Table 2.
Comparison results of our CIFD-Net method vs. state-of-the-art architectures on the CC-CCII dataset.
| Annotation | Method | Patient Acc. (%) | Precision (%) | Sensitivity (%) | Specificity (%) | -score (%) | AUC (%) |
|---|---|---|---|---|---|---|---|
| Patient-level | ResNet-50 [55] | 53.70 | 61.42 | 77.13 | 10.37 | 68.38 | 46.30 |
| COVID-Net [3] | 53.62 | 61.35 | 77.18 | 10.06 | 68.36 | 44.53 | |
| COVNet [2] | 67.64 | 76.03 | 73.17 | 57.34 | 74.57 | 66.13 | |
| VB-Net [4] | 76.75 | 85.25 | 77.61 | 75.22 | 81.25 | 89.48 | |
| CIFD-Net (Ours) | 89.25 | 89.98 | 93.86 | 80.67 | 91.91 | 93.22 | |
| Image-level | ResNet-50 [55] | 67.29 | 68.23 | 92.95 | 20.40 | 78.71 | 53.43 |
| COVID-Net [3] | 64.83 | 66.28 | 93.18 | 12.48 | 77.46 | 51.47 | |
| COVNet [2] | 70.79 | 83.09 | 68.95 | 74.10 | 75.37 | 73.08 | |
| CIFD-Net (Ours) | 84.83 | 91.19 | 84.74 | 84.99 | 87.86 | 89.63 | |
* indicates the -value , and ** represents the -value .