N − F P ∗ F N √ 

(T P + F N) ∗ (T P + F P ) ∗ (T N + F P ) ∗ (T N + F N) 

 recision = 

T P 

T P + F P 

here T P : true positive; T N: true negative; F P : false positive; F N:

alse negative. 

After the lung volumes were automatically segmented by the 

roposed unsupervised algorithm, a total of 375 high-throughput 

ung features, which including First Order Statistics, Gray Level 

ooccurrence Matrix (GLCM), Gray Level Run Length Matrix 

GLRLM), Gray Level Size Zone Matrix (GLSZM), and Wavelet fea- 

ures, were extracted from corresponding lung volumes for the 

ohort study. To extract wavelet features, Coiflets 1 (coif1) low- 

nd high-pass filters were applied in each of the three dimensions 

hich yielded 8 sub-bands (or decompositions). GLCM and GLRLM 

eatures were then derived from each sub-band. 

.2. Shift3D 

Chest CT is more sensitive for early diagnosis of COVID-19 than 

AT and other imaging modalities. However, the existing COVID-19 

iagnosis based on CT slice unavoidably needs expert involvement. 

o automate the diagnostic workup, it is necessary to directly pro- 

ess the volumetric radiographic images. 3D CNNs are specifically 

esigned to harness volumetric inputs, but they are notoriously 

ifficult to train, e.g., slow convergence, extremely high memory, 

nd computational costs. Therefore, more efficient structures such 

s 3D SqueezeNet were instead used. However, the lightweight 3D 
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Algorithm 2 

Pseudocode implementation of Shift3D with PyTorch. Note: randint is a Python built-in function that 

returns random values between [a, b] for randint(a, b). 
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NNs come with accuracy degradation and are still prone to over- 

tting and suffering from slow convergence. To address those prob- 

ems and make them more feasible in practice, here we propose a 

D real-time augmentation method, named Shift3D, which intro- 

uces space variances through randomly shifting low-level feature 

epresentations of the volumetric inputs in three dimensions (or 

 directions). The rationale of this setting is based on our obser- 

ation that the geographical location of human organs in CT scans 

aries from one case to another, and even for different scans of the 

ame patient (people lying down on a CT bed without exactly the 

ame positions). Such space variances may affect the network per- 

ormance and are thus worth to be dealt with. In comparison to 

raditional augmentation methods, Shift3D directly operate on dif- 

erent levels of feature representations (3D feature maps) instead 

f original volumetric inputs and leverage GPU computing power 

y being implemented as a neural network layer. Related stud- 

es with 2D CNNs suggest that nonlinearly augmenting 2D feature 

aps can achieve better performance compared to input augmen- 

ation [ 35 , 36 ]. 3D scaling may also introduce space variances, but 

t is more computationally expensive. 

The pseudocode of Shift3D is illustrated in Algorithm 2 . There 

re three parameters for Shift3D: max shift percentage p (default 

s 0.2) decides the maximum percentage of a shift in each of the 

 directions (in compared to the size of the corresponding di- 

ension); elements will be re-introduced at the first position if 

hey are shifted beyond the last position, and the ispad d ing and 

pad d in g v are used to fill re-introduced elements with specific num- 

ers. The usage of Shift3D is flexible, for example, one can lower 

he frequency for calling Shift3D in a wrapped network layer to 

educe shifting chance and processing power; it can also combine 

ith existing augmentation methods to further boost network per- 

ormance. Similar to other augmentation algorithms, it is not rec- 

mmended to use Shift3D in the inference stage. 

.3. Random-weighted multitask loss 

Difficult tasks like severity assessment of COVID-19 may induce 

igher losses compared to easier tasks (e.g., diagnosis) and thus 

ore vulnerable in the MTL learning procedure, e.g., slow conver- 

ence and lower learning priority. Inspired by task-dependent un- 

ertainty loss proposed by Kendall et al. [31] , where uncertainty 

eights were learned by tuning log variances, here we propose a 
5 
andom-weighted loss function, which randomly assigns learning 

eights to different tasks during each iteration of the joint train- 

ng, to prevent the learning procedure being dominated by any 

pecific tasks. The random weights are drawn from the Dirichlet 

istribution since it can generate probability distributions that sat- 

sfy our needs: 1) sum of all task weights (probabilities) is equal 

o 1; 2) it allows us to control the concentration of a generated 

eight distribution (discuss later). Such a random-weighted set- 

ing is based on the probability theory that each of the k tasks has 

1 /k chance to be prioritized if the number of iterations in joint 

raining is large. Therefore, vulnerable tasks still have a sufficient 

hance to be prioritized and trained. 

The Dirichlet distribution uses a probability density function 

hat defined as: 

(P , α) = 

1 

B (α) 

k ∏ 

i =1 

p αi −1 
i 

(1) 

here, K ≥ 2 , K is the number of learning tasks; P = ( p 1 ... p n ) ,
 k 
1 p i = 1 ; p i ≥ 0 , p i is the weight of learning task i ; B (α) is the

ormalization constant and α = ( α1 ... αk ) , which can be expressed 

s a gamma function: 

 (α) = 

∏ k 
i =1 �( αi ) 

�( 
∑ k 

i =1 αi ) 
(2) 

Since the objective function for each task is a cross-entropy 

oss, which is defined as: 

 ( ̂  y , y ) = −
∑ 

i 

y i log ( ̂  y i ) (3) 

The total loss function of a MTL model with random-weighted 

oss, therefore, can be calculated as: 

 total ( ̂  y 1 ... ̂  y k , y 1 ... y k ) = 

k ∑ 

j=1 

(−
∑ 

i 

y j 
i 

log ( ̂  y j 
i 
) ∗ p j ) (4) 

For the special case when K = 2 , the weights for the two learn-

ng tasks can be simply decided as: 

 total ( ̂  y 1 , ̂  y 2 ; y 1 , y 2 ) = 

( 

−
∑ 

i 

y 1 i log ( ̂  y 1 i ) ∗ p 

) 

+ 

( 

−
∑ 

i 

y 2 i log ( ̂  y 2 i ) ∗ (1 − p) 

) 

(5) 
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here p can be drawn from either Dirichlet or others like Uniform 

istribution for two tasks. 

One can draw random weights n times and average the results 

o avoid potential heavy fluctuation of a single Dirichlet draw, thus 

he total loss function can be finally modeled as: 

 total ( ̂  y 1 ... ̂  y k , y 1 ... y k ) = 

1 

n 

k ∑ 

j=1 

(−
∑ 

i 

y j 
i 

log ( ̂  y j 
i 
) ∗ ˆ p j ) (6) 

hile ˆ p j is the accumulation weights of n draws for the task j. 

 can be seen as a hyperparameter which controls weight differ- 

nce (or concentration) between K tasks, the larger the n the less 

ifference among tasks’ weights (evenly distributed), therefore, the 

andom-weighted loss will be downgraded to simple mean loss if n 

s large enough. In other words, a larger n is preferred if tasks’ dif-

culties are similar, otherwise, a smaller n is better for tasks that 

ave distinct difficulties. 

As indicated in Eq. (6) , instead of tuning normalization con- 

tant α (a vector of concentration parameters), we fixed α = 

1 ... 1) which made Dirichlet distribution generate high concen- 

rated probabilities by default, and then we introduced a single 

nteger parameter n to control the concentration (which is much 

asier to tune) and the degree for prioritizing vulnerable task(s). 

.4. Pattern analysis of high-throughput lung features and their 

orrelation with COVID-19 

Because the deep features extracted by the neural network lack 

nterpretability. To decipher the correlation between CT images 

nd COVID-19, high-throughput imaging features extracted from 

T lung volumes were instead analyzed. The feature studies were 

tratified into different groups based on the positivity and severity 

f COVID-19. Because the stratified groups may not have equal fea- 

ure variances and equal sample sizes, Welch’s ANOVA was there- 

ore used to test differences between the group means. The top 

maging features that are significantly related to COVID-19 were 

hen identified based on Welch’s results. The patterns of high- 

hroughput features and their correlation with COVID-19 infection 

nd severity as well as routine clinical parameters like gender and 

ge can be further analyzed with clustering heatmap, where imag- 

ng features were first scaled by z-score and then hierarchically 

lustered based on the distance of the Pearson correlation coeffi- 

ient. 

. Experiments and results 

.1. Experiment settings 

A total of seven machine learning and deep learning models 

ere used in this study for the diagnosis and severity assessment 

f COVID-19. All of the chest CT scans were resampled into the 

pacing of 1 mm x 1 mm x 1 mm for lung segmentation. High-

hroughput features extracted from lung CT volumes were used 

o train Random Forests (RF) and LightGBM (LGBM) models. In 

ach of the two machine learning models, 10 0 0 estimators (de- 

ision trees) were utilized. A learning rate of 0.01 was used to 

rain the LGBM model. The number of feature maps of ShiftNet3D 

s ranging from 64 to 512; in comparison, the AFNN branch con- 

ains 256, 128, 64, and 32 nodes in its four hidden layers. To 

rain deep learning models, i.e., ResNet3D (ResNet34 structure) 

26] , SqueezeNet3D [26] , deCovNet [19] , ShiftNet3D, and COVID- 

TL, standard preprocessing and augmentation procedures were 

tilized, which including normalization, random rotation, flip, and 

rop (size of 200 × 250 × 250 pixels covering major lung re- 

ions). As for the training parameters, stochastic gradient descent 

SGD) with Nesterov momentum of 0.9, weight decay of 5E-5, 80 
6 
pochs, and a batch size of 10 was used for all CNN models. A 

osine learning rate scheduler was utilized, and the learning rate 

as started with 0.005 and gradually declined to a minimum of 

E-5. He-normalization was adopted to initialize network weights. 

he number of draws ( n ) for Dirichlet distribution in each train- 

ng iteration is 2. The abovementioned hyperparameters were de- 

ived from the training/cross-validation dataset. More complicated 

D ResNet models, like the 3D version of ResNet-50, were unable 

o be trained due to the limitation of GPU memory capacity. All 

NN models were trained on two Nvidia RTX 2080Ti GPUs us- 

ng consistent settings. COVID-MTL can be trained with or with- 

ut high-throughput inputs. The last epoch testing performances, 

hich were measured by precision, recall, F1 score, accuracy, and 

rea under the curve (AUC), were reported. 

.2. Unsupervised lung segmentation on COVID-19 chest CT scans 

As shown in Table 2 , both the classical method [25] and the 

roposed algorithm achieved high segmentation performance. The 

roposed refinement method consistently improved the state-of- 

he-art and the benefits are expected coming from the improve- 

ents of under-segmentation in white lung areas, as indicated in 

ig. 2 . 

The performance of discriminative localization segmentation 

DLS) [37] was relatively lower than the other methods, and the 

esults complied with our previous discussion that traditional 

hresholding-based methods may have difficulty handling white- 

ppearing lung areas. U-Net-R231CovidWeb [38] achieved rela- 

ively lower performance than expected, which may due to a small 

raining cohort (36 cases or 3393 CT slices) they adopted [38] . 

ine-tuning of U-Net-R231CovidWeb on part of the dataset we 

sed might be helpful to improve the segmentation outcomes. 

owever, it would need a considerable amount of slice-by-slice 

xpert delineation to generate training labels, which may not be 

easible due to the limited engagements of radiologists during the 

andemic. 

The sample result in Fig. 2 illustrates that the proposed re- 

nement algorithm can accurately detect white lung areas from 

OVID-19 CT studies in different scenarios, especially on more 

hallenging cases as illustrated in Fig. 2 A-C, whereas, the classical 

ethod failed to detect crucial COVID-19 diagnostic structures (red 

egion, Fig. 2 A-C). However, the classical method does not always 

roduce negative outcomes, it can detect ongoing GGOs in some 

f the cases where mild to moderate white appearance mostly oc- 

urred within but not on the edge of the lung ( Fig. 2 D). 

.3. Experimental results of COVID-19 diagnosis 

The seven types of models were trained on the full 

raining/cross-validation dataset and then tested on another 399 CT 

tudies ( Table 1 ). Corresponding models were assessed against ra- 

iology (COVID-CT) and nucleic acid tests (COVID-NAT). As shown 

n Fig. 3 and Table 3 , the two popular machine learning models 

RF and LGBM) achieved similar detection performance, i.e., AUCs 

f 0.913/0.921 and accuracies of 86.47%/86.47% against radiology, 

nd AUCs of 0.819/0.803 and accuracies of 73.93%/76.19% against 

ucleic acid tests, using high-throughput lung features. 

When directly utilizing 3D CT lung volumes as inputs, 3D 

NN models, especially ShiftNet3D, yielded higher performance 

n comparison to RF and LGBM. Compared to ResNet3D and 

queezeNet3D, ShiftNet3D achieved around 4–5% higher accuracy 

nd AUC performance for detection of COVID-19 against nucleic 

cid tests ( Table 3 ), suggesting the introduction of Shift3D can 

nduce a performance boost for existing 3D CNNs on the more 

hallenging COVID-19 learning task. While deCoVnet [19] achieved 
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Fig. 2. Sample lung segmentation on COVID-19 CT scans. Blue region: segmented by classical method; red regions contain tissue structures like GGO that are crucial for 

COVID-19 diagnosis; orange contour: refinement results; green contour: ground-truth. 

Fig. 3. ROC/AUCs of machine learning and deep learning models for detection of COVID-19 against radiologists (left) and SARS-CoV-2 nucleic acid test (right). 
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igher performance on COVID-NAT task but second worst (slightly 

etter than ResNet3D) on the other two tasks ( Table 3 and 4 ). 

After the adoption of a random-weighted loss function, the 

OVID-MTL is capable of simultaneously detecting COVID-19 

gainst both radiology (AUC of 0.939, an accuracy of 90.23%) and 

ucleic acid tests (AUC of 0.846, an accuracy of 79.20%) ( Fig. 3 and

able 3 ). In comparison to single-task models, the MTL approach 

chieved around 1.5% −6% higher accuracy for detection against ra- 

iology and significant higher diagnosis performance against nu- 

leic acid tests, e.g., over 3% accuracy promotion compared to Shift- 

et3D, and around 7–9% compared to ResNet3D and SqueezeNet3D 

 Table 3 ), suggesting the effectiveness of joint learning. Even higher 

erformance was achieved when using CT lung volumes and high- 
7 
hroughput imaging features as parallel inputs which detected 

2.54% and 84.69% of clinically-confirmed positive and negative 

est cases respectively. COVID-MTL models equipped with Shift3D 

onsistently outperform models without Shift3D. It is worth not- 

ng that the training and inference time of the COVID-MTL models 

s significantly reduced (three times less) in comparison to con- 

entional 3D CNN models since the latter needs to be trained and 

redicted individually for each task. 

As shown in Fig. 4 A-C, under the consistent experiment set- 

ings, single-task 3D CNN models with Shift3D converged faster, 

ore stable (less fluctuating), and converged at the lower loss lev- 

ls on all three tasks. In comparison, Fig. 4 D illustrates the total 

oss of COVID-MTL models (with CT volumetric inputs) for COVID- 
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Fig. 4. Loss comparison of lightweight 3D CNNs (A-C) and COVID-MTL (D) for COVID-19 assessment under using (solid lines) and w/o (dash lines) using Shift3D. 

Table 1 

Summary of patient studies and training/cross-validation and testing split. 

Features Train/Cross-Val ( n = 930) Testing ( n = 399) 

Male/Female 465/465 214/185 

Age (mean ± std) 54.67 ±16.81 53.81 ±17.80 

COVID-CT 

Positive 701 297 

Negative 229 102 

COVID-NAT 

Positive 533 228 

Negative 397 171 

COVID-Severity 

Control/Suspected 397 171 

Mild/Regular 398 164 

Severe/Critically ill 135 64 

Data Source 

Wuhan Union Hospital 669 290 

Wuhan Liyuan Hospital 261 109 
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9 detection with and w/o using Shift3D. The losses of different 

asks were randomly weighted and summed during each training 

teration, and the corresponding total test loss fluctuated as ex- 

ected in the earlier learning stage. With the help of the Shift3D, 
Table 2 

Performance metrics of lung segmentation on COVID

Method Dice Jac

DLS [37] 0.945 ±0.136 0.9

U-Net-R231CovidWeb [38] 0.952 ±0.150 0.9

Classical Method [25] 0.971 ±0.019 0.9

Proposed Algorithm 0.982 ±0.017 0.9

8 
he multitask learning model converged faster, and the fluctuation 

f the total loss was also alleviated ( Fig. 4 D). 

.4. Experimental results of COVID-19 severity assessment 

As shown in Table 4 , except for ResNet3D and deCovNet, the 

eep learning models achieved consistently higher performance 

ompared to RF and LGBM for COVID-19 severity assessment. 

hiftNet3D yielded similar performance compared to its backbone 

odel (SqueezeNet3D). In comparison, the COVID-MTL achieved a 

light performance boost with an AUC of 0.800 ± 0.020 and an ac- 

uracy of 66.67%. 

Other than training three tasks together, it is reasonable to as- 

ume that the MTL model trained for the two diagnosis tasks can 

e reused for severity assessment since the control/suspected cases 

an be inferred from the positivity of the CT diagnosis and nu- 

leic acid tests. To validate the hypothesis, the COVID-MTL model 

rained for the two diagnosis tasks was repurposed using transfer 

earning for severity assessment. The task-specific output and clas- 

ification layers of COVID-MTL were replaced with fully-connected 

ayers, the pretrained convolutional layers were frozen and the 

eused model was then trained for additional 50 epochs. As a re- 
-19 CT scans. 

card MCC Precision 

15 ±0.144 0.947 ±0.075 0.941 ±0.129 

30 ±0.153 0.963 ±0.038 0.948 ±0.148 

45 ±0.036 0.966 ±0.022 0.961 ±0.027 

66 ±0.032 0.979 ±0.020 0.981 ±0.021 
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Table 3 

Performance metrics of machine learning and deep learning models for COVID-19 diagnosis. 

Model Input(s) 

COVID-19 against Radiology COVID-19 against Nucleic Acid Test 

Prec. Rec. F1 Acc. AUC Prec. Rec. F1 Acc. AUC 

Single Task RF CT Features 0.861 0.865 0.862 86.47% 0.913 0.739 0.739 0.739 73.93% 0.819 

LGBM CT Features 0.862 0.865 0.863 86.47% 0.921 0.761 0.762 0.761 76.19% 0.803 

ResNet3D CT Volume 0.841 0.840 0.840 83.96% 0.901 0.723 0.724 0.724 72.43% 0.763 

deCoVnet CT Volume 0.865 0.860 0.862 85.96% 0.907 0.771 0.772 0.771 77.19% 0.821 

SqueezeNet3D CT Volume 0.897 0.885 0.888 88.47% 0.931 0.713 0.707 0.708 70.68% 0.768 

ShiftNet3D CT Volume 0.896 0.887 0.890 88.72% 0.939 0.762 0.762 0.762 76.19% 0.824 

COVID-MTL 

(Multi-task) 

w/o. Shift3D CT Volume 0.891 0.877 0.881 87.72% 0.927 0.760 0.757 0.758 75.69% 0.806 

Shift3D CT Volume 0.891 0.882 0.885 88.22% 0.937 0.796 0.794 0.791 79.45% 0.842 

Shift3D CT Volume, 

CT Features 

0.912 0.902 0.905 90.23% 0.939 0.791 0.792 0.792 79.20% 0.846 

Table 4 

Performance metrics of machine learning and deep learning models for severity assess- 

ment of COVID-19. 

Model Pre. Recall F1 Acc. AUC 

Single Task RF 0.628 0.639 0.624 63.91% 0.791 

LGBM 0.630 0.647 0.632 64.66% 0.784 

ResNet3D 0.546 0.556 0.549 55.64% 0.737 

deCoVnet 0.540 0.591 0.552 59.15% 0.757 

SqueezeNet3D 0.655 0.659 0.653 65.91% 0.794 

ShiftNet3D 0.655 0.659 0.653 65.91% 0.794 

Multi-task COVID-MTL 0.666 0.667 0.649 66.67% 0.800 

COVID-MTL 

(Transfer) 

0.647 0.669 0.632 66.92% 0.813 
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ult, the transfer learning model achieved an AUC of 0.813 ± 0.021 

or classifying control/suspected (AUC of 0.841), mild/regular (AUC 

f 0.808), and severe/critically-ill (AUC of 0.789) cases, which is a 

light boost for original COVID-MTL model. 

Interestingly, the 3D implementation of ResNet (ResNet34 in 

his work), which was based on [26] , achieved the lowest perfor- 

ance on severity assessment. More complicated 3D ResNet mod- 

ls are unable to be loaded under the present settings due to 

he GPU memory limitation. Even deeper ResNet structures could 

e converted to 3D versions and explored when enough GPU re- 

ources become available. 

.5. Analysis results of high-throughput lung features and their 

orrelation with COVID-19 

For each COVID-19 task, feature importance was generated af- 

er training the machine learning model (LGBM in this work). The 

op 10 most important imaging features were selected for each 

ask. After removing repeated features, 24 high-throughput lung 

eatures remained for correlation analyses. As mentioned in the 

ethods section, the 24 imaging features under different COVID-19 

tates were analyzed using Welch’s ANOVA test, which then iden- 

ified 16 image features that significantly related to COVID-19 pos- 

tivity and severity ( P < 0.001 for all; gray items in Table 5 ). 10

ignificant features were further scaled to the same value range 

nd were box-plotted for better illustration ( Fig. 5 ). 

In other words, those identified features are significantly differ- 

nt between COVID-19 positive and negative cases against both ra- 

iology ( P < 0.001; second column, Table 5 ; first row of Fig. 5 ) and

ARS-CoV-2 nucleic acid test ( P < 0.001; third column, Table 5 ; 

econd row of Fig. 5 ). Similar results were observed in the analy- 

is of COVID-19 severity, where significant value differences were 

ound in different severity groups ( P < 0.001, last column, Table 5 ),

specially when comparing control/suspected and severe/critically 

ll cases (last row, Fig. 5 ). 

As shown in Fig. 6 , clustering of the top lung imaging fea- 

ures demonstrated that the nuclei acid test results were not al- 

ays consistent with the diagnosis from radiologists (using CT 
9 
cans), which is in accordance with the published literature [5] . 

he inconsistency between the two diagnosis standards may due 

o the relatively higher false-negative rate of NAT in detection of 

symptomatic transmission. The clustering also shows that COVID- 

9 infection can be found in different age and gender groups 

 Fig. 6 ). People in older age groups are more vulnerable to be with

evere/critically-ill infection ( Fig. 6 ) given their immune response 

s less effective to SARS-CoV-2 compared to their younger coun- 

erparts. More interestingly, there is a group of uninfected people 

mostly the male) whose lung CT features demonstrated a distinct 

attern compared with others (middle, Fig. 6 ). 

. Case study 

To decipher the underlying mechanism of COVID-MTL for de- 

ection of COVID-19 infection, we obtained 3D feature maps from 

he last convolutional layer of COVID-MTL when inferencing an in- 

ected case (upper panel, Fig. 7 ) and a normal study (bottom panel, 

ig. 7 ). The feature maps were then converted to Class Activa- 

ion Maps (CAMs) and overlaid on the two cases respectively to 

ompare the discriminative regions captured by the MTL model. 

he comparison shows a distinct discriminative pattern between 

he two cases, which indicate that the discriminative regions cap- 

ured from the infected case are focused on lung areas that ex- 

ibited ground-glass opacities (red attention color in the upper 

anel, Fig. 7 ), whereas, large and homogeneous lung tissue regions 

ere covered in the normal case (red attention color in the bottom 

anel, Fig. 7 ). 

A comparison of their lung CT features is also demon- 

trated in Fig. 8 , in which some of the features are 

ignificantly different between the two cases, including 

mc1, HLL_glcm_DifferenceVariance, HLH_glcm_ClusterShade, 

HH_glcm_ClusterShade, and LLL_glcm_Imc1. 

. Ablation study 

We compared the performance of task-dependent uncertainty 

oss, random-weighted loss, and mean loss (average of 3 task 
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Fig. 5. Box plots of CT lung features between COVID-19 positive and negative cases (first row: against radiology; second row: against SARS-CoV-2 nucleic acid test) as well 

as among different severity groups (last row). 

Fig. 6. Clustering of top high-throughput lung features related to COVID-19. 

10 
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Table 5 

Welch’s ANOVA test of top CT lung features between COVID-19 positive and negative cases, and among different severity groups. 

Robust Tests of Equality of Means 

COVID-19 against 

Radiologists (df1 = 1) 

COVID-19 against Nucleic 

Acid Test (df1 = 1) 

COVID-19 Severity 

(df1 = 2) 

High-throughput Lung Features Stat. df2 Sig. Stat. df2 Sig. Stat. df2 Sig. 

HLL_glcm_ClusterProminence 43 .06 340 .89 < 0 .001 61 .80 604 .97 < 0 .001 30 .86 472 .32 < 0 .001 

LHL_glcm_Idmn 30 .06 530 .47 < 0 .001 30 .43 1198 .09 < 0 .001 18 .10 540 .37 < 0 .001 

Maximum 80 .41 441 .28 < 0 .001 57 .10 956 .95 < 0 .001 29 .73 542 .92 < 0 .001 

Energy 2 .49 451 .09 0 .115 < 0 .01 1096 .54 0 .986 10 .52 514 .79 < 0 .001 

LLL_glcm_Imc1 409 .21 668 .77 < 0 .001 167 .23 1208 .49 < 0 .001 112 .46 541 .73 < 0 .001 

HLL_glcm_Correlation 29 .58 512 .00 < 0 .001 1 .65 1119 .28 0 .199 1 .19 591 .13 0 .306 

LLH_glcm_Correlation 3 .89 604 .49 0 .049 7 .79 1321 .56 0 .005 6 .45 539 .50 0 .002 

LHH_glcm_ClusterShade 77 .59 393 .65 < 0 .001 114 .05 817 .28 < 0 .001 75 .90 529 .59 < 0 .001 
∗LongRunLowGrayLevelEmphasis 54 .96 689 .20 < 0 .001 68 .80 1306 .63 < 0 .001 37 .82 489 .17 < 0 .001 

HLH_glcm_ClusterShade 70 .23 402 .28 < 0 .001 127 .16 868 .70 < 0 .001 82 .64 522 .13 < 0 .001 

Idn 13 .55 530 .18 < 0 .001 7 .65 1158 .71 0 .006 6 .35 546 .89 0 .002 

LLH_glcm_ClusterShade 2 .96 489 .89 0 .086 0 .05 1191 .24 0 .832 0 .21 595 .76 0 .807 

LargeAreaHighGrayLevelEmphasis 1 .07 537 .72 0 .300 < 0 .01 1311 .65 0 .993 4 .31 515 .67 0 .014 
∗ShortRunHighGrayLevelEmphasis 44 .66 360 .21 < 0 .001 50 .89 702 .63 < 0 .001 27 .48 475 .40 < 0 .001 

Idmn 8 .63 534 .83 0 .003 0 .72 1146 .50 0 .395 1 .32 549 .05 0 .268 

GrayLevelVariance 84 .66 442 .59 < 0 .001 124 .43 1030 .40 < 0 .001 63 .26 582 .43 < 0 .001 

HHH_glcm_ClusterShade 62 .03 377 .48 < 0 .001 108 .32 753 .05 < 0 .001 64 .82 534 .31 < 0 .001 

LLL_glcm_Imc2 346 .27 630 .78 < 0 .001 107 .75 1178 .31 < 0 .001 93 .34 546 .17 < 0 .001 

LLL_glrlm_RunEntropy 47 .48 548 .11 < 0 .001 2 .72 1237 .29 0 .100 43 .13 515 .62 < 0 .001 

LLH_glcm_ClusterProminence 29 .54 429 .01 < 0 .001 25 .00 1032 .16 < 0 .001 14 .92 598 .86 < 0 .001 
∗DifferenceVariance 129 .02 383 .67 < 0 .001 143 .71 792 .11 < 0 .001 71 .98 567 .16 < 0 .001 

Imc2 279 .23 651 .74 < 0 .001 48 .15 1178 .92 < 0 .001 54 .21 530 .26 < 0 .001 

LLL_glcm_Correlation 171 .47 512 .35 < 0 .001 173 .88 1138 .84 < 0 .001 89 .70 539 .75 < 0 .001 

Imc1 253 .18 673 .94 < 0 .001 51 .66 1208 .52 < 0 .001 42 .87 533 .73 < 0 .001 

Stat. Asymptotically F distributed; ∗LongRunLowGrayLevelEmphasis: HLH_glrlm_LongRunLowGrayLevelEmphasis. 
∗ShortRunHighGrayLevelEmphasis: LHH_glrlm_ShortRunHighGrayLevelEmphasis; ∗DifferenceVariance: HLL_glcm_DifferenceVariance. 

Fig. 7. CAM visualization for comparison of discriminative regions captured by COVID-MTL in the diagnosis of COVID-19. Upper panel: lung region and corresponding CAM 

visualization of an infected case (ongoing infection with severe symptoms, ground-glass opacities exhibited); Bottom panel: lung region and corresponding CAM visualization 

of a normal case. 
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osses) under COVID-MTL for detection and severity assessment of 

OVID-19. The result shows our proposed random-weighted multi- 

ask loss function achieved faster and stable convergence as well as 

etter performance in comparison to task-dependent uncertainty 

oss [31] and mean loss (left panel, Fig. 9 ). COVID-MTL models 

quipped with Shift3D achieved consistently better performance 

han models without Shift3D, i.e., faster convergence and better 

erformance have been achieved under all three types of loss func- 

ions with random-weighted loss slightly better than the other two 

ethods (right panel, Fig. 9 ). 

As we have shown before, the COVID-MTL model trained for 

he two diagnosis tasks can be repurposed for severity assess- 

ent ( Table 4 ), which achieved a slight performance boost (AUC 

f 0.813 ± 0.021, accuracy of 66.92%, and recall of 0.669) com- 
11 
ared to the original MTL model (AUC of 0.800 ± 0.020, accuracy 

f 66.67%, and recall of 0.667). However, such performance gain 

as obtained when the Shift3D layer was still enabled during the 

dditional training (fine-tuning) procedure. Without the utilization 

f Shift3D, the transfer learning model is unable to achieve such 

erformance gain (AUC of 0.810 ± 0.024, accuracy of 65.41%, and 

ecall of 0.654) under the current settings even it was trained for 

dditional 50 epochs. This finding was also illustrated in Fig. 10 , 

here the model with Shift3D achieved lower loss and higher test 

ccuracy. 

The performance of 3D CNNs was further evaluated using ini- 

ial lung segmentation outputs produced by [25] . As shown in 

able 6 , the 3D CNNs, especially SqueezeNet3D and ShiftNet3D, 

chieved an average of 2% lower end-to-end performance with ini- 
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Fig. 8. Comparison of top high-throughput lung features between an infected and a normal case. Features are scaled to 0 - 1 for comparison. 

Fig. 9. Performance of three different multitask loss functions for detection and severity assessment of COVID-19 when w/o using and using Shift3D. 

Table 6 

Performance of 3D CNNs using initial lung segmentation outputs. 

Task Model Prec. Rec. F1 Acc. AUC 

COVID-CT ResNet3D 0.847 0.830 0.835 82.96% 0.893 

SqueezeNet3D 0.876 0.870 0.872 86.97% 0.932 

ShiftNet3D 0.879 0.870 0.873 86.97% 0.941 

COVID-NAT ResNet3D 0.723 0.724 0.723 72.43% 0.779 

SqueezeNet3D 0.712 0.712 0.712 71.18% 0.770 

ShiftNet3D 0.743 0.744 0.741 74.44% 0.820 

COVID- 

Severity 

ResNet3D 0.608 0.612 0.607 61.15% 0.754 

SqueezeNet3D 0.579 0.584 0.581 58.40% 0.756 

ShiftNet3D 0.631 0.637 0.633 63.66% 0.781 
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ial lung segmentation compared to their counterparts (with re- 

ned segmentation; Table 3 and Table 4 ). Such a result is explain- 

ble since diagnostic-relevant structures like GGO are more likely 

o be under-segmented using classical methods, especially in se- 

ere and critical-ill cases, making it harder to differentiate severi- 

ies. 

The random number of shifting lines in Shift3D is drawn from 

 discrete uniform distribution by default, it can be also drawn 

rom Gaussian distribution, as the results shown in Table 7 , which 

emonstrated that the performance of ShiftNet3D in the current 
12 
iscrete uniform distribution is consistently better than that of 

aussian distribution. 

Further, the performance of MTL with only using extracted 

T lung features was evaluated. As shown in Table 8 , the MTL 

pproach exclusively learned by FNN using CT features achieved 

ower performance especially compared to COVID-MTL that simul- 

aneously learned by 3D CNN and FNN using both CT lung volumes 

nd features, suggesting the effectiveness of the proposed frame- 

ork ( Fig 1 ; Table 3 and Table 4 ). 
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Table 7 

Performance of ShiftNet3D using shift numbers generated from Discrete Uniform and Gaussian dis- 

tributions. 

Task Distribution Prec. Rec. F1 Acc. AUC 

COVID-CT Discrete Uniform (Current) 0.896 0.887 0.890 88.72% 0.939 

Gaussian 0.878 0.865 0.869 86.47% 0.930 

COVID-NAT Discrete Uniform (Current) 0.762 0.762 0.762 76.19% 0.824 

Gaussian 0.754 0.754 0.754 75.44% 0.800 

COVID- 

Severity 

Discrete Uniform (Current) 0.655 0.659 0.653 65.91% 0.794 

Gaussian 0.639 0.647 0.640 64.66% 0.796 

Fig. 10. Performance comparison of COVID-MTL transfer learning model for sever- 

ity assessment of COVID-19 when maintaining (solid lines) and removing (dashed 

lines) Shift3D. 

Table 8 

MTL learning performance with only using extracted CT lung features for 

COVID-19 diagnosis and severity assessment. 

Task Prec. Rec. F1 Acc. AUC 

COVID-CT 0.847 0.852 0.844 85.21% 0.886 

COVID-NAT 0.746 0.747 0.744 74.69% 0.802 

COVID-Severity 0.518 0.602 0.552 60.15% 0.741 

i

R
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s

w

Table 9 

Performance of machine learning models with Histogram of Oriented Gradients 

(HOG) features. 

Model Task Prec. Rec. F1 Acc. AUC 

RF COVID-CT 0.554 0.744 0.635 74.44% 0.583 

COVID-NAT 0.631 0.582 0.450 58.15% 0.536 

COVID-Severity 0.360 0.426 0.390 42.61% 0.559 

LGBM COVID-CT 0.666 0.742 0.647 74.19% 0.675 

COVID-NAT 0.563 0.579 0.548 57.89% 0.560 

COVID-Severity 0.442 0.461 0.425 46.12% 0.659 

Note: HOG features were dimensionally reduced to the same size as radiomic fea- 

tures for a fair comparison. 
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Feature engineering plays an important role in machine learn- 

ng performance, in addition to radiomic features, we have trained 

F and LGBM with Histogram of Oriented Gradients (HOG) features 

32 bins) under the same settings, and the test results demon- 

trated an inferior performance ( Table 9 ). 

Additional samples were collected from a recently published 

ork [39] which provided 121 positive CT studies diagnosed with 
Table 10 

Performance of 3D CNN-based models on the newly-fo

Model Model Instance Pre

ResNet3D Against Radio. 0.8

Against NAT 0.8

Model Aggregated 0.9

SqueezeNet3D Against Radio. 0.9

Against NAT 0.8

Model Aggregated 0.9

deCovNet Against Radio. 0.8

Against NAT 0.9

Model Aggregated 0.9

ShiftNet3D Against Radio. 0.9

Against NAT 0.9

Model Aggregated 0.9

COVID-MTL Against Radio. (Output 1) 0.9

Against NAT (Output 2) 0.9

Output Aggregated 0.9

13 
T-PCR. Given the normal chest CT scan is a scarce resource, 98 

ontrol cases from existing test data were enrolled to compen- 

ate for the class imbalance to form a multi-institutional test co- 

ort. As shown in Table 10 , the proposed methods consistently 

chieved better performance on the newly-formed test cohort 

nd it also demonstrated the power of learning COVID-19 infec- 

ion against both radiography and nucleic acid test, where aggre- 

ate approaches including multitask learning and model aggrega- 

ion (e.g., ShiftNet3D) can achieve significantly higher performance 

ompared to learning against only one target. 

. Discussion and conclusion 

With the dramatic increase of COVID-19 infections in the past 

ew months and the shortage of human resources in clinical prac- 

ice globally, automated methods for diagnosis and severity assess- 

ent of the highly infectious disease are increasingly demanded. 

eople with NAT negative but diagnosed as CT positive were clas- 

ified by physicians as “suspected cases”, which is the source of 

he result difference between the two methods. Generally speak- 

ng, quarantine measures need to be considered for people who 

ere detected as either CT or NAT positivity since those persons 

re at high risk of transmission (even classified as suspected). As 
rmed test cohort with volume inputs. 

c. Rec. F1 Acc. AUC 

96 0.872 0.868 87.21% 0.964 

87 0.877 0.877 87.67% 0.891 

05 0.886 0.883 88.58% 0.954 

19 0.918 0.918 91.78% 0.951 

12 0.804 0.804 80.37% 0.860 

00 0.900 0.899 89.95% 0.935 

90 0.881 0.879 88.13% 0.903 

39 0.932 0.931 93.15% 0.939 

36 0.927 0.926 92.69% 0.927 

25 0.922 0.922 92.24% 0.952 

05 0.904 0.904 90.41% 0.932 

43 0.941 0.940 94.06% 0.952 

30 0.922 0.921 92.24% 0.974 

50 0.945 0.945 94.52% 0.929 

46 0.941 0.940 94.06% 0.957 
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 fast method, chest CT (typically takes 30 s) is high-sensitive for 

etection of asymptomatic transmission and has been complemen- 

arily adopted for more accurate diagnosis in clinical practice since 

he outbreak when NAT was unable to timely confirm the positiv- 

ty. The two complementary examination standards naturally share 

orresponding outcome labels to a certain extent which conforms 

ith the real-world scenarios, i.e., people infected with SARS-COV- 

 have a high probability of showing positivity in both nucleic 

cid tests (NAT) and computer tomography (CT). It is a manifes- 

ation of the interrelationship of multiple tasks. Because the two 

iagnosis methods are related, we regarded learning against the 

wo methods as a multitask problem from which the network was 

rained in consideration of aspects in both CT and NAT for improv- 

ng generalization and joint learning performance. The better pre- 

iction results for the three tasks were achieved through fusing the 

osses of multiple tasks with multi-task loss function, and the net- 

ork weights were then correspondingly adjusted to achieve joint 

earning by back-propagating the fused loss. The shared network 

eights before task-specific layers were, therefore, able to learn 

ore general COVID-19 related features and thereby improved the 

etwork performance of multiple tasks. Statistical analysis demon- 

trated that compared to each of the other existing models, COVID- 

TL achieved statistically significant improvements for at least two 

ut of three tasks (p-value ranging from 1.12E-08 to 0.02). 

In addition to boosting the joint learning performance, another 

romising aspect of our proposed framework lies in its high recog- 

ition accuracy against radiologists and the capability of auto- 

ated screening out high-risk cases of transmission. Meanwhile, 

imultaneous inferring NAT results from CT scans indicated that 

eep features obtained from chest CT scans may contain richer in- 

ormation for COVID-19 assessment than expected, which is an in- 

eresting topic and has great practical benefits considering its fast 

anner in detection. In comparison, conventional NAT relies on RT- 

CR, a much slower and complicated operation that requires highly 

ualified technicians. 

By combining 3D CNN and auxiliary FNN, different represen- 

ations of chest CT information, i.e., volumetric lung CT data and 

igh-throughput lung CT features, were propagated and concate- 

ated in the network for evaluation of COVID-19. The fine-grained 

etection results can be obtained based on the prediction against 

oth radiology and NAT (a combination of COVID-CT and COVID- 

AT). However, the diagnosis of COVID-19 is more complicated 

han expected due to prolonged incubation and asymptomatic 

nfection from which biomedical tests and repeated swab sam- 

les need to be collected and evaluated periodically to confirm 

uspected cases. Nonetheless, the proposed framework demon- 

trated promising performance in identifying positive and negative 

ases. 

The proposed Shift3D and random-weighted multitask loss 

unction were experimentally validated to be able to improve 

he convergence and accuracy of the state-of-the-art methods, es- 

ecially on more challenging COVID-19 tasks. Shift3D introduces 

pace shifting invariance to existing 3D CNNs to improve (or accel- 

rate) model convergence and alleviate overfitting and works well 

nder different loss configurations. In comparison, the random- 

eighted loss function gives vulnerable tasks a sufficient chance to 

e prioritized and prevents joint learning procedures from being 

ominated by specific tasks, which outperformed task-dependent 

ncertainty loss and linearly combined mean loss. As a result, the 

ultitask learning performance was boosted compared to single- 

ask models. Dirichlet distribution allows us to control the con- 

entration of the generated weight distributions by fixing the 

oncentration parameter vector α and tuning a drawing num- 

er n instead, which is quite useful when dealing with imbal- 

nced tasks (in terms of task difficulty). Distributions like the nor- 

al ones can also be used when there are only two tasks. How- 
14 
ver, other probability distributions that satisfy the abovemen- 

ioned needs may also be effective, which deserves further ex- 

loration. The proposed random-weighted loss could be further 

xtended on 2D CNNs and classification & regression combined 

asks. 

COVID-MTL works under the utilization of chest CT scan only, it 

s a self-contained framework and can work independently without 

uman intervention, thus reducing inter and intra-observer vari- 

bility especially compared to slice-based methods in which the 

nference can be heavily affected by the inputs (quality of man- 

ally labeled CT slices). COVID-MTL is independent of clinical pa- 

ameters but can be further enhanced by integrating those clin- 

cal factors, including biochemical tests. In comparison to single- 

ask solutions, the performance of different tasks, especially the 

ore challenging ones, was boosted under the joint learning, and 

eanwhile, training and inference time can be significantly re- 

uced given its capability of learning and predicting three different 

OVID-19 tasks in parallel. 

The baseline RF/LGBM with Radiomic Feature adopted in this 

ork was a state-of-the-art machine learning approach for medical 

maging analysis and has demonstrated comparable and even bet- 

er performances compared to existing models, i.e., ResNet3D and 

queezeNet3D, in certain learning tasks. Lightweight 3D CNNs have 

heir own weakness including potential accuracy degradations al- 

hough they are more resource-efficient and able to counterbal- 

nce overfitting in comparison to conventional structures. Mean- 

hile, one of the vulnerable aspects of the traditional machine 

earning method lies in its heavy reliance on feature engineering, 

mproper selection of features may lead to an inferior machine 

earning baseline as demonstrated in the ablation study which con- 

ormed with the experimental results reported in [19] . 

The deep learning model is more like a black box, to decipher 

he relationship between radiographic images and COVID-19, high- 

hroughput lung features were extracted from COVID-19 CT scans, 

nd top imaging features were identified through statistical anal- 

ses. The analyses showed that those lung CT features are sig- 

ificantly ( P < 0.001) related to COVID-19 positivity and severity. 

he given case study, which was conducted to decipher the under- 

ying mechanism of COVID-MTL for recognition of COVID-19, as- 

ertained the findings by showing the distinct discriminative pat- 

erns that were captured by the neural network from CT images of 

he infectious and normal case respectively. The analyses of high- 

hroughput lung features and their correlation with COVID-19 may 

elp the community better understand the disease regarding its 

elevance to radiology. The identified lung features could be used 

n future unsupervised COVID-19 assessments. 

In conclusion, we proposed an end-to-end multitask learn- 

ng framework for automated and simultaneous diagnostic clas- 

ification and severity assessment of COVID-19. Our experiments 

nd ablation study demonstrated that key components of the 

OVID-MTL framework, including unsupervised lung segmentation, 

hift3D, and random-weighted multitask loss, were able to im- 

rove the diagnostic workflows and outperform their counterpart 

ethods, which finally boosted the joint learning performance 

hen dealing with COVID-19 tasks of imbalanced difficulties. High- 

hroughput lung features that related to the positivity and sever- 

ty of COVID-19 were deciphered from chest CT scans, and a case 

tudy was given to help further understand the pattern recogni- 

ion mechanism of the network. Chest CT scans may contain richer 

nformation than expected but are currently not fully utilized in 

OVID-19 research. Future studies may focus on exploring unsu- 

ervised diagnosis approaches with identified lung imaging fea- 

ures, extending random-weighted loss on 2D CNNs and regres- 

ion tasks, and integrating clinical parameters. Besides, including 

ross-continental COVID-19 CT data may further validate and im- 

rove the performance of COVID-MTL and enable it more viable for 
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linical practice. All our experimental data, pretrained models, and 

omputer code can be made publicly available, which may facili- 

ate the community for future research and relevant applications. 

ata availability and experimental reproducibility 

The dataset (including 1329 segmented chest CT scans and cor- 

esponding extracted high-throughput lung features), source code, 

nd pretrained models have been released at a public repository: 

ttps://github.com/guoqingbao/COVID-MTL . 
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