Skip to main content
. 2021 Dec 12;124:108499. doi: 10.1016/j.patcog.2021.108499

Table 3.

Performance metrics of machine learning and deep learning models for COVID-19 diagnosis.

Model Input(s) COVID-19 against Radiology
COVID-19 against Nucleic Acid Test
Prec. Rec. F1 Acc. AUC Prec. Rec. F1 Acc. AUC
Single Task RF CT Features 0.861 0.865 0.862 86.47% 0.913 0.739 0.739 0.739 73.93% 0.819
LGBM CT Features 0.862 0.865 0.863 86.47% 0.921 0.761 0.762 0.761 76.19% 0.803
ResNet3D CT Volume 0.841 0.840 0.840 83.96% 0.901 0.723 0.724 0.724 72.43% 0.763
deCoVnet CT Volume 0.865 0.860 0.862 85.96% 0.907 0.771 0.772 0.771 77.19% 0.821
SqueezeNet3D CT Volume 0.897 0.885 0.888 88.47% 0.931 0.713 0.707 0.708 70.68% 0.768
ShiftNet3D CT Volume 0.896 0.887 0.890 88.72% 0.939 0.762 0.762 0.762 76.19% 0.824
COVID-MTL
(Multi-task)
w/o. Shift3D CT Volume 0.891 0.877 0.881 87.72% 0.927 0.760 0.757 0.758 75.69% 0.806
Shift3D CT Volume 0.891 0.882 0.885 88.22% 0.937 0.796 0.794 0.791 79.45% 0.842
Shift3D CT Volume,
CT Features
0.912 0.902 0.905 90.23% 0.939 0.791 0.792 0.792 79.20% 0.846