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Abstract 

Background:  Hypoxia plays a crucial role in immunotherapy of hepatocellular carcinoma (HCC) by changing the 
tumor microenvironment. Until now the association between hypoxia genes and prognosis of HCC remains obscure. 
We attempt to construct a hypoxia model to predict the prognosis in HCC.

Results:  We screened out 3 hypoxia genes (ENO1, UGP2, TPI1) to make the model, which can predict prognosis in 
HCC. And this model emerges as an independent prognostic factor for HCC. A Nomogram was drawn to evaluate the 
overall survival in a more accurate way. Furthermore, immune infiltration state and immunosuppressive microenviron-
ment of the tumor were detected in high-risk patients.

Conclusion:  We establish and validate a risk prognostic model developed by 3 hypoxia genes, which could effec-
tively evaluate the prognosis of HCC patients. This prognostic model can be used as a guidance for hypoxia modifica-
tion in HCC patients undergoing immunotherapy.
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Background
Liver cancer is a common malignant tumor with poor 
prognosis and high mortality, ranking the fourth in 
tumor death [1]. HCC accounts for 75–85% in liver can-
cer and is the leading cause of death [2]. Although con-
tinuous improvement has been made in HCC therapy, 
the 5-year survival rate of HCC patients is still less than 
20% [3, 4]. As is known to all, OS of HCC patients is 
closely related to the tumor stage. And it is conducive to 
effective communication between clinicians and patients 
if the prognosis of individual HCC could be evaluated in 
an accurate and convenient way.

Tumor growth affects the surrounding microenvi-
ronment, and the tumor microenvironment (TME) 

promotes tumor progression [5]. Substantial data sug-
gest that hypoxia is an important manifestation of TME 
[6, 7]. HCC has a high level of vascularization, and lots 
of oxygen is consumed when tumor grows rapidly. There-
fore, TME in HCC seems to be in a statement of low oxy-
gen due to insufficient oxygen supply [8]. Previous study 
has demonstrated that HCC is the most serious tumor of 
hypoxia [9]. Abundant evidence is showing that hypoxia 
can induce an increase in tumor malignancy, including 
tumor progression, invasion and metastasis, contributing 
to poor prognosis in HCC [10, 11]. Nowadays immune 
checkpoint inhibitors (ICI) have become an effective 
immunotherapy and are popularly used in the treatment 
of HCC [12, 13]. Meanwhile increasing literature indi-
cated that hypoxic microenvironment would decrease 
the treatment sensitivity in ICI therapy [7]. And improv-
ing the hypoxic microenvironment exhibited a more effi-
cient effect on ICI immunotherapy [14]. Therefore, we 
put forward that hypoxia-related genes could be used 
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to predict the prognosis of HCC and help the choice of 
hypoxia ameliorating agents during ICI immunotherapy. 
Currently there is a lack of hypoxia prognostic models in 
HCC.

In this study, we developed and validated a prognostic 
model composed of hypoxia-related genes, which can 
predict the OS of HCC patients. And it is hopefully to 
be applied as a potential reference for the use of hypoxia 
ameliorant during immunotherapy in HCC, so as to 
improve the prognosis in HCC.

Results
Clinical characteristics of the enrolled participants
The RNA-Seq expression and corresponding clinical 
information of 232 HCC patients were downloaded from 
the International Cancer Genome Consortium (ICGC) 
database. Analogously, characteristics of 371 HCC 
patients were obtained from the Cancer Genome Atlas 
(TCGA) database. Details about the information of train-
ing and validation groups are exhibited in Table 1.

Establishment of the hypoxia risk prognostic model
The genome related to hypoxia was acquired from the 
gene set enrichment analysis (GSEA) website. These 
200 hypoxia-related genes are widely accepted to make 
research in various clinical studies (See Additional file 1: 
Data S1 for details). We used the STRING online data-
base (http://​string-​db.​org) to construct a protein–pro-
tein interaction network (PPI) for those 200 hypoxia 
genes (Fig.  1A). The top 50 genes with higher degree 

of interaction were preliminarily identified to play an 
important role in the hypoxia process of HCC (Fig. 1B). 
Univariate cox regression analysis determined that 8 
hypoxia-related genes were significantly related to the OS 
of HCC patients in the ICGC training group (P < 0.001) 
(Fig. 1C). These 8 prognostic-related genes were further 
analyzed in Least Absolute Shrinkage and Selection oper-
ator (LASSO) regression to establish a hypoxic prognosis 
model for HCC patients. Ultimately, three genes (ENO1, 
UGP2, TPI1) were selected for the construction of 
hypoxia prognostic model according to the lamda value 
in LASSO regression. Among them, ENO1 and TPI1 are 
risk genes, and UGP2 is a protective gene (Fig.  1D–F). 
The three prognostic genes in the training and verifica-
tion groups are closely correlated with each other, posi-
tive relation in red and negative in green (Fig. 1G, H).

Validation of the hypoxia prognostic model
We use the Kaplan–Meier (K–M) curve and the risk 
curve to further validate the hypoxia prognosis model. 
K–M curves of ENO1, UGP2 and TPI1 in the ICGC 
queue were drawn for concise analysis. The survival rate 
of ENO1 and TPI1 high expression group decreased 
(P < 0.01), suggesting that they are risk genes (Fig.  2A, 
C). On the contrary, the survival rate of the UGP2 high 
expression group increased (P < 0.01), indicating that 
UGP2 is a protective gene (Fig.  2B). Likewise, similar 
results were confirmed in TCGA (Fig. 2D–F).

All specimens are divided into high- and low-risk 
groups on the basis of the median risk score as a cutoff. 
The K–M curve in the ICGC cohort showed that the 
survival rate of patients in the high-risk group was sig-
nificantly lower than that in low-risk group (P < 0.01) 
(Fig.  3A). And same conclusion was obtained in TCGA 
validation cohort (P < 0.01) (Fig. 3B). Since the risk curve 
can further verify the reliability of the model, we sorted 
all patients in the training group in sequence according to 
risk score (Fig. 3C). We found that the higher risk score 
is, the shorter survival time a patient has, and the more 
deaths caused (Fig.  3E). And the expressions of ENO1 
and TPI1 increased as the risk score rose, while the 
expression of UGP2 decreased (Fig.  3G). Definitely we 
got the same phenomenon in TCGA validation groups 
(Fig. 3D, F, H). The mortality rate in high-risk group was 
significantly higher than that in low-risk group (30% vs. 
7%) (Fig.  3I), which is also verified by external cohort 
(45% vs. 23%) (Fig. 3J).

Evaluation of the ability of hypoxia prognostic model 
and the correlation of clinical characteristics
We performed Receiver operating characteristic (ROC) 
curves on the data from ICGC and TCGA in order 
to evaluate the prognostic accuracy of the hypoxia 

Table 1  Summary clinical characteristic of HCC patients

NA: Clinical data are unknown

Characteristics Training group 
(ICGC N = 232)

Test group (TCGA N = 371)

Age category

 < 65/≥ 65/NA 83/149/0 221/149/1

Gender

 Male/Female 171/61 250/121

Vital status

Alive/dead 189/43 241/130

Grade

 G1/G2/G3/G4/NA NA 55/177/122/12/5

Tumor stage

 I/II/III/IV/NA 36/106/71/19/0 171/86/85/5/24

T stage

 T1/T2/T3/T4/NA NA 181/94/80/13/3

M stage

 M0/M1/MX NA 266/4/101

N stage

 N0/N1/NA NA 252/4/115

http://string-db.org
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prognostic model. And value of area under curve (AUC) 
for 0.5-, 1-, 3-, and 4-year OS in ICGC were 0.727, 0.763, 
0.787, and 0.777 respectively (Fig. 4A). Likewise, the 0.5-, 
1-, 3-, and 5-year AUC values in the verification cohort 

were 0.729, 0.724, 0.666, and 0.692 respectively (Fig. 4B). 
The concordance index (C-index) value of the model in 
the experimental group is 0.7551 (95% CI 68.0–83.0%, 
P < 2.0674E−11). The C-index value in the verification 

Fig. 1  Prognostic model of hypoxia related genes. A Protein–Protein Interaction network of 200 hypoxia-relevant genes. B Top 50 genes that are 
most related to each other in PPI network. C 6 hypoxia genes closely related to OS in HCC by univariate cox regression. D, E Establishment of 4-gene 
model via LASSO regression and lamda value. F Forest maps indicating that ENO1 and TPI1 are risk genes, while UGP2 is a protective gene. G, H 
Spearman correlation analysis of 3 hypoxia genes in the ICGC and TCGA databases
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group is 0.6802 (95% CI 63.1–73.0%, P < 8.6844E−13). 
The P value of the model in the experimental group and 
the verification group were both < 0.01, indicating that 
the model has a strong predictive ability. Both the train-
ing and validation groups confirmed the good predictive 
ability of the established prognostic model.

Stage is a traditional clinical tumor stratification with 
strong practicability in daily clinic. We focused on the rela-
tionship between three hypoxia genes and Stage. A heat 
map was created to explain the association between gene 
expression level and stage stratification. The expression of 
ENO1 and TPI1 increased in higher stage levels (P < 0.01), 
while UGP2 expression was weakened (P < 0.01) (Fig. 4C). 

Moreover, quantity analysis was made to identify the rela-
tionship between the three hypoxic prognostic genes and 
the stage level. As the stage level goes up, the expressions 
of ENO1 and TPI1 increase, and the expression of UGP2 
decreases (P < 0.05) (Fig.  4E). The expression of ENO1 in 
the validation group was the same as that in the experi-
mental group. And the expression of UGP2 and TPI1 has 
no obvious relationship with stage (Fig. 4D, F).

The independent role of hypoxia prognostic model 
and the predictive nomogram
We also assessed whether the hypoxia prognostic 
model is independent from other traditional clinical 

Fig. 2  Survival analysis of hypoxia genes. A–C K–M curves for patients’ survival of ENO1, UGP2 and TPI1 in ICGC. D–F K–M curves for patients’ survival 
of ENO1, UGP2 and TPI1 in TCGA​

Fig. 3  Prognostic value and external validation of hypoxia genes. A K–M curves of patients in high- (red) and low-risk groups (blue) of ICGC. B K–M 
curves of patients in high- (red) and low-risk groups (blue) of TCGA. C, D Sorting patients according to risk score in ICGC and TCGA respectively. E, 
F Association between survival time and risk score in ICGC and TCGA separately. G, H Relationship between risk score and the expression of ENO1, 
TPI1 and UGP2. I, J The mortality rate in high- and low-risk groups of ICGC and TCGA​

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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features. The results showed that stage stratification 
and risk score were independent prognostic factors 
of OS in the ICGC cohort, both with P values < 0.01 
(Fig.  5A, C). And the same finding is suggested in 
TCGA validation group (Fig.  5B, D). In addition, we 
produced a nomogram for HCC patients, which can be 

used to quantitatively assess the survival time of each 
individual. The contents included in the nomogram 
are clinical features such as gender, age, stage, as well 
as risk score. Every item has a specific score, and the 
final score is summed up of all factors. A vertical line 
through the integrated score corresponds to the sur-
vival probabilities of 1-, 3-, and 5-years (Fig. 5E).

Fig. 4  Association between hypoxia and clinical information. A, B AUC for 0.5-, 1-, 3-, and 4-/5-year OS in ICGC and TCGA. C, D Heat maps 
illustrating the association between 3 genes’ expression level and stage stratification in both two databases. E, F Box plot suggesting the association 
between 3 genes’ expression level and stage stratification in both two databases
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Functional analysis of the prognostic model
For the purpose of investigating the possible sig-
nal pathways related to hypoxia in the progression of 
HCC, we use the GSEA method to compare the path-
way differences between people in high- and low-
hypoxia situations. GSEA results told us that DNA 

Repair, Glycolysis, and Unfolded Protein responses 
were enriched in both ICGC and TCGA cohorts 
(Fig. 6A–F).

Fig. 5  Prognostic value of hypoxia related genes and nomogram. A–D Independence tests between risk score and clinical characteristics both in 
ICGC and TCGA. E A nomogram predicting the OS in HCC
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Fig. 6  GSEA enrichment of high- and low-risk groups. A, C, E DNA Repair, Glycolysis, and Unfolded Protein responses were enriched in ICGC. B, D, F 
DNA Repair, Glycolysis, and Unfolded Protein responses were enriched in TCGA​
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Immune cell infiltration among HCC patients in different 
risk groups
We used the CIBERSORT algorithm to evaluate the 
degree of immune infiltration of 22 immune cells in the 
high- and the low-risk groups. A conclusion of ICGC 
data was drawn in Fig. 7A, and TCGA in Fig. 7B. B cells 
naive is suppressed in patients with higher levels of 
hypoxia (Fig. 7C). And the verification results are shown 
in Fig. 7D. However, the expression of T cells is increased 
in patients with higher levels of hypoxia (Fig.  7E). And 
the verification group obtained the same phenomenon 
(Fig. 7F).

The immunosuppressive microenvironments and key 
immune checkpoints in different risk groups
Extensive evidence proves that immunotherapy can 
improve the prognosis of HCC patients significantly [15]. 
And previous studies suggest that immunosuppressive 
cytokines play an important role in the TME, especially 
in the process of tumor development and metastasis [16]. 
Hence we aim to detect the expression of immunosup-
pressive genes in high- and low-risk groups of HCC. All 
immune-related genes were downloaded from the Track-
ing Tumor Immuno-phenotype website (http://​biocc.​
hrbmu.​edu.​cn/​TIP/​index.​jsp) (more details in Addi-
tional file 2: Data S2). In ICGC cohort, we made a heat 
map to depict negative immune regulatory genes with 
differential expression levels (P < 0.05) (Fig.  8A). Same 
graph was produced in TCGA (P < 0.05) (Fig.  8B). This 

demonstrated that many immunosuppressive genes are 
activated during HCC hypoxia process.

Besides, popular immune checkpoint genes in HCC 
were also assessed. Our results showed that CTLA-4 
and TIM-3 were positively correlated with hypoxia risk 
score in both ICGC and TCGA (P < 0.01) (Fig.  8C, G). 
And box plots illustrated that CTLA-4 and TIM-3 are 
up-regulated in the high-risk group (P < 0.05) (Fig.  8D, 
H). However, the immune checkpoint LAG-3 was nega-
tively correlated with the hypoxia risk score in the ICGC 
cohort, and positively correlated with the hypoxia risk 
score in the TCGA cohort (P < 0.01) (Fig. 8E). Of course 
same results in box plots of LAG-3 (P < 0.05) (Fig. 8F).

Discussion
The homeostasis of microenvironment is the basis for the 
stable growth of normal tissues and cells. Predecessors 
have put forward that the rapid growth of HCC causes 
a hypoxic TME [17]. Collaboratively, hypoxic TME could 
promote the deterioration of HCC and increases aggres-
siveness [18]. Simultaneously, hypoxia can also change 
the immune status, affecting the prognosis of HCC. Up 
to now, there is no suitable prognostic model for HCC 
hypoxia.

In this study, we found that hypoxia has an important 
effect on the prognosis and immunotherapy of HCC. We 
developed and verified a model consisted of 3 hypoxia 
genes (ENO1, UGP2, TPI1), with good prognostic pre-
dictive value. Moreover, the nomogram we drew could 

Fig. 7  Immune situation in high- and low-risk groups. A, B Infiltration of 22 immune cells in high- and the low-risk groups of ICGC and TCGA. C, D B 
cells naïve in high- and the low-risk groups of ICGC and TCGA. E, F T cells regulatory in high- and the low-risk groups of ICGC and TCGA​

http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://biocc.hrbmu.edu.cn/TIP/index.jsp
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accurately assess the OS of individual HCC patient, 
with easier accessibility. And we also found that the 
hypoxia genes of this model are mainly related to DNA 
Repair, Glycolysis, and Unfolded Protein response after 
GSEA enrichment analysis. In addition, we found that 
the hypoxic TME has an impact on HCC immune infil-
tration and immune regulation. These discoveries pro-
vide a novel insight for predicting the prognosis of HCC 

patients according to the characteristics of the hypoxic 
TME. Furthermore, the degree of hypoxia in the TME 
can be used as a reference indicator for the use of hypoxia 
ameliorating agents in immunotherapy.

Actually the importance of these hypoxia-related 
genes has been previously reported in a variety of stud-
ies. ENO1 is a key regulator enzyme of glycolysis. Stud-
ies have pointed out that the serum ENO1 level in HCC 

Fig. 8  Immune genes in high- and low-risk groups. A, B Heat maps depicting expression level of negative immune regulatory genes in high- and 
low-risk groups of HCC from ICGC/TCGA database. C, E, G Correlation between CTLA-4/LAG-3/TIM-3 expression level and risk score. D, F, H Box plots 
of CTLA-4/LAG-3/TIM-3 expression level in high- and low-risk groups
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patients was significantly higher than that in normal 
series [19]. Further studies have shown that the up-reg-
ulation of ENO1 promoted cell proliferation, migration 
and invasion of HCC cells [20]. This is consistent with 
our research. UGP2 is an essential enzyme for glycogen 
synthesis. Studies have suggested that UGP2 expression 
was significantly down-regulated in HCC tissues. And 
down-regulation of UGP2 expression was equal to poor 
prognosis in HCC patients [21]. Our research demon-
strated that UGP2 is a protective gene of HCC.TPI1 is 
a key enzyme in the process of sugar metabolism and 
gluconeogenesis. Previous literature has shown that the 
enhanced expression of TPI1 in HCC cells in vitro inhib-
its cell growth, migration and invasion. The survival 
curve shows that the survival rate of patients is worse 
when TPI1 is in low expression [22]. However, there 
are also evidence supporting that OS of HCC patients 
increased with inactivation of the eight hypoxia genes 
including TPI1 [23]. And our K–M curve shows that the 
survival rate of HCC patients increases when TPI1 is low 
expressed. We believe that these inconsistent results may 
be due to different environments in  vitro and in  vivo. 
Definitely, this requires more basic research to further 
clarify the function of TPI1 in HCC patients.

GSEA enrichment analysis can effectively explore the 
possible biological mechanisms of hypoxia prognostic 
models. Our results indicate that DNA Repair, Glycolysis 
and Unfolded Protein response are enriched in high-risk 
group. Substantial evidence showed that hypoxia could 
cause genome instability and inhibit the ability of DNA 
damage repair pathways [24–26]. Glycolysis is the main 
energy source for HCC in hypoxic environment [27, 28]. 
Cancer cells are often exposed to hypoxia, nutritional 
deficiencies, oxidative stress and other metabolic dis-
orders, leading to the activation of endoplasmic reticu-
lum stress and Unfolded Protein response [29–31]. Our 
results indicate that the above pathways are enriched 
in high-risk patients, revealing that hypoxia is of vital 
importance in the occurrence and development of HCC.

Tumors can protect themselves from attack by stimu-
lating immune checkpoint targets, such as PD-1, PD-L1, 
CTLA-4, LAG-3, and TIM-3 [32–35]. Previous literature 
showed that PD-1/PD-L1 and CTLA-4 are up-regulated 
at the transcription level under hypoxic conditions, 
enhancing the immune escape of cancer cells [36–38]. 
Here we found that the expression of CTLA-4 and TIM-3 
in hypoxic patients increased, indicating that the hypoxic 
TME would promote the immune escape of cancer cells. 
Many studies have suggested that increasing oxygen in 
the TME could improve the anti-tumor efficacy of PD-1/
PD-L1 and CTLA-4 antibodies [36, 39, 40]. The com-
bination of ICIs and hypoxia ameliorating agents even 
showed a more effective treatment for HCC patients 

[41–44]. Thus it is conceivable that the hypoxia risk score 
has a latent promising value in the use of hypoxia amelio-
rant during immunotherapy.

In other words, this study has some limitations. First 
of all, the process of adjusting the weights of regression 
coefficients in LASSO might ignore some factors that 
contribute to the prognosis of HCC. Secondly, different 
standards of inclusion do exist when collecting infor-
mation retrospectively in different public databases. For 
example, in stage stratification, ICGC uses the LCSGJ 
standard, while TCGA uses the AJCC standard. Finally, 
the complex interaction between tumor cells and 
immune cells in the hypoxic microenvironment remains 
to be further explored. More specific experiments are still 
needed to verify these findings.

Conclusions
In short, we establish and validated a risk prognos-
tic model developed by 3 hypoxia genes, which could 
effectively evaluate the prognosis of HCC patients. This 
prognostic model can be used as a guidance for hypoxia 
modification in HCC patients undergoing immunother-
apy. It will be of great significance to the manipulation of 
hypoxic stress in comprehensive and innovative immu-
notherapy in cancer in the near future.

Methods
Datasets
The training cohort comes from the ICGC database 
(https://​icgc.​org/). The validation cohort is from TCGA 
database (https://​portal.​gdc.​cancer.​gov). Both the ICGC 
and TCGA databases are freely available to the public, 
and there is no need for institutional ethics committee 
approval and informed consent. This research strictly fol-
lows the acquisition policy and publication guidelines.

Constitution of a risk model
Hypoxia-related genes are obtained from the GSEA web-
site (https://​www.​gsea-​msigdb.​org/). The 200 hypoxia 
genes in this group are widely recognized by the aca-
demic community for the analysis of tumor hypoxia. The 
PPI pattern is analyzed in the STRING database (https://​
www.​string-​db.​org/). Univariate Cox regression analy-
ses was performed to screen out hypoxia genes related 
to OS (P < 0.001). LASSO regression can avoid over-fit-
ting, further optimize the genes selected after univari-
ate cox regression, and delete highly related genes [45]. 
Finally, multivariate COX regression analysis was car-
ried out step by step to set up a prognostic model. The 
risk score of HCC patients can be calculated by the fol-
lowing formula: Riskscore =

∑
N

i=1
(Ei ∗ Ci) , while Ei was 

the expression value of every three hypoxia genes, and 

https://icgc.org/
https://portal.gdc.cancer.gov
https://www.gsea-msigdb.org/
https://www.string-db.org/
https://www.string-db.org/
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Ci was the corresponding multivariable cox regression 
coefficient.

Validation
K–M survival analysis was performed on the prognostic 
genes in both training and validation groups, in order to 
assess the impact of a single hypoxia gene on the survival 
of HCC patients.

Firstly, all risk value of HCC patients in the training 
group was calculated according to the risk score formula. 
Then these patients were divided into high- and low-risk 
groups referring to the median score as a cutoff point. 
Secondly, K–M survival analysis was carried out to evalu-
ate the predictive ability of the prognostic model. Thirdly, 
ROC curve is drawn to evaluate the sensitivity and speci-
ficity of the prognostic model for predicting survival out-
comes. And the AUC would illustrate the accuracy of the 
prognosis. R package "survcomp" was applied to calculate 
the concordance index (C-index) of the model to further 
illustrate the predictive ability of the model. Similarly, the 
same performance was done in TCGA to evaluate the 
applicability of the model in an external database. All the 
above operations are implemented in R language.

The clinical relevance of the model and production 
of the nomogram
We performed univariate and multivariate cox regression 
analysis on the training group as well as the validation 
group to explore whether the hypoxia prognosis model is 
independent from other clinical factors. The "rms" soft-
ware package is used in R language for the construction 
of the nomogram.

GSEA
GSEA was utilized to identify groups of related genes 
that were differentially expressed, further to investi-
gate possible immune mechanisms associated with 
hypoxia [46]. The GSEA in this study was designed using 
h.all.v7.2.symbols.gmt. Normally, P value < 0.05 and 
FDR value < 0.05 are considered to witness significant 
enrichment.

Analysis on immune cell infiltration
CIBERSORT is the tool most commonly used to analyze 
immune cell infiltration, which can assess the relative 
abundance of tumor infiltrating immune cells in differ-
ent risk groups [47, 48]. In this study, we used CIBER-
SORT to evaluate the proportion of 22 immune cells in 
all patients from ICGC and TCGA, and the sum of the 
scores of all estimated immune cell types is equal to 1. 
And qualified samples were selected regarding to the 
standard of P < 0.05. Simultaneously, box plots of high- 
and low-risk groups were drafted in R language.

Analysis on immune genes
On the purpose of evaluating the expression of immune 
genes in the high- and low-risk hypoxia groups, we ana-
lyze the immunosuppressive genes in the ICGC and TCGA 
via R language. A heat map of all genes was displayed, and 
related diagrams and box plots of key immune checkpoints 
were generated in R language.
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