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Abstract

Human exposure to particulate matter and other environmental species is difficult to estimate 

in large populations. Individuals can encounter significant and acute variations in exposure 

over small spatiotemporal scales, and exposure is strongly tied to both the environmental and 

activity contexts that individuals experience. Here we present the development of an agent based 

model to simulate human exposure at high spatiotemporal resolutions. The model is based on 

simulated activity and location trajectories on a per-person basis for large geographical areas. We 

demonstrate that the model can successfully estimate trajectories and activity patterns that have 

been validated against traffic patterns and that can be integrated with exposure-agent geographical 

distributions to estimate total human exposure.

Keywords

human activity; spatiotemporal; agent based modeling; STHAM; exposure modeling; exposome

Introduction

It is well documented that exposure to particulate matter, especially PM2.5, is harmful to the 

respiratory and other human systems. A substantial body of research exists characterizing 

potential health outcomes of prolonged and chronic exposure to PM2.5 (1–3), and an equally 

impressive amount of research has been performed to measure or simulate PM2.5 levels 

at high spatiotemporal resolution (4–8), especially in metropolitan areas where the public 

health outcomes of excessive exposure can be significant. Other research has demonstrated 

that there are significant variations between indoor and outdoor air quality (9), and work 

within our own research team indicates that indoor and outdoor air quality can change 

substantially on small spatiotemporal scales in non-obvious ways (10).
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Despite these advances, it remains difficult to capture a full profile of exposures across 

large populations. This is in part due to the difficulty of measuring air quality with high 

resolution and accuracy, but also because of the complexity of estimating human locations 

and activities. Location itself is not necessarily difficult to collect where outdoor GPS 

tracking devices (GPS) could be used to track human movement, but this may create serious 

privacy concerns for research participants. Moreover, there are difficulties in predicting 

indoor location where GPS may not be effective or accessible (11). Recent advances in 

sensor technologies (12, 13) may provide direct ways to measure locations and exposure 

at the individual level, but deployment of these sensors at large scale for epidemiology 

studies is still impractical due to cost and deployment complexity. In addition, activities by 

themselves influence exposures (14).

Here we demonstrate that it is possible to simulate activity trajectories (15) by using 

population level metrics. These can then be integrated with exposure profiles to estimate 

total human exposure. An activity trajectory, as illustrated in Figure 1, is defined as the 

time delimited pattern of activities a person engages in, along with relevant contextual 

information to describe the activity, including location and persons involved. Activity 

trajectories may also be called activity diaries or time use diaries when collected as part 

of a survey (16). There have been previous attempts to characterize human activity in this 

way to better understand exposure, such as the National Human Activity Pattern Survey 

(14), the Environmental Protection Agency’s (EPA) Consolidated Human Activity Database 

(17) and the National Household Travel Survey (18). Other studies of human activity tend 

to focus on a set of macro activities specific to the research subject, such as consumer 

activity or health oriented procedures (14, 19), or observation of micro-activities (e.g., all 

steps required to pour a cup of tea) in laboratory and clinical settings (20, 21), which are 

again non-generalizable.

We have developed the SpatioTemporal Human Activity Model, or STHAM, to generate and 

characterize travel trajectories and activity patterns (22–24) and to integrate exposure-agent 

geographical distributions to estimate total human exposure in large populations. The goal of 

this development is to have a model that can be applied by other scientists to better evaluate 

exposure in populations of interest. The STHAM consists of a semi-empirical agent based 

model (ABM) designed to generate probable activity trajectories for arbitrary populations 

and regions. An ABM simulates the activity of a group of complex entities or individuals 

using simple mathematical representations and have been successfully used to evaluate the 

emergent properties of rule based systems (25–27) including exposure related research (28–

31).

Methods

The STHAM initialization process is detailed in Figure 2. At the core of the STHAM 

is the agent, which is represented as a simple data record with demographic properties 

representing a hypothetical person. These properties (e.g. age, gender, census block location) 

are assigned to each agent randomly using the aggregate statistics at the census block level 

as constraints for the 2010 United States Census (32–34), so that the generated agents 

and the households to which they are assigned match the data provided in the census. 
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Each household is then assigned a location in a round-robin fashion based on a list of 

physical postal addresses (35) that are matched to each census block. Next, each agent is 

assigned an employment status and, if relevant, an employment location, based on data 

from the Longitudinal Employee Household Dynamics Program (under the US Census 

Bureau) (LEHD) (36). The LEHD also provides an approximation for employment location 

at the census block level, which allows the model to simulate commuter patterns accurately. 

Finally, school participation is assigned using age and gender stratified enrollment rates 

from the American Community Survey (ACS) (33).

We have developed a simple unsupervised classification and sequence generation method 

from existing machine learning algorithms that is capable of generating coherent and 

stochastic sequences of activity from the data in the American Time Use Survey (ATUS) 

(16). A set of activity profiles were generated using the method described in detail in (37). 

Approximately 50–100 partially overlapping classes are generated for each classification. 

The overlap is due to the unsupervised nature of the algorithm and the high dimensionality 

of the ATUS dataset, but the classifier algorithms used to classify the activity classes still 

provides a sufficient level of class separation that usable classes can be isolated, as depicted 

in Figure 3. Next, a probability matrix is constructed mapping demographic class to activity 

class, so that daily activity patterns of an activity class can be stochastically assigned to 

each agent based on their demographic class. Separately, a random forest classifier is used 

to assign each agent to the appropriate demographic class, thereby connecting the agent 

demographic properties derived from the census data and household assignment to the 

appropriate daily activity patterns.

To obtain a list of useful consumer and business locations that are relevant for certain 

activity types (such as shopping and recreation), and to obtain a road network for travel 

planning we used the data provided by OpenStreetMap (38). The road network used is 

all roadways in the State of Utah as of January 2018, while trip routing is performed 

by the Open Source Routing Machine (38). Up to three routes are generated for each 

planned trip, with a weighted preference for the fastest route. The alternate routes, which are 

generated internally by the OSRM, are guaranteed to be different, and are locally optimal 

such that the travel time is comparable to the fastest route. Business locations were selected 

from locations that are currently tagged by OpenStreetMap as an office, shop, amenity, 

tourism, leisure, or sport location. When selecting a business for assigning an activity such 

as shopping or work, the fifty locations nearest to the current location of an agent are 

selected and weighted with a linear distribution. Importantly, these locations are treated in 

aggregate, with no effort being made to match the type of location to the context of the 

activity. The reason for this is that some activity types are underrepresented in the ATUS 

and have insufficient statistical power to infer the preferential location type, especially when 

the ATUS records are broken into subpopulations by the classifier. Additionally, the actual 

consumer facing function of a business is difficult to derive from the metadata provided 

by OpenStreetMap. Therefore, when a consumer oriented activity is performed in the 

simulation, it is assumed that the location selected reflects the activity being performed, even 

though the activity classification may be nonsensical when considering the actual function of 

the location.
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Generating a coherent list of activities and their respective duration is a difficult problem 

because a sequence of activities encapsulates a complex decision process that is highly 

subject to externalities. Trajectories are generated independently, meaning there are no 

agent-agent interactions or other externalities that affect the trajectory generation beyond 

demographic class assignment, which implies that the activities of the agents are treated as 

independents in this study Agent-agent correlation is considered an additional complication 

that will be addressed in future work. Our method for generating activity trajectories relies 

on the start window concept developed in Ref. (37), which is a window of time where an 

activity can start. For each activity class we generate a set of independent start windows 

and a set of associated probability tables as described in previous work (37). For example, 

we would assign a daytime nap to a different activity window than we would for nighttime 

sleeping. For each activity class we generate a set of independent start windows and a set of 

associated probability tables.

After the calculation of the start windows, we construct prototype sequences stochastically, 

selecting for weekday or weekend behaviors. We generate trajectories for a single 24-hour 

period, starting at 4:00 AM, which is how the ATUS data is collected. We assign locations 

to each activity in the prototype, and then add travel activities in between activities with 

different locations. Each travel activity has a corresponding trajectory generated using the 

OpenStreetMap data and the OSRM, treating each waypoint in the planned route as a 

discrete new activity. The waypoints are generated automatically by the OSRM and contain 

an idealized travel time based on speed limits in addition to location. . At this stage, we have 

a complete activity trajectory, but the activity length generally needs adjusting to properly 

fill the 24-hour period. We adjust activity lengths so that activities stay within their start 

windows, adding additional activities as necessary to fill voids that cannot be covered by 

the selected activities. We recognize that this step introduces non-random errors into the 

sequence generation, but we consider it a compromise that allows us to create consistent 

activity trajectories.

For this work, we have targeted the Wasatch Front (see Figure 4) and surrounding areas 

in the northern part of Utah, where the majority of the state’s population is located. Our 

overall test case simulates the activity of approximately 2.3 million people. The region is of 

particular interest due to the geographical phenomena of winter inversions, which contribute 

significantly to non-attainment of EPA air quality standards. The simulations presented 

in this paper covers a single 24-hour period on a typical weekday during an inversion. 

We obtained a stochastic model that estimates PM2.5 values based on known spatial and 

seasonal patterns (including inversions) from measured data from the Wasatch Front, which 

incorporates a daily sinusoidal cycle and elevation characteristics of the region, described 

in the supplemental material (See Table S1, Figure S1, Figure S2, Figure S3, Figure S4 ). 

This stochastic model was used to generate spatiotemporal matrices for estimating PM2.5 

concentrations across the region of interest. We arbitrarily selected a day that showed 

a strong spatiotemporal variation to maximize the variation in calculated exposure when 

integrating the activity trajectories. This stochastic model uses a temporal scale of 1 hour 

and a spatial resolution of 250 meters. We performed additional detailed analysis on a subset 

of agent trajectories (approximately 1800) from our overall test case that were restricted to a 

small area near one of the PM2.5 measuring stations in Salt Lake City
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At this stage, we do not have an appropriate model for estimating PM2.5 from our model, 

so instead we have selected to use person-seconds as a surrogate metric for exposure. This 

does not allow us to calculate any practical exposure values, but it does allow us to estimate 

potential health impact from different classes of activities. We selected a 100 meter, 15 

minute spatiotemporal resolution for estimating this impact, and split activities into three 

categories; travel activities, employment or work activities, and non-working or residential 

activities. We integrated the trajectories to obtain our person-second spatiotemporal matrix 

and then applied the Laplacian finite-difference method to estimate near field effects and 

simulate pollutant diffusion from activity in adjacent cells.

Some additional information on our simulation methods follows. The ATUS data used 

for this simulation comes from the 2015 release by the Bureau of Labor Statistics 

(37). Computing resources used for this research were provided by the Center for High 

Performance Computing at the University of Utah and typically consisted of 16-core Intel 

Xeon E5–2670 or 32-core AMD Opteron 6272 compute nodes using 64 or 256 GB of 

memory, depending on task. The model was written using Anaconda Python 3.6 (39) 

and utilizes the Pandas (40, 41) and Scikit-Learn (42) libraries. Execution of the model, 

including all preprocessing steps, can be generally completed in 1–2 weeks in its current 

form. The full code used in this work is publically available at https://github.com/uofu-ccts/

prisms-comp-model-stham.

Results and Discussion

Validation of the STHAM is a moderately difficult problem, because we cannot directly 

measure activity trajectories at scale, and the model makes assumptions about household 

structure and activities that may introduce error into the resulting trajectories. A practical 

way to validate the STHAM is to use proxy measurements. Here we validated the model 

against traffic counts from the Utah Department of Transportation (UDOT) (25). We 

identified 20 roadway locations where the UDOT collected traffic counts where we could 

isolate traffic activity for independent roadways in our aggregate matrices. Since we can 

separate travel activities, here we used traffic counts from April 2014 to perform regressions 

against our simulated traffic counts on a selection of weekdays (all Wednesdays in April). 

The calculated average r-value of the regression for all locations is 0.938. We consider this 

to be strong proxy evidence that the STHAM is correctly capturing the diurnal cycle of 

activities and that reflects a reasonable approximation of the spatial distribution of activities. 

This is depicted in Figure 5, which shows normalized traffic rates for all measured locations. 

The overall shape of the simulated traffic is more rigid than the actual traffic counts, but 

generally follows the expected pattern of a strong peak in the morning and afternoon, 

reflecting the daily commute.

We note that the absolute magnitude of simulated traffic counts (not shown) can vary by a 

factor of 0.76 to 1.16 compared to the measured traffic counts. Multiple factors contribute 

to this difference. The first main contributor is the absolute number of agents represented 

in the model; we modelled our agents based on the 2010 census, but modelled behaviors 

and commute patterns from 2015. The population in the Wasatch Front has increased by 

nearly 10% over this five-year period, meaning that our model underestimates the number of 
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agents and total traffic. It also affects the regional distribution of population, since a cursory 

inspection of new housing and business development in that period indicates that it has 

occurred mostly in the South West corner of Salt Lake County, leading to a redistribution 

of traffic between recording locations. Second, the model fails to account for pass through 

traffic, freight activities, and site-to-site work traffic. We estimate this omission explains at 

least 50% of the difference in traffic counts. Third, we acknowledge that young children 

under the age of 15 are poorly represented in our model, because the ATUS does not have 

responses for respondents under the age of 15. We infer that school age children follow the 

activity profile of the typical high school student and toddlers and infants, we infer that their 

activities largely match those of their guardians and therefore simulate them as non-working 

adults. Finally, the route planning of our model does not take into account rush hour effects, 

and may select atypical and uncommon routes. These factors very likely explain the majority 

of variance in absolute traffic counts. Moreover, not simulating rush-hour effects may be an 

issue when developing the pollution component from the agent activities because congestion 

can exacerbate pollutant concentrations and exposure. Additionally, such congestion effects 

may disparately affect agents whose nature of work collocates them near high pollutant 

environments such as roadways.

In Figure 6 we show the geospatial distribution of activities for three activity classes (non-

working, working, and travel) at noon on a weekday, measured in person-seconds. The data 

shows marked differences between the categories, which combined with our socioeconomic 

knowledge of the region, demonstrates that agents are concentrated in areas corresponding 

to the types of activities being modelled. Panel A shows that non-working agents are 

concentrated in commercial districts where services or goods are offered. Because this 

category includes shopping and similar activities, this is not an unexpected outcome, but 

suggests that further diversification of this category is likely necessary in future refinements. 

Panel B shows similar hotspots for working agents, but concentrated in commercial and 

industrial districts, in particular the Salt Lake City downtown area in the north. Comparing 

Panels A and B in the northwest industrial district, we see that the area is completely 

devoid of non-working activity as expected, due to the total lack of housing and services 

in the area. Panel C, which shows the distribution of travel activities, effectively outlines 

the road network of Salt Lake County, and also shows the expected extra influence of 

busy traffic intersections. Animations of the full data can be found online at (Supplemental 

Materials Link for the supplementary GIFs files). Panel D of Figure 6 shows that a clear 

and obvious diurnal cycle is apparent in the relative activity weights, showing a peak in 

travel activity during 9:00 AM and 5:00 PM, when rush hour occurs. Likewise, working 

activities peak between 10:00 and 11:00 AM. The temporal distribution of activities is 

heavily weighted to non-working activities; this is expected because the majority of time is 

spent in non-working activities. However, it also shows that air pollution is disproportionally 

caused by a small fraction of human time expenditure. The Utah Department of Air Quality 

estimates that mobile emissions comprise approximately half of the primary and secondary 

sources of PM2.5 (43). Comparatively, the amount of time spent on travel activities that 

create emissions comprises less than 5% of human activity, showing a clear outsized effect 

from some activities. From this, we can extrapolate that some activities will have an outsized 
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effect on human pollution exposure and provides impetus for us to diversify the categories 

that we sort activities into in the STHAM.

Figure 7 shows the results of integrating the activity trajectories across our stochastic PM2.5 

model. The top panel shows the 24-hour average PM2.5 exposure values of each agent in 

a set of 23 adjacent census blocks. We selected a test case with substantial spatiotemporal 

variation on PM2.5, but we do not observe very much variation in the exposure levels for 

individual agents. Agents within each census block largely have the same average exposure 

as any other agent in the block, and excursions from the average are typically the result 

of travelling extreme distances from the assigned census block or encountering boundary 

conditions of the stochastic model. When we plot the hourly values for the entire cohort (not 

shown), we also find that PM2.5 exposure values have standard deviations under 3 μg/m2, 

despite our expectation that there should be at least some excursion from the average. When 

we attempted to sort the agents by demographic class, we found that there was no obvious 

pattern or consistency in average exposure, as shown in the lower panel of Figure 7. From 

this result, we hypothesize that demographic class is only tangentially relevant to exposure, 

and that a more probable means for identifying cohorts of similar exposure is the census 

block assignment itself, or some other geographical features.

We compared the stochastic PM2.5 model to a self-consistent model of pollution 

concentration that assumes that individual exposure is tied to the sum of nearby human 

activity. Under this assumption the self-exposure can be measured in person-seconds. We 

made this comparison with the census block cohort, as well as a random sample of 10,000 

agents. We examined these profiles by simple plotting to understand the characteristics of 

these profiles, and performing analyses to determine if distinctive patterns or clustering of 

patterns could be identified independent cohorts. When we plotted the 24-hour averages 

of the census block cohort using the self-consistent model we found similar spatial 

correspondence as we did with the simple PM2.5 model, with mean person-seconds being 

more strongly correlated to the census average block than with demographic class. However, 

we also found that the variance in person-seconds for each census block is 2–5 times larger 

than the PM2.5 model. Considering we were able to observe greater variation using the 

exact same set of activity trajectories, this shows that the STHAM self-consistent mode 

is able to capture features at smaller geographic levels than our PM2.5 statistical model, 

and implies that greater accuracy can be achieved from PM2.5 data modeled by the self-

consistent model.

Our general finding of the sample of 10,000 agents is that there are no obvious or consistent 

patterns of exposure beyond diurnal variation and shared micro-environments. The measured 

person-second values are highly segmented; the segments are delimited by transitions 

between micro-environments, where the average person-seconds in each micro-environment 

can vary substantially in magnitude. This phenomenon can be seen in Figure 8, Panel A, 

where sudden and abrupt changes in values can be observed. We attempted to naively 

classify these activity trajectories based on the calculated person-second values, but found 

that there were no broad patterns that could be separated or identified; at best we were able 

to find a few instances of activity trajectories which had nearly identical temporal structure, 
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but each sample was very small, with less than 10 trajectories per sample. This confirms our 

assertion that shared spatial environments are the best means for identifying at-risk cohorts.

Considering that the spatial cohorts are the most similar with each other and that a large 

amount of variation exists in the census cohorts of the surrogate measures mode of the 

STHAM, we hypothesize that a more meaningful ways of characterizing at-risk groups is 

likely by measuring the total exposure in persons seconds, and by establishing a measure 

of acuteness. Acuteness is a dimensionless measure of how exposure is concentrated; an 

acuteness factor near 1.0 implies that the majority of total exposure is concentrated in a 

small amount of time, whereas an acuteness near 0.0 implies a uniform exposure across 

time. Figure 8, Panels B and C, show the distributions of total exposure and acuteness 

factors, respectively, using the surrogate measures as a basis for these calculations. Total 

exposure is distributed normally, with a long tail of high exposures, which holds true for 

all subcategories of activities. The highest total exposure in our sample of 10,000 agents 

is approximately 8 times the median exposure. Our hypothesis is that agents represented 

in the long tail likely experience chronic effects from the levels of exposure encountered. 

Acuteness appears to be bi-modally distributed, with a strong and narrow distribution in the 

lower range of acuteness values, and another broad distribution covering the full range of 

acuteness. Our analysis shows that this bimodality is a consequence of stationary and mobile 

agents having different overall patterns of exposure. Stationary agents do not experience 

abrupt changes in their microenvironment, and so they tend to have a more consistent 

exposure that only changes as the diurnal cycle proceeds, which consequently results in a 

low acuteness factor. Comparatively, mobile agents cross several microenvironments as they 

change locations, and can therefore experience acute exposure events. Exposure from work 

and travel activities tends to be more acute, which it is expected because these activities are 

more localized. These findings are consistent with previous results from Gurram et al. (29, 

44). Future work will involve further characterization of total exposure and acuteness, and 

seeing if they have any correlation with incidence of respiratory conditions.

We define environmental context as the sum of the activities a person may be participating 

in or adjacent to, and the general environmental condition of the space a person occupies. 

A primary observation of this paper is that the environmental context that an individual 

experiences is strongly coupled to the exposures of that individual. As an example, a 

person, represented by an agent, who is cooking will be directly exposed to byproducts 

of the cooking process, but a person who is not participating in the cooking activity who 

is nearby will also be exposed. Additionally, an automated system, such as a furnace, can 

also alter exposure profiles without any human participation, and the latent PM2.5 levels 

inside a room can be drastically altered through air exchange with the outside environment. 

Consequently, the STHAM could benefit substantially from the incorporation of multi-agent 

activities and inter-agent interactions, where group activities and group adjacent activities 

are treated explicitly. This is especially true for the modeling of young children who are 

not autonomous, and who realistically have the same approximate activity trajectory and 

exposure as their primary guardian.

The development of an activity model for automated systems that function without human 

intervention also presents an area of potential interest that could complement the STHAM 

Lund et al. Page 8

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model well. A method for estimating the exposure and emission distributions of industrial 

and chemical processes that do not follow diurnal cycles is particularly important, but also 

technically difficult to obtain. On the other hand, good estimates for the emissions output 

from facilities engaged in such processes are available from regulatory agencies, such as the 

EPA CompTox database or Utah DAQ Air Quality Inventories. We plan on integrating these 

datasets with the STHAM to provide some means of estimating exposure from industrial 

sources.

The STHAM includes a significant empirical component due to the geographically 

constrained nature of exposure, and therefore relies on the availability of detailed geographic 

and demographic data. Importantly, the STHAM does not attempt to simulate the actual 

activities of people within the region of interest, but only simulates probable patterns 

of activity with high confidence that the model will capture typical modes of activity. 

Therefore, the model is only useful for examining possible activity profiles and aggregate 

population level contributions to air quality in general. However, with sufficient repetitions, 

the model can be used to identify at-risk populations that may not be identified through other 

means, and therefore has novel predictive value in estimating exposure burdens on different 

geographic groups.

An important limitation of this model is that the model is sensitive to the size of census 

blocks. Rural census blocks can be quite large in size, and population density can vary 

substantially, being concentrated in small townships or distributed across disperse areas. 

Postal addresses in rural areas can also include significant facilities such as mines, which 

may not house individuals but may be accidentally assigned a household. Therefore, when 

simulating rural regions, the household distribution needs to be sampled many more times 

to obtain reasonable estimates of activity. In addition, it is likely that rural areas need an 

entirely different exposure model, even if the STHAM can accurately represent the activities 

of a rural region, because of substantial differences in commercial and agrarian activities, 

and differences in regulatory mechanisms to limit pollution.

We have shown that the STHAM can provide insights into human activity patterns and 

spatio-temporal distributions of potential emission sources and while we used a distribution 

of particular matter derived from traffic as an example, the model can be used with any 

desired spatial temporal distribution of particle matter. The use of agent-based modelling 

coupled with the integration of public datasets and geographic information has the potential 

to yield exceptional insights into human exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example activity trajectory, which tracks the spatiotemporal path of a person through 

a 24 hour period. Time increases along the vertical axis, while the momentary position is 

captured in the XY plane. Each dot represents the start of a new activity. The dashed line 

represents the home axis, where the majority of personal activities are expected to occur.
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Figure 2. 
The agent creation process. Demographic properties from the Census Block Tables are 

assigned to each agent, and then each agent is assigned to a household, which is given a 

home location. Additional locations for employment, school enrollment, and other regularly 

attended sites are then assigned. Household structure does not always accurately match 

actual structure because the structure is imputed.
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Figure 3. 
Four example daily activity classifications identified from the American Time Use Survey. 

The vertical axis represents the relative proportion of each activity type, where each subplot 

is representative of a cohort of respondents from the ATUS who have similar patterns of 

activity as identified by our classification model. Class A represents the day of a typical 

working-class adult. It begins with sleeping, transitions into work, then recreation, and ends 

with sleep. Class B represents a day that primarily consists of recreation, whereas Class C 

represents a day that primarily consists of household care, which can include child care. 

Class D is similar to Class A, but consists of swing or night shift workers; this demonstrates 

that the classifier can differentiate both conceptual and temporal groupings of activities.
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Figure 4: 
General topographic depiction of the Wasatch Front.
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Figure 5. 
A normalized comparison of the simulated traffic estimates against traffic count data 

obtained from the Utah Department of Transportation. Twenty geographical sites are 

compared using the average weekday counts from a single month. The simulated traffic 

rates have good correlation with the measured counts, with an r-value of 0.938, suggesting 

that the overall diurnal cycle is captured well.

Lund et al. Page 16

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2021 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The spatiotemporal distribution of human activities for the Salt Lake County Metropolitan 

area. Panels A-C show the geospatial distribution at noon on a typical weekday for 

Non-Working, Working, and Travelling activities, respectively. Each distribution is scaled 

independently and should not be compared directly. Panel D show the proportion of each 

activity category throughout the day.
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Figure 7. 
Average daily 24-hour PM 2.5 exposure for a selected subset of agents, using a simple 

model for spatial PM2.5 values. The top panel sorts agents by census block, while the 

bottom sorts agents by demographic class. Colors correspond with census block assignment, 

with vertical lines indicating the transitions between groups. When sorted by census groups, 

a distinct pattern emerges from the data that is not present when sorting by demographic 

class. This reveals that exposure is more strongly correlated with spatial differences than 

demographic differences.
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Figure 8. 
Exposure characteristics for the simulated population. Panel A shows a few example 

exposure profiles. The shapes of the profiles vary substantially and can be punctuated by 

abrupt changes in exposure. Panel B shows the distribution of total exposures in terms of 

person minutes, along with the distributions of relevant sub categories. Although work and 

travel activities have a smaller time contribution, we expect the health effects of actual 

pollution from these activities to be outsized in comparison to non-work activities. Panel 

C shows the distribution of acuteness factors, which is calculated by dividing the expected 

value of the exposure by the maximum value. A higher acuteness factor means that the total 

exposure is concentrated into a one or more high exposure events.
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