Skip to main content
. 2021 Dec 13;116:108291. doi: 10.1016/j.asoc.2021.108291

Table 2.

Comparison results of our CIFD-Net method vs. state-of-the-art architectures on the CC-CCII dataset.

Annotation Method Patient Acc. (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
Patient-level ResNet-50 [55] 53.70±0.02 61.42±0.08 77.13±0.10 10.37±0.17 68.38±0.05 46.30±0.10
COVID-Net [3] 53.62±0.03 61.35±0.01 77.18±0.05 10.06±0.25 68.36±0.02 44.53±0.18
COVNet [2] 67.64±0.04 76.03±0.08 73.17±0.07 57.34±0.18 74.57±0.04 66.13±0.15
VB-Net [4] 76.75±0.04 85.25±0.10 77.61±0.07 75.22±0.19 81.25±0.05 89.48±0.16
CIFD-Net (Ours) 89.25±0.02 89.98±0.13 93.86±0.06 80.67±0.13 91.91±0.07 93.22±0.06

Image-level ResNet-50 [55] 67.29±0.04 68.23±0.06 92.95±0.05 20.40±0.16 78.71±0.02 53.43±0.11
COVID-Net [3] 64.83±0.08 66.28±0.07 93.18±0.02 12.48±0.04 77.46±0.03 51.47±0.09
COVNet [2] 70.79±0.03 83.09±0.07 68.95±0.11 74.10±0.08 75.37±0.05 73.08±0.07
CIFD-Net (Ours) 84.83±0.02 91.19±0.03 84.74±0.07 84.99±0.11 87.86±0.04 89.63±0.08

* indicates the p-value <0.05, and ** represents the p-value <0.01.