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Abstract

Background—HIV intervention activities directed towards both those most likely to transmit 

and their HIV-negative partners have the potential to substantially disrupt HIV transmission. Using 

HIV sequence data to construct molecular transmission clusters can reveal individuals whose 

viruses are connected. The utility of various cluster prioritization schemes measuring cluster 

growth have been demonstrated using surveillance data in New York City and across the United 

States (U.S.), by the Centers for Disease Control and Prevention (CDC).

Methods—We examined clustering and cluster growth prioritization schemes using Illinois HIV 

sequence data that includes cases from Chicago, a large urban center with high HIV prevalence, to 

compare their ability to predict future cluster growth.

Results—We found that past cluster growth was a far better predictor of future cluster growth 

than cluster membership alone but found no substantive difference between the schemes used 

by CDC and the relative cluster growth scheme previously utilized in New York City (NYC). 

Focusing on individuals selected simultaneously by both the CDC and the NYC schemes did not 

provide additional improvements.

Conclusion—Growth-based prioritization schemes can easily be automated in HIV surveillance 

tools, and can be used by health departments to identify and respond to clusters where HIV 

transmission may be actively occurring.
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2 Introduction

HIV is transmitted through sexual and injection drug use contact networks. Interventions, 

such as linkage to care, initiation of antiretroviral treatment, and pre-exposure prophylaxis 

(PrEP) for uninfected partners, that prioritize individuals who are part of groups with active 

transmission can more effectively reduce HIV transmission than delivering services ad hoc 
1-3. Genetic clustering approaches offer a route to rapidly identify individuals who are highly 

connected based on their viral sequences.

The viruses of individuals involved in recent transmission events, and viruses from known 

outbreaks, are closely related genetically 4,5. These transmission chains form clusters within 

genetic transmission networks. Interventions in Vancouver, Canada, illustrated the potential 

for public health departments to prioritize clusters for interventions to reduce onward 

transmission 6. A retrospective analysis of U.S. data determined that the transmission rate 

within clusters was eight times higher than the national average 7. However, clustering 

approaches have been criticized for their potential bias towards selecting densely sampled 

sub-populations 8,9. Another potential problem is that existing clusters could reflect past 

transmission without predicting future transmission. Thus, recent analyses have focused on 

identifying growing clusters within transmission networks 7,10-12. Growing clusters are those 

to which newly diagnosed cases are linked over time. We emphasize that this growth does 

not necessarily indicate onward transmission. New cases may reflect incident infections 

or the new diagnosis of previously infected prevalent infections. Nonetheless, growing 

clusters within national cohorts comprise individuals with high transmission rates 7 and 

better predict future growth 11 than clustering alone and may also point to groups where 

undiagnosed cases may be found.

Multiple measures of cluster growth have been developed, but the predictive abilities of 

these measures have not been systematically compared. In New York City, estimated 

monthly cluster growth over an 8-year period indicated that relative cluster growth was 

a better predictor of future growth than any other measure 11. The Centers for Disease 

Control and Prevention (CDC) classifies clusters as priority based on recent formation 

and the number of new diagnoses joining the cluster within the previous year 13. In this 

paper we compare these and other prioritization schemes to determine which best predicted 

future cluster growth using Illinois HIV genotypes collected as part of routine public health 

surveillance activities since 2012 14.

3 Methods

3.1 Data

HIV-1 protease and reverse transcriptase (pol) genetic sequences generated for antiretroviral 

resistance testing for individuals diagnosed with or receiving treatment for HIV in the state 

of Illinois have been routinely reported to Illinois Department of Public Health since 2012. 

Illinois is the sixth most populous state in the United States as of 2018 15, and has 7,000 

people living with HIV.
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For each case with a sequence reported to surveillance, we considered additional 

data, including race/ethnicity (American Indian/Alaska Native, Asian/Pacific Islander, 

Black/African-American, Hispanic/Latino, White, or mixed race), sex assigned at birth, 

transmission risk factor (men who have sex with men [MSM], people who inject drugs 

[PWID], MSM/PWID, heterosexual, perinatal, other, unknown), age at diagnosis, and date 

of diagnosis. Age at diagnosis was stratified into a categorical variable (0-12, 13-19, 20-29, 

30-39, 40-49, 50-59, 60+).

At the time of analysis, genotypes were only available for individuals diagnosed up until 

June 2018, making 2017 our most recent complete year. Completeness of sequence reporting 

(the proportion of diagnoses with a genotype) has improved dramatically over time, and for 

the past 5 years has reached 48.0% for the state of Illinois. Previous to 2014, data available 

were insufficient to make inferences as older sequences were much less likely to cluster.

This study was approved by the Institutional Review Boards of the Northwestern University 

Feinberg School of Medicine and the University of California, San Diego with a human 

subjects exemption. The data analysed here were collected as part of routine HIV 

surveillance activities and are protected by local statute. The data cannot be submitted to 

public databases.

3.2 Transmission network construction

A molecular transmission network was constructed from genetic sequences using HIV-

TRACE 16. HIV pol sequences were aligned to an HXB2 reference sequence and pairwise 

genetic distances were calculated under the Tamura Nei 93 model 17. Each individual is 

represented by a node in the network, and nodes were linked to each other if their pairwise 

distance was below a pre-specified threshold. Distances between ambiguous nucleotides 

were resolved (i.e., Y is 0 substitutions from both C and T) when the fraction of ambiguities 

across an entire sequence was ≤1.5%; when the fraction of ambiguities was >1.5%, distances 

from ambiguities were averaged (i.e., Y is 0.5 substitutions from both C and T). Drug 

resistance sites were not excluded from alignments as these have been demonstrated not 

to affect transmission reconstruction 18. Nodes linked to at least one other node are 

considered clustered in the transmission network. As described below, different genetic 

distance thresholds for reconstructing the network were utilized.

3.3 prioritization schemes for HIV interventions

We analyzed the molecular transmission network to find prioritization schemes capable of 

identifying clusters most likely to give rise to genetically-linked newly diagnosed cases in 

the subsequent 12 months.

Ten prioritization schemes were evaluated (Table 1) based on clustering in the network at 

various genetic distance thresholds (c1.5%, c1%, c0.5%), relative growth of clusters inferred 

at various genetic distance thresholds (g1.5%, g1%, g0.5%) 11, and clusters with recent and 

rapid growth as defined by the CDC 7. The original CDC definition for priority clusters with 

recent and rapid growth isbased on a network restricted to individuals diagnosed within the 

three most recent years, linked at 0.5%, and having at least five individuals in that cluster 

diagnosed in the past year (RR5 in Table 1). Here we extended this definition to include 
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clusters with ≥4 (RR4), ≥3 (RR3), and ≥2 cases (RR2) diagnosed within the previous 12 

months.

Relative cluster growth was calculated as the number of new individuals diagnosed with 

HIV that joined the cluster in the most recent year relative to the square root of cluster size 

at the time of prioritization 11. For example, for any given cluster in 2015, its relative growth 

would be calculated as:

G =
ΔN2014 ∕ 2015

N2015

Where N2015 is the number of individuals in the cluster in 2015 and ΔN2014/2015 is the 

number of new individuals who joined the cluster between 2014 and 2015.

We analyzed the years 2014-2016, each year making predictions for the following year. 

For each year, we selected clusters that met each prioritization scheme definition and 

reconstructed the network the following year to count the number of linked new diagnoses. 

For all prioritization schemes, linked new diagnoses were defined as those that linked to at 

least one sequence in the original cluster at a 0.5% genetic distance. The number of new 

diagnoses was then corrected for cluster size, so that a new case linked to a cluster of size 

2 would count as 0.5 cases per prioritized case. For the prioritization schemes based on 

high cluster growth (4-6 in Table 1), the growth of each cluster was calculated as explained 

above, then clusters were sorted by growth. Individuals from the highest growth clusters 

were added to the priority group, one entire cluster at a time, until the total number of 

prioritized individuals met or exceeded 150. We chose 150 because this was the number of 

individuals selected under the RR3 cluster growth definition so as to facilitate downstream 

comparisons. As a sensitivity analysis, we repeated analyses selecting 250 individuals, the 

number selected under the RR2 scheme.

3.4 CORRELATES OF CLUSTER GROWTH

Multivariable logistic regression was used to examine demographic characteristics 

associated with cluster membership for each of the schemes: age at diagnosis, race/ethnicity 

and sex-specific transmission groups. The aim of this analysis was to explain, rather than 

predict, cluster membership, and all predictor variables are independently associated with 

our outcome variable (cluster membership).

4 Results

4.1 Data

HIV sequences from 9,500 unique individuals diagnosed between 1980 through June 

2018 were reported to Illinois Department of Public Health and were included in our 

analysis. Using a genetic distance of 0.5% to reconstruct the network, 1,405/9,500 (14.8%) 

individuals were linked to at least one other in the network (Figure 1). At the time of 

analysis, 7,846 individuals with a reported sequence were diagnosed prior to the end of 

2015, 8,874 prior to the end of 2016, and 9,374 prior to the end of 2017.
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Our aim was to identify the prioritization scheme most likely to select clusters that would 

continue to grow the following year. For each of the prioritization schemes, we selected 

clusters in 2014, 2015 and 2016 that met that definition of clustering or cluster growth. 

Cluster size distributions under each scheme for year 2015 are shown in Figure 2. We 

then reconstructed the network the following year (2015, 2016, and 2017) and counted 

the number of newly diagnosed cases genetically linked to clusters selected under each 

prioritization scheme, allowing us to calculate the percent increase for each cluster (Figure 

3; see Sup Fig 1 for 2016/2017).

4.2 Percent increase for each prioritization scheme

The number of individuals selected under the clustering schemes (1-3) was substantially 

larger than for the recent and rapid schemes (7-10; Figure 3). The number of individuals 

selected by the relative growth schemes (4-6) was set according to the number of individuals 

selected by the recent and rapid schemes (specifically RR3, although as a sensitivity analysis 

we also used RR2). Cluster growth schemes all returned much higher percent increases 

than clustering schemes (e.g. in 2015/2016, 34.0% increase per prioritized individual on 

average, compared to 12.8%), and the number of individuals prioritized was dramatically 

smaller. This result was consistent across years (Figure 3; see Sup Fig 1 for 2016/2017), 

although the specific scheme with the highest percent increase varied across years. Our 

result was unaffected by the selected number of prioritized nodes (150 in Figure 3, 250 in 

Sup Fig 2). However, no single relative growth nor recent and rapid scheme consistently 

had a greater percent increase across years. Within the relative growth scheme, no genetic 

distance threshold performed consistently better than another. Among the recent and rapid 

definitions, the minimum number of recent diagnoses (2 – 5) did not consistently affect 

percent increase, indicating that percent increase was high even among clusters with only 

two new diagnoses in the previous year. Nonetheless, the number of individuals that would 

be prioritized varied widely across the different schemes. For example, the number of 

individuals to be prioritized under the RR5 definition was five times smaller than the number 

prioritized under the RR2 definition (Figure 3, Table 2).

4.3 Demographic correlates of prioritized groups

We compared the demographic characteristics of individuals in every category of prioritized 

clusters (schemes 2 to 10 in Table 1; Sup Fig 2-12) to those of individuals clustering at 1.5% 

(c1.5%, n=2,101) who were not part of that group using logistic regression. Demographic 

characteristics varied across schemes, with a tendency for relative growth and recent and 

rapid clusters (schemes 4-10) to comprise more MSM, younger individuals and fewer 

African Americans than individuals clustering at 1.5% (Table 2).

We noted that the demographics and transmission risk of individuals in each category 

of cluster differed and therefore examined to what extent individuals selected under each 

scheme overlapped. RR5 are a subset of RR4 individuals, themselves a subset of RR3, 

themselves a subset of RR2. Because the number of individuals selected under the growth 

models was based on the number of individuals in the RR3 category, and because the 

RR3 clustered individuals are linked at 0.5%, we examined the overlap between the RR3 

and g0.5% groups (Figure 4). All members of a cluster are always picked together, so the 
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number of individuals selected under each scheme varies: in RR3 there were 161 and in the 

g0.5% group, there were 152. In addition, the RR3 group includes only diagnoses within the 

previous three years.

We questioned whether the individuals selected by both the RR3 and the g0.5% schemes 

might be in the fastest growing clusters. We identified the 111 individuals prioritized under 

both the RR3 and the g0.5% schemes, isolated the clusters comprising those individuals and 

calculated percent increase for those clusters. We found no evidence that these individuals 

were associated with the most growth; clusters selected by both schemes grew by 38.5%, 

compared with 41.6% for RR3 and 36.2% for g0.5%.

5 Discussion

With limited public health resources, it is important to direct public health response towards 

individuals most associated with active HIV transmission. By investigating the growth of the 

HIV genetic transmission network in Illinois over a three-year period, we found that clusters 

exhibiting recent growth would identify nearly three times more cases the following year 

than other clusters. These results were consistent across the years considered in the analysis. 

The specific prioritization scheme measuring recent growth varied, and the characteristics of 

the individuals selected by each scheme varied, but all schemes that considered clusters with 

a high growth rate in the previous year predicted high growth the following year.

We hypothesized that the clusters comprising individuals selected under both the growth and 

the recent and rapid definitions might display the highest growth of all, but this turned out 

not to be the case: their growth was equivalent to that under each of the respective cluster 

growth definitions. We used square root relative cluster growth because it was previously 

demonstrated to be more predictive of future growth than cluster size, relative growth, or 

absolute growth11. The CDC recent and rapid definitions select sequences separated by 

genetic distances ≤0.5%, reflecting short transmission intervals (rapid transmission) and 

clusters with growth within the last year (recent cluster growth) 7. Other than the difference 

in the method for calculating growth, the schemes differ in that the CDC enforces a three-

year cut-off on diagnosis dates to focus on recent transmissions. Our results indicate that 

prioritizing clusters with rapid growth is crucial, but the exclusion of diagnoses more than 

three years prior was inconsequential in our dataset.

As we did not find substantial differences in percent increase between the recent and 

rapid cluster definitions with varying minimum numbers of diagnoses in the previous year 

(2-5 diagnoses), the scheme chosen should depend on resource availability to respond to 

the number individuals in clusters resulting from the particular prioritization scheme. The 

number of individuals prioritized under the RR5 definition was five times smaller than 

the number prioritized under the RR2 definition. Thus, in places where resource limits 

preclude every single person receiving a timely partner elicitation interview, we suggest 

that public health departments might benefit from creating an ordered list of individuals 

for service prioritization based on recent cluster growth. Different thresholds may be more 

appropriate in rural versus urban thresholds, to take into account population density and 

local transmission dynamics.
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We did not find meaningful differences in the percent increase between the cluster growth 

schemes at 0.5%, 1% and 1.5%, but there were stark differences in the number of clusters 

that would be prioritized under each of those schemes. Overall, our results support the 

hypothesis that the network at 0.5% is more informative in terms of recent and ongoing 

transmission19, and we would encourage public health responses to be directed towards 

clusters defined at this threshold – especially as it will be possible to target more of them. 

But even clusters defined at 1.5% displaying growth within the previous year are associated 

with ongoing diagnosis, in agreement with previous results10. Therefore, public health 

departments could consider conducting retrospective analyses comparing cluster growth 

schemes on their data, to establish the scheme best suited to their local epidemic. As such 

analyses become more common, it may be possible to develop schemes that are more widely 

generalizable. Although cluster growth in our analysis was calculated year-on year, for 

maximum impact, cluster-guided prioritization should be conducted in near real-time, and 

monthly reviews are a realistic objective6,11.

The demographic characteristics of high growth clusters were not as distinct as in a 

national analysis of molecular surveillance data7. In that analysis, recent and rapid clusters 

were more likely to include young Latino MSM. In our analysis, young MSM made 

up the majority of cases in high growth clusters, but this result was not consistently 

significant across prioritization schemes. The finding that high growth clusters could not 

be characterized demographically highlights the importance of the cluster growth schemes 

for prioritizing individuals that may not be identified from standard epidemiological/ 

demographic analyses of routine HIV surveillance data. Their independence from patient 

demographic traits may be a strength of cluster-guided approaches, meaning that they can 

capture at-risk populations who would not be prioritized based on demographic makeup 

alone. Concordantly, the New York study concluded that demographic characteristics were 

far less predictive of future growth than were past cluster growth dynamics 11.

The impact of cluster-guided prioritization will depend on the local epidemic. In places 

where individuals are diagnosed with HIV at a later stage of infection, the aim of such a 

strategy will be to decrease diagnosis delays. To account for the delays between infection 

and diagnosis, less conservative genetic thresholds may need to be applied. In places where 

diagnosis delays are already minimal, cluster-guided interventions may have the potential to 

prevent transmission by flagging recently infected cases before they go on to transmit3,20.

Our ability to distinguish between schemes may have been affected by small sample size 

and/or genotype reporting completeness. For example, a lack of completeness due to delays 

in reporting undermined our ability to predict cluster growth in 2017; and the best model 

selected varied slightly across the years examined. Independent analyses have shown that 

fewer clusters of concern are detected when sequence data completeness is lower, but that 

inferences made remain meaningful21. Our results are consistent with those from analyses of 

larger datasets7, thus it is possible that both sets of prioritization schemes perform equally 

well. Nonetheless, populations that are systematically less likely to be linked to care will 

not have a genotype and thus will not be identified by cluster-guided prioritization schemes. 

Improving sequence data completeness is a priority for the state of Illinois and analyses 

should be repeated.
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Cluster-guided approaches are agnostic to the intricacies of disease transmission dynamics. 

As explained above, one benefit is that they consequently do not depend on pre-

classification of subpopulations as being at-risk. However, they can only detect transmission 

that has occurred and cannot make predictions about future growth that might result from a 

shift in disease dynamics. Finally, we stress that it is essential that HIV programs continue 

to focus on inclusion and reducing inequities alongside cluster-guided approaches. Providing 

public health interventions to marginalized populations who are disproportionately affected 

is central to ending the HIV epidemic.

Rapid, simple, and automated tools to identify growing clusters are essential to assist 

health departments in developing a comprehensive, targeted response where there is active 

transmission. The growth-based prioritization schemes presented here are straightforward 

to communicate and easy to implement by public health departments, can be calculated 

on large surveillance datasets with tens of thousands of sequences, and can be automated 

within HIV-TRACE or similar frameworks16,22. Even more importantly, cluster-guided 

prioritization has the potential to better identify people in need of services to reduce new 

infections towards the goal of ending the HIV epidemic in the United States 23,24.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
HIV-1 molecular transmission clusters in Illinois. Individuals are represented by a node in 

the network if they were linked to at least one other person at a genetic distance ≤0.5%.

Ragonnet-Cronin et al. Page 10

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Cluster size distribution for each prioritization scheme in year 2015. All axes are log 

scales. (A.) Clusters with high growth at 1.5% (g1.5%) are a subset of clusters at 1.5% 

(c1.5%), and the same holds for (B.) 1% and (C.) 0.5%. RR5 clusters are a subset of RR4 

clusters, themselves a subset of RR3 clusters, themselves a subset of RR2 clusters. Different 

distributions are shown with different sized characters for visibility of overlapping data 

points. Cluster prioritization schemes are defined in Table 1.
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Figure 3: 
Number of prioritized (dark green) and linked (pale green) cases and percent increase (pink) 

for each cluster prioritization scheme for years (A.) 2014/2015 and (B.) 2015/2016. Note 

that the number of individuals prioritized in the cluster growth schemes is determined by the 

number of individuals in category RR3 (150). Cluster prioritization schemes are defined in 

Table 1.
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Figure 4: 
Overlap between individuals selected under two prioritization schemes: clusters with high 

growth at 0.5% (g0.5%) and recent and rapid clusters with at least 3 diagnoses in the 

previous year (RR3). Note that the number of individuals selected under the growth schemes 

was determined based on the number of individuals in the RR3 group (~150), but the RR3 

group can only include individuals diagnosed within the previous three years.
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Table 1:

Cluster definitions for prioritization schemes

Prioritization
Scheme

Scheme
number

Clustering
method
name

Maximum
genetic distance
between nodes

in cluster

Nodes included
in network

Cluster definition

Clustering 1
c1.5%

# 1.5% All Linked at threshold

2 c1% 1% All Linked at threshold

3 c0.5% 0.5% All Linked at threshold

Relative Cluster 
Growth

4
g1.5%

$ 1.5% All Linked at threshold, and high growth*

5 g1% 1% All Linked at threshold, and high growth*

6 g0.5% 0.5% All Linked at threshold, and high growth*

Recent and Rapid 
Growth

7
RR5

+ 0.5% Diagnosed in previous 3 
years

Linked and ≥ 5 cases diagnosed in the 
previous year

8 RR4 0.5% Diagnosed in previous 3 
years

Linked and ≥ 4 cases diagnosed in the 
previous year

9 RR3 0.5% Diagnosed in previous 3 
years

Linked and ≥3 cases diagnosed in the 
previous year

10 RR2 0.5% Diagnosed in previous 3 
years

Linked and ≥2 cases diagnosed in the 
previous year

#
c: clustered

$
g: growth

+
RR: recent and rapid.

*
We calculated growth based on the equation below, then ranked clusters based on their growth and selected those with the highest growth.
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Table 2:

Adjusted Odds Ratios from logistic regression models comparing individuals selected under each prioritization 

scheme in 2015 to those in clusters at 1.5% (2101 individuals, 517 clusters, 8.4 percent increase).

Clustering Relative Growth Recent and Rapid Growth

c1% c0.5% g1.5% g1% g0.5% RR2 RR3 RR4 RR5

 

Number of priority clusters 407 269 3 5 24 71 27 14 7

Number of cases to be prioritized 1499 838 158 154 152 283 161 94 51

Percent increase 17.2 15.8 26.6 27.9 36.2 31.8 41.6 39.4 45.1

 

AGE AT DIAGNOSIS

14 - 19 4.1*** 2.85*** 2.22** 3.02**

20 - 24 2.8*** 2.04** 1.64*

25 - 29 REF REF REF REF REF REF REF REF REF

30 - 39

40 - 49

50 - 100 0.57*

 

RACE/ETHNICITY

African American 0.62** 0.55* 0.6** 0.6*

Latino 0.52* 0.09**

White REF REF REF REF REF REF REF REF REF

Unknown

 

SEX/RISK GROUP

MSM 1.51* 6.43** 2.16* 4.06* 7.6*

Female heterosexual REF REF REF REF REF REF REF REF REF

Female PWID 0.28*

Female unknown risk

Male heterosexual

Male PWID

MSM/PWID 6.84*

Male unknown risk

Cluster prioritization schemes are defined in Table 1. Results are shown only if they were significant (p<0.05).

*
p<0.05

**
p<0.01

***
p<0.001. MSM: men who have sex with men, PWID: people who inject drugs.
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