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Abstract

Purpose of review.—Antibody mediated rejection (ABMR), especially in its chronic 

manifestation, is increasingly recognized as a leading cause of late graft loss following solid 

organ transplantation. In recent years, autoantibodies have emerged as a significant component 

of the humoral response to allografts alongside anti-HLA antibodies. These include polyreactive 

antibodies also known as natural antibodies (Nabs) secreted by innate B cells. A hallmark of 

Nabs is their capacity to bind altered cells such as oxidized lipids on apoptotic cells. This review 

provides an overview of these overlooked antibodies and their implication in the pathophysiology 

of ABMR.

Recent findings.—New evidence reported in the past few years support a contribution of IgG 

Nabs to ABMR. Serum IgG Nabs levels are significantly higher in patients with ABMR compared 

with control kidney transplant recipients with stable graft function. Pre-transplant IgG Nabs are 

also associated with ABMR and late graft loss. IgG Nabs are almost exclusively of the IgG1 and 

IgG3 subclasses and have the capacity to activate complement.

Summary.—In conclusion, Nabs are important elements in host immune responses to solid organ 

grafts. The recent description of their implication in ABMR and late kidney graft loss warrants 

further investigation into their pathogenic potential.
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Introduction

Studies on the role of antibodies in solid organ transplant rejection have mainly focused 

on anti-ABO blood group and human leukocyte antigen (HLA)-specific antibodies directed 

at allogeneic targets on graft tissue. More recently, the clinical relevance of non-HLA 

antigens has been increasingly recognized [1] [2], bringing attention to autoantibodies 

including a category of broadly reactive antibodies also called polyreactive antibodies. 

These polyreactive antibodies have emerged over the past few decades as important players 
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in health and disease with critical functions in maintaining homeostasis and immune 

protection. Their function in transplantation and allograft injury, however, remains under-

defined. Here, we discuss polyreactive antibodies, focusing on current knowledge of their 

role in solid organ transplantation, in particular their potentially pathogenic effects in graft 

rejection.

Characteristics and source of polyreactive antibodies

Polyreactive antibodies are defined by their ability to bind to multiple structurally different 

ligands including self-antigens [3] [4]. They are also frequently referred to as natural 

antibodies (Nabs) as they are present from birth and produced without evidence of 

immunization. Polyreactive antibodies have been shown to react to a wide variety of 

antigens including nucleic acids, carbohydrates, proteins and lipids [4]. Their affinity is 

typically lower than monoreactive antibodies [5]. While polyreactive antibodies of all 

isotypes have been identified [6] [7] [8] IgM, IgG and IgA are the most common and 

comprise a significant portion of normal human immunoglobulins in sera and mucosal 

secretions [9] [10]. The biological properties of polyreactive Nabs enable them to carry 

out important functions in cell homeostasis of healthy tissue and in host defence [11]. 

Polyreactive antibodies, in particular IgG, have also been attributed pathogenic roles in the 

context of autoimmune and inflammatory diseases such a systemic lupus erythematosus 

(SLE) [12] and rheumatoid arthritis (RA) [13].

Several structural models have been proposed to explain the polyreactivity of monoclonal 

Nabs. In contrast to the rigid “lock and key” model of classic antigen-antibody binding, the 

antigen binding site of polyreactive antibodies are thought to have more flexibility in order 

to accommodate different antigenic configurations [4]. Antigen-binding sites may also exist 

as conformational isomers, with each isomer binding to different antigens [14]. Another 

model suggests that the antigen-binding pocket is endowed with multiple recognition sites 

enabling the binding of various antigens [15]. Additionally, polyreactivity can also be 

explained by protein-destabilizing conditions in vitro and in vivo [16] [17].

In mice, several lines of evidence suggest that polyreactive Nabs are produced by 

heterogenous innate subsets of B cells including peritoneal B-1 B cells [18], marginal zone 

B cells [19] and a population of CD5− plasmablasts and plasma cells in the bone marrow 

[20]. In humans, however, the identification of a distinct innate B-cell subset producing 

these antibodies remains elusive. What is clear is that the B cells that produce polyreactive 

antibodies express polyreactive receptors [21] and can be found at a relatively high 

frequency in human peripheral blood. Approximately half of the B cells from cord blood 

[22] and about 20% of circulating B cells of adults were found to exhibit polyreactivity [22] 

[23] [24]. Sequence analysis has determined that human polyreactive antibodies can be both 

germline [25] or mutated, suggesting that specificity to multiple ligands may be positively 

selected through affinity maturation [23] [26] [27].

Protective and pathogenic roles of polyreactive antibodies

Polyreactive Nabs have important roles in defence against invading pathogens as well 

as cell homoeostasis [28]. These antibodies contribute to the early antibacterial and 
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antiviral immune response [29] [30] [31]. The recognition of microbes is aided by their 

ability to react to a broad range of pathogen-associated molecular patterns including 

lipopolysaccharide [32], bacterial cell wall components [33] and viral antigens [34] [35]. 

Polyreactive Nabs also recognize pathogens indirectly by binding via pathogen-associated 

host serum proteins [36]. Once bound to pathogens, Nabs can neutralize, opsonize and 

activate complement-mediated killing of their targets [29] [37] [38]. Studies in mice and 

humans have demonstrated that the lack of polyreactive Nabs responses lead to ineffective 

antibacterial [36] [39] and antiviral responses [34] [38] [40].

Cell death is an integrative part of normal cell turnover. The removal of millions of dead or 

dying cells everyday by a process called efferocytosis is vital to the maintenance of healthy 

physiological conditions. Clearance of apoptotic cells [41] as well as senescent red blood 

cells by [42] phagocytes is facilitated by polyreactive antibodies. Determinants recognized 

by Nabs include phosphorylcholine [33], phosphatidylserine [43] and the lipid peroxidation 

product malondialdehyde on apoptotic cells [44] and band 3 protein on red blood cells [45].

Aside from their protective function, polyreactive antibodies have also been involved in 

autoimmune and inflammatory conditions. In lupus, polyreactive antibodies have pathogenic 

potential. In particular, polyreactive IgG secreted by B cell clones derived from SLE patients 

appear to bind glomerular antigens resulting in neuronal damage [12]. In RA, where anti-

citrullinated peptide antibodies are important hallmarks of the disease, polyreactive IgG, 

derived from patient synovial fluid B cells, were shown to bind citrullinated antigens [46]. In 

experimental RA, anti-citrullinated antibodies can enhance inflammation when transferred 

into mice [47]. It is interesting to note that this pathogenic potential is usually attributed to 

IgG Nabs while the role of IgM Nabs appears to be less clear [48]. However, a recent study 

using a mouse model of glomerular disease showed that natural polyreactive antibodies, 

particularly natural IgM, bound to glomeruli and facilitated proteinuria and glomerular 

damage [49].

Polyreactive antibodies in transplantation

Xenotransplantation.—Humoral immunity is a fundamental barrier to xenograft survival. 

The major antigenic target of xenoreactive antibodies is Galα1-3Gal (α-Gal) [50] although 

non-α-Gal antigens can also be immunogenic. Xenoreactive antibodies have been described 

as polyreactive [51] with one study showing that anti-α-Gal antibodies recognized DNA, 

actin, myosin and tubulin [52]. As demonstrated in previous reports, polyreactive Nabs from 

human serum display xenoreactivity, binding to pig lung antigens [53] [54]. In another 

study, human polyreactive antibodies, but not monoreactive antibodies, were shown to 

react to murine tissue antigens [55]. Polyreactive antibodies are also deposited on rejected 

xenografts [56]. These Nabs usually damage graft tissue through complement-mediated 

mechanisms [57].

Antibodies to ABO blood group antigens.—Without prior desensitization treatment, 

transplantation of an ABO incompatible graft in adults results in hyperacute rejection due 

to antibodies in the recipient serum recognizing donor blood group antigens on the graft 

endothelium. Some of these anti-ABO antibodies were shown to be polyreactive in an early 
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study [58]. In this report, 84% of IgM and ~50% of IgG reactive to blood group antigens 

also reacted to unrelated antigens such as DNA, tetanus toxoid, thyroglobulin, lysozyme and 

dinitrophenol.

Ischemia reperfusion injury (IRI).—Polyreactive antibodies have also been implicated 

in IRI, a complex, multifactorial process occurring immediately after transplantation when 

organs or tissues are reoxygenated after a period of hypoxia. During IRI, ischemic 

endothelial cells expose altered self-antigens [59] recognized by Nabs, which in turn 

exacerbate the inflammatory reaction and graft damage [60]. The contribution of Nabs to IRI 

was demonstrated in Rag2−/− mice reconstituted with wild-type mouse serum [61]. Nabs 

binding to these newly exposed determinants, including myosin [62], annexin IV [63] [64] 

and membrane phospholipids [65], and mediate cell damage by complement activation [66] 

[67]. Conversely, blockage of self-reactive IgM reduced the ischemic injury [67] [68].

Allotransplantation.—Antibodies to donor HLA play an important part in rejection 

[69] [70] [71] [72]. However, antibody-mediated rejection can occur in the absence of 

donor-specific HLA antibodies [73]. Several lines of evidence have now emerged suggesting 

that non-HLA antibodies are also implicated in transplant injury [1]. Polyreactive Nabs 

represent one such type of non-HLA antibodies. Their presence was revealed at the clonal 

level by immortalizing B cells from clinical specimens from a kidney transplant recipient 

experiencing rejection [74]. A number of clones were generated that secreted monoclonal 

polyreactive antibodies recognizing multiple self-antigens [74]. One such clone was even 

reported as highly expanded in the patient’s blood. All polyreactive antibodies appear to 

react to determinants on apoptotic cells but not to viable cells [75], reminiscent of the 

apoptotic cell-binding capacity of natural antibodies. Using reactivity to apoptotic cells as a 

means to detect polyreactive Nabs IgG in the serum, it was found that kidney graft patients 

with ABMR had higher levels of Nabs than transplant recipients without the complication 

[75]. These antibodies could activate complement, leading to C4d deposition as the surface 

of target cells. A subsequent report associated higher levels of IgG Nabs reactive to 

apoptotic cells in pre-transplant serum with late kidney graft loss [76]. Taken together, these 

findings suggest a significant role for IgG Nabs in kidney transplant rejection. The role of 

these antibodies in other types of solid organ transplants is still unclear.

Origin of polyreactive antibodies in transplant recipients

The precise origin of polyreactive IgG Nabs observed in kidney transplant recipients is 

not clear. As mentioned above, polyreactive Nabs, mostly IgM, are present in healthy 

individuals [6] [23] [77] but aberrant levels, especially IgG Nabs, are detected in various 

autoimmune diseases [48]. It is likely that innate B cells constitutively producing IgM 

Nabs at the steady-state, undergo class-switch recombination (CSR) and produce IgG Nabs, 

detectable by assessing the serum reactivity to apoptotic cells. A possible mechanism could 

resemble sensitizing events responsible for the development of anti-HLA antibodies through 

blood transfusion and exposure to HLA-mismatched foetuses during pregnancies. In that 

scenario, cell damage encountered by transplanted tissue during the surgical procedure or 

by the native kidney during end-stage renal disease, results in tissue injury and release of 

apoptotic bodies. Exposure to these apoptotic determinants then triggers polyreactive B cell 
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activation and CSR. In support of this view, the accumulation of apoptotic cells has been 

associated with inflammation and disease [78]. Stimulation of Toll-like receptors on B cells 

is another potential mechanism resulting in the development of polyreactive antibodies in 

transplantation. Graft cell death initiated by IRI leads to the release of damage-associated 

molecular patterns, which, in turn, activate TLR-signalling pathways [79]. In support of this 

mechanism, polyreactive serum antibody levels were enhanced following TLR 3, 4, 7 and 

9 stimulation in mice [80]. There are also several lines of evidence linking apoptosis with 

vascular injury following transplantation. The inhibition of pro-apoptotic effector caspases 

reduces microvascular injury in liver and heart transplant models [81] [82] while the over-

expression of anti-apoptotic Bcl-2 reduced coronary artery vasculopathy [83]. Following a 

similar scenario, Dieude et al. [84] showed in a mouse model that vascular injury leads to 

the release of exosome-like apoptotic cell vesicles that induced B cell responses and the 

production of anti-LG3 antibodies.

Function of polyreactive antibodies in transplant rejection

The pathogenic potential of polyreactive antibodies in kidney graft rejection is still 

uncertain. On one hand, their presence may result from cellular injury encountered by the 

graft but may have no direct consequences. On the other hand, the finding that virtually all 

pre-transplant polyreactive IgG Nabs associated with late kidney graft loss are complement-

fixing IgG1 and IgG3 [76] strongly suggests that these antibodies are more than bystanders 

and contribute to tissue destruction alongside classical DSA. In ABMR, a major mechanism 

of graft injury occurs when complement is fixed by antibodies bound to graft tissue. 

Activation of the complement cascade leads to formation of the membrane attack complex 

and chemotaxis of inflammatory cells. It is also possible that immune complexes formed by 

the binding of polyreactive antibodies to target antigens can activate C1q further contributing 

to complement-mediated inflammation.

The pathogenicity of polyreactive antibodies may also be exerted via activation of 

endothelial cells of the graft. Antibodies to HLA have been shown to directly activate 

endothelial cells in the kidney and heart setting [85] [86], and via sublytic complement 

injury [87]. Endothelial activation leads to a pro-inflammatory state, resulting in subsequent 

immune cell recruitment and tissue damage. It is, however, unclear how polyreactive Nabs, 

which do not usually bind to viable cells, would activate endothelial cells.

Another appealing possibility is that polyreactive antibodies can amplify the microvascular 

damage induced in grafts undergoing rejection by synergizing with DSA. Recent reports 

suggest that antibodies to non-HLA may act in synergy with classical DSA to mediate graft 

rejection. For instance, studies showed that the presence of both DSA and AT1R antibodies 

resulted in lower reduced freedom from rejection compared to presence of each antibody 

individually [88] [89]. Four separate monoclonal polyreactive antibodies isolated from 

kidney transplant recipients were found to cross-react to several HLA molecules pointing 

to a potential synergistic effect with DSA [74] [90]. These mechanisms, however, are still 

hypothetical at this point.
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Conclusions

There is now little doubt that polyreactive Nabs have to be taken into consideration when 

assessing the humoral immunity to solid organ grafts. However, many questions related to 

their exact impact on rejection remain unanswered. In particular, a direct causal evidence 

of their implication in graft tissue destruction is still awaited. Elucidating the mechanisms 

whereby polyreactive Nabs can exert their pathogenicity would considerably advance the 

field and facilitate the design of effective management strategies. Further clarification of the 

nature of the antigens recognized by these antibodies would also allow the development of 

additional assays for their detection. Advances in proteomic approaches such as those used 

to identify anti-endothelial cell and anti-apoptotic cell vesicle targets [84] [86] may help 

in achieving this goal. At this stage, we can be confident that future studies will continue 

to uncover novel characteristics and functions of these overlooked antibodies as well as 

addressing their significance in the development of ABMR.
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Bulleted summary:

• Serum natural polyreactive antibodies correlate with antibody-mediated 

rejection of kidney grafts

• Pre-transplant serum natural antibodies associate with late kidney graft loss

• IgG natural antibodies are primarily complement-fixing IgG1 and IgG3

• IgG natural antibodies can cross-react to HLA on beads used to detect anti-

HLA antibodies by Luminex
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