
1.  Introduction
Falling energy demand during the COVID-19 pandemic led to rapid decreases in energy-related carbon 
dioxide (CO2) emissions. In 2020, global annual CO2 emissions fell by 7% to 2011 levels (9.3 Pg C yr−1; 
Friedlingstein et al., 2020), and the rapid decline in emissions during the first half of 2020 surpassed the 
rate of emission declines during any previous economic recession or World War II (Forster et al., 2020; 
Friedlingstein et al., 2020; Le Quéré et al., 2020; Liu et al., 2020). Global annual CO2 emissions are forecast 
to remain below 2019 levels through 2021, and subsequent recovery of emissions is expected within a few 
years (International Energy Agency, 2021; Le Quéré et al., 2021). The precipitous and short-lived drop in 
emissions during the COVID pandemic offers a unique opportunity to assess the detection of these types of 
emissions declines in observations of the global carbon cycle.

While the COVID-related CO2 emissions reductions had a measurable impact on regional atmospheric CO2 
concentrations (Buchwitz et al., 2021; Chevallier et al., 2020; Liu et al., 2021; Tohjima et al., 2020; Turner 
et al., 2020; Weir et al., 2020; Wu et al., 2021), as of this writing, there is no indication of a global-scale 
decrease in the atmospheric CO2 mixing ratio or its growth rate due to the emissions reductions (NOAA 

Abstract  We assess the detectability of COVID-like emissions reductions in global atmospheric 
CO2 concentrations using a suite of large ensembles conducted with an Earth system model. We find a 
unique fingerprint of COVID in the simulated growth rate of CO2 sampled at the locations of surface 
measurement sites. Negative anomalies in growth rates persist from January 2020 through December 
2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless 
we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). 
Internal variability and carbon-concentration feedbacks obscure the detectability of short-term emission 
reductions in atmospheric CO2. COVID-driven changes in the simulated, column-averaged dry air mole 
fractions of CO2 are eclipsed by large internal variability. Carbon-concentration feedbacks begin to operate 
almost immediately after the emissions reduction; these feedbacks reduce the emissions-driven signal in 
the atmosphere carbon reservoir and further confound signal detection.

Plain Language Summary  COVID pandemic lockdowns suddenly slowed the rate at which 
we burned fossil fuels and released carbon dioxide into the atmosphere, yet we cannot find any significant 
reductions in the growth of carbon dioxide in the atmosphere from our measurements. Here we provide 
some reasons to explain this conundrum. We use a climate model to mimic the changes in atmospheric 
carbon that would occur with different amounts of reductions in fossil fuel burning. We find that it is 
hard to see the change in fossil fuel burning in atmospheric carbon dioxide or its growth because of a 
large background component of natural variability. In addition, once we reduce our fossil fuel burning 
and the amount of carbon dioxide in the atmosphere decreases, the ocean and land also stop taking up as 
much carbon as normal. As we will soon lower our fossil fuel burning on purpose to slow climate change, 
our findings forewarn of the difficulties of detecting the effects of this in measurements of atmospheric 
carbon dioxide.
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Global Monitoring Laboratory, 2021; World Meteorological Organization, 2020). Even with a robust global 
measurement system, the detection of COVID-related emissions reductions in global CO2 or its growth rate 
is challenging due to two factors: (1) internal variability in the climate system and (2) carbon-concentration 
feedbacks. Internal variability is unforced climate variability that arises from the coupled interactions of the 
atmosphere and ocean (e.g., El Niño-Southern Oscillation (ENSO); Deser, Phillips, et al., 2012). The role 
of internal variability in the growth rate of CO2 has been well documented in the literature (e.g., Frölicher 
et al., 2013; Keeling et al., 2001; Sarmiento & Gruber, 2002), and multiple studies implicate this variability 
in our inability to detect emissions changes in measurements of atmospheric CO2 (e.g., Peters et al., 2017). 
Carbon-concentration feedbacks manifest from the sensitivity of the ocean and land carbon reservoirs to 
changing CO2 (Arora et al., 2013, 2020; Friedlingstein et al., 2006). Recent studies suggest that the ocean 
carbon reservoir rapidly responds to perturbations in CO2 (McKinley et al., 2020; Ridge & McKinley, 2021), 
and this can further confound the detection of emissions changes in measurements of atmospheric CO2. It 
is critical that we develop a deeper understanding of the role of internal variability and carbon feedbacks 
on the detectability of emissions changes to inform both near-term (1–10 years) predictions of the carbon 
cycle (Ilyina et al., 2021) and the verification of future emissions reductions (Peters et al., 2017; Ridge & 
McKinley, 2021).

Initial-condition large ensembles of Earth system models are a relatively new tool that provides a means 
to quantify the anthropogenic influence on the Earth system in the presence of internal climate variabil-
ity (Deser et al., 2020). These large ensembles are a set of simulations with a single Earth system model: 
each simulation or ensemble member is initialized slightly differently to create diverging climate trajecto-
ries, while all ensemble members are externally forced with a common emission scenario (Deser, Knut-
ti, et al., 2012). Multiple studies have used large ensembles to account for the role of internal variability 
in long-term climate trends (e.g., Deser, Phillips, et al., 2012, 2016). Most recently, large ensembles have 
been used to estimate the anthropogenic influence on short-term climate signals (such as for the COVID 
pandemic, see, e.g., Fyfe et al., 2021; Gettelman et al., 2021; Jones et al., 2021), and to make Earth system 
predictions over the near-term (1–10 years; Yeager et al., 2018). However, no studies have used a large en-
semble framework to assess the detectability of short-term CO2 emissions reductions from atmospheric CO2 
measurements.

Here, we develop an understanding of the role of internal variability and carbon feedbacks on the detecta-
bility of a short-lived CO2 emissions reduction in the atmospheric mixing ratio of CO2 (χCO2) using output 
from an initial-condition large ensemble of an Earth system model. This 30-member ensemble evolves the 
Earth system under three, short-term emissions reduction scenarios of differing magnitudes. We investigate 
the detectability of the emissions reduction using several modeled parameters that characterize atmospher-
ic CO2: the χCO2 growth rate, the column-averaged CO2(XCO2), and the integrated atmospheric carbon 
reservoir.

2.  Methods
We utilize the Canadian Earth System Model version 5 (CanESM5), which consists of coupled atmosphere, 
ocean, sea-ice, land surface, and land/ocean carbon cycle model components (Swart et al., 2019). The at-
mospheric model in CanESM5 is version five of the Canadian Atmospheric Model (CanAM5) that has an 
approximate 2.8° horizontal resolution and 49 vertical levels of varying thickness on a hybrid sigma-pres-
sure vertical grid and similar physical parameterizations as its predecessor (CanAM4; Swart et al., 2019). 
The land component of CanESM5 consists of the Canadian Land Surface Scheme (CLASS) and the Cana-
dian Terrestrial Ecosystem Model (CTEM) that produce fluxes of energy, water, and carbon dioxide at the 
land-atmosphere interface via the simulation of physical and biogeochemical processes, including the CO2 
fertilization of photosynthesis (Swart et al., 2019). The ocean physical and biogeochemical components of 
CanESM5 used in this study are the CanNEMO physical model coupled to the Canadian Model of Ocean 
Carbon (CMOC), which simulates ocean carbon and its exchange with the atmosphere at approximately 1° 
horizontal resolution (Swart et al., 2019). In our study, the concentration of CO2 in the CanESM5 atmos-
phere is modeled as a three-dimensional, prognostic passive tracer that responds to air-sea and air-land CO2 
fluxes from the coupled land and ocean carbon cycle components, and to specified CO2 emissions.
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We analyze output from five ensembles of CanESM5. In each case, ensemble members are initialized with 
slightly perturbed climate states to simulate a range of internal variability, but each member in a given en-
semble experiences identical external forcing. The first ensemble (the historical ensemble) covers the period 
from 1850 to 2014 and consists of nine ensemble members of CanESM5 forced with a global historical emis-
sion data set of CO2 and other climate-relevant gases and aerosols—this was devised for emissions-driven 
historical simulations in Phase 6 of the Coupled Model Intercomparison Project (CMIP6; Figure S1a in 
Supporting Information S1; Hoesly et al., 2018). The second ensemble (the control ensemble) covers the 
period 2015–2100 and consists of 30 ensemble members of CanESM5 integrated under the ESM-SSP2-4.5 
emissions scenario (Figure S1b in Supporting Information S1; O'Neill et al., 2016). The remaining 3 en-
sembles span 2019–2040 and consist of 30 members each that are forced with COVID-like CO2 emissions 
reductions beginning in December 2019 and resolving in December 2021; peak emissions reductions of 25% 
(COVID-like), 50% (2 × COVID-like), and 100% (4 × COVID-like) occur in May 2020 (Figure S1b in Support-
ing Information S1). Hereafter, we refer to these later three ensembles collectively as the CanESM5-COVID 
ensemble, as described in Fyfe et al. (2021) and Lovenduski et al. (2021). The CO2 emissions in the historical 
and control ensembles have spatial and seasonal variability; emissions are highest near urban centers in the 
Northern Hemisphere (Figure S2a in Supporting Information S1) and peak in boreal winter when energy 
consumption in the Northern Hemisphere is at a maximum (Figure S2b in Supporting Information S1). 
Emissions are scaled uniformly for the COVID ensembles to maintain this spatial and seasonal variability. 
In the CanESM5-COVID ensemble output we analyze here, emissions of CO2 from other sources (e.g., 
land use change) and emissions of other climate relevant gases and aerosols are prescribed from the ESM-
SSP2-4.5 scenario, that is, these emissions do not change due to COVID.

The global carbon cycle in CanESM5 compares well with observational metrics and is thus an appropri-
ate tool for the study of the detectability of short-term emissions reductions in atmospheric χCO2. Air-sea 
and air-land CO2 fluxes from the historical simulation of CanESM5 were previously evaluated in Swart 
et al. (2019). Briefly, Swart et al. (2019) illustrate high skill and low root mean square error between sim-
ulated and observed spatial patterns of Gross Primary Production (GPP) and air-sea CO2 flux over 1981 to 
2010. CanESM5 tends to overestimate GPP in sub-saharan Africa and underestimate GPP in the Amazon 
rainforest, likely due to precipitation biases (Swart et al., 2019). Historical CanESM5 air-sea CO2 fluxes are 
biased high in the North Atlantic and low in the Southern Ocean, such that the globally integrated air-sea 
CO2 flux exhibits little bias as compared to observations (Swart et al., 2019). CanESM5 captures the broad 
features of the amplitude and phasing of the seasonal cycle of χCO2 measured at Barrow (BRW), Mauna Loa 
(MLO), and South Pole (SPO), though the seasonal drawdown of CO2 occurs too early at Point Barrow, and 
the amplitude is biased high at Mauna Loa (Figure S3 in Supporting Information S1; the model is sampled 
at the approximate latitude, longitude, and height of the flask sample in the real world). The de-trended 
interhemispheric gradient in observed, annual mean χCO2 exhibits large annual-to-decadal fluctuations 
over 1960–2020 that are generally replicated by the model (Figure S4 in Supporting Information S1). The 
de-trended interhemispheric difference in the CanESM5 historical ensemble members encapsulate the ob-
servations and the ensemble mean replicates the decadal variations in the observations, though the inter-
annual variance of individual ensemble members is greater than that of the observational record (Figure S4 
in Supporting Information S1). Finally, the CanESM5 control ensemble mean exhibits a similar growth rate 
in χCO2 (2.4 ppm yr−1 over 2015–2019; see Figure 1) as calculated from observations (2.57 ± 0.08 ppm yr−1 
over 2015–2019; https://gml.noaa.gov/ccgg/trends/gl_gr.html). The actual growth rate derived from obser-
vations is slightly higher due to the impact of the 2015–2016 El Ni𝐴𝐴 𝐴𝐴𝐴 o event on the carbon cycle (Chatterjee 
et al., 2017; Liu et al., 2017).

3.  Results
The 30-member CanESM5 COVID ensemble predicts a decrease in the de-seasoned, monthly growth rate 
of χCO2 from January 2020 through February 2021, followed by an increase in growth rate from February 
through December 2021 under all of the COVID emission scenarios when sampled at both Mauna Loa and 
12 global flask sites (Figure 1; growth rate is calculated as the difference in χCO2 for a given month relative 
to the same month in the previous year; flask sites as in Cadule et al., 2010). The decrease in the growth rate 
is largest for the 4 × COVID-like emissions scenario and smallest for the COVID-like emissions scenario 

https://gml.noaa.gov/ccgg/trends/gl_gr.html
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and peaks in February 2021 under all COVID scenarios (Figure 1). Meanwhile, the control ensemble ex-
hibits little change in its growth rate over this period (Figure 1). This suggests that the χCO2 growth rate is 
highly sensitive to the magnitude of the emissions reduction, and that growth rate anomalies at Mauna Loa 
and across the global flask network tend to be largest ∼9 months after the peak emissions reduction (May 
2020; Figure S1b in Supporting Information S1). This delay is consistent with the global mixing timescale 
for CO2 in the atmosphere (Forster et al., 2007). Under the 4 × COVID-like scenario, the growth rate exceeds 
the control growth rate from 2022 through 2024 before returning to control values (Figure 1). Figure 1 also 
reveals that internal variability tends to obscure the emissions reduction signal in χCO2 at an individual site 
more than in the global average (cf. Figures 1a and 1b); averaging across multiple sites tends to dampen 
the effects of internal variability that manifest most strongly at local and regional scales (Hawkins & Sut-
ton, 2009). As a result, the ensemble-mean February 2021 COVID-like χCO2 growth rate is significantly dif-
ferent from the control ensemble mean in the average of the 12 flask sites, but not at Mauna Loa (Figure 1; 
significance calculated using a 2σ (95%) confidence interval across the COVID-like ensemble members). If 
we wish to detect a signal of the COVID-driven emissions reduction in the real-world growth rate of χCO2, 
our modeling study suggests that we are most likely to find it in early 2021 by averaging across measure-
ments collected in the global flask network.

Is it possible to detect the change in the de-seasoned, monthly χCO2 growth rate from flask observations in 
the real world, where we have only a single “ensemble member”? To answer this question, we turn to a for-
mal statistical detection framework, where we use the unique ensemble mean “fingerprint” of the growth 
rate in the model sampled at flask sites (i.e., the V-shaped dip and recovery in the ensemble-mean growth 
rate over January 2020 to December 2021 in Figure 1) and quantify the correlation of each individual en-
semble member with this fingerprint for each emissions scenario. This statistical detection approach for 
hypothetical observations (we haven't yet measured the growth rate in December 2021, for example) is iden-
tical to the one outlined in Lovenduski et al. (2021) and mimics the approach for the detection of a climate 
change signal in real-world observations (Bindoff & Stott, 2013). The resulting correlation coefficients are 
shown in the subplots of Figure 1, where small circles show the set of 30 Pearson's correlation coefficients 
(r) with the ensemble mean fingerprint across the 30 ensemble members, and large circles show the mean 
correlation coefficients (calculated using a Fisher's z transform; see Lovenduski et al., 2021) for each COV-
ID-like emissions scenario. For the model sampled at Mauna Loa, the mean correlation coefficient for the 
COVID-like ensemble is 0.4 with a wide range; stronger emissions reductions increase the mean correlation 
coefficient and narrow the range (subplot in Figure 1a), suggesting a higher probability of detecting the 
fingerprint from a single ensemble member or hypothetical observational record under higher emissions 

Figure 1.  Temporal evolution of the growth rate of de-seasoned, monthly χCO2 from the CanESM5 COVID ensemble sampled at (a) Mauna Loa, and (b) the 
average of 12 flask sites (as in Cadule et al., 2010) over 2020–2024. Growth rate is calculated as the difference in χCO2 for a given month relative to the same 
month in the previous year. Thin lines show individual ensemble members, and thick lines show the ensemble mean for each emissions scenario. Red dot and 
range illustrates the mean and 2σ (95%) confidence interval in February 2021 for the COVID-like emissions scenario. Subplots show the temporal correlation 
coefficients of individual ensemble members with the ensemble mean over Jan 2020–Dec 2021 for each emissions scenario. Small circles show the correlation 
coefficients across the 30 ensemble members, large circles show the mean correlation coefficients, and dashes indicate 2σ (95%) confidence intervals.
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reductions. Indeed, the range of correlation coefficients is only statistically different from zero (using a 
2σ/95% confidence interval) under the 2 × COVID-like and 4 × COVID-like emission scenarios (subplot in 
Figure 1a), indicating that significant detection of the COVID fingerprint is only possible in cases with more 
extreme emissions reductions than those that occurred during the COVID pandemic. Similar patterns are 
observed when the model is sampled at 12 flask sites (Figure 1b), though the correlations are overall higher 
due to reduced internal variability.

Model-estimated, column-averaged dry-air mole fraction of χCO2 (referred to as XCO2 by the satellite com-
munity; Crisp et al., 2004) averaged over the extratropical Northern and Southern Hemispheres (20°N–55°N 
and 20°S–55°S, respectively) shows only a small signal of COVID-like emissions reductions amid large 
internal variability (Figure 2). While the emissions reduction signal is more pronounced in the Southern 
Hemisphere extratropics, there is large overlap of the various model ensemble members from the various 
emission scenarios (Figure 2b), and only the 4 × COVID-like ensemble mean is significantly different from 
the control ensemble mean at the 2σ (95%) level (not shown). The vertical integration of the atmospheric 
column and the diffusive nature of atmospheric transport makes the modeled column concentrations less 
sensitive to changes in the surface emissions signal (Miller et al., 2007; Rayner & O'Brien, 2001), thus mak-
ing the signal more difficult to detect in the column.

Carbon-concentration feedbacks further obscure the detection of COVID emissions reductions in the at-
mospheric carbon reservoir. Figure 3 shows the anomaly in the ensemble-mean cumulative change in the 
modeled atmosphere, ocean, and land carbon reservoirs from December 2019 to December 2040, where 
the anomaly is calculated relative to the control ensemble mean. In the atmosphere, the cumulative reser-
voir anomaly is negative for the duration of the simulations regardless of emissions scenario (Figure 3a), 
indicating that each of the COVID-like emissions perturbations leads to a forced change in the cumulative 
atmospheric reservoir lasting well beyond the emissions recovery in 2022 (cf. Figures 3a and S1b). For both 
the 2 × COVID-like and 4 × COVID-like scenarios, the atmosphere reservoir anomaly falls outside of the 
ensemble spread due to internal variability (gray shading) for several years. Meanwhile, the ocean and land 
carbon reservoirs also respond to the COVID-like emissions reductions, the ocean carbon sink immediately 
slows with decreasing χCO2 under all COVID-like scenarios (Figure 3b; Lovenduski et al., 2021), and the 
land carbon sink also weakens, most noticeably under the 2 × COVID-like and 4× COVID-like scenarios 
(Figure 3c). The ocean reservoir anomaly falls outside of the spread due to internal variability only in the 2 × 
COVID-like and 4 × COVID-like scenarios (Figure 3b; Lovenduski et al., 2021). The land carbon sink anom-
aly is fully within the internal variability bounds (Figure 3c), due to high internal variability in the land-air 
CO2 flux (Denman et al., 2007). Nevertheless, these results suggest that COVID emissions reductions cause 
both the ocean and land to absorb less carbon than usual in our model, thus reducing the perturbation in 
the atmosphere. To illustrate this point further, we estimate the ensemble-mean, cumulative change in the 
atmospheric carbon reservoir due only to emissions changes and plot the resulting reservoir anomaly as 
dashed lines in Figure 3a. This illustration reveals a critical role for carbon-concentration feedbacks in the 

Figure 2.  Temporal evolution of monthly, column-averaged χCO2 over (a) the Northern Hemisphere, 20°N–55°N, and 
(b) the Southern Hemisphere, 20°S-55°S, simulated with the CanESM5 COVID ensemble. Thin lines show individual 
ensemble members, and thick lines show the ensemble mean for each emissions scenario.
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detection of COVID-driven emissions reductions: if not for the slowing ocean and land carbon sinks, the 
COVID-like emissions reduction signal in the atmospheric carbon reservoir would have been detectable 
above the noise of internal variability for three consecutive years (2022–2025), and for longer durations with 
larger emission perturbations (Figure 3a).

4.  Conclusions and Discussion
We use an initial-condition large ensemble of an Earth system model to assess the detectability of the COV-
ID-driven emissions reductions signal in measurements of atmospheric CO2 above the noise of internal 
variability and carbon-concentration feedbacks. We find a unique fingerprint in atmospheric CO2 growth 
rates calculated from simulated χCO2 measurements under COVID-like emissions reductions. The largest 
negative anomalies in the atmospheric χCO2 growth rate appear in February 2021, ∼9 months after the 
peak emissions reductions. This growth rate signal is more likely to be detected above the noise of internal 
variability when averaging over global flask network sites, rather than at an individual site. However, this 
unique fingerprint is not formally detectable using a climate signal detection statistical approach, unless we 
force the model with unrealistically large emissions reductions. Internal variability obscures the detection 
of change in the interhemispheric difference of simulated χCO2 from flask measurements and the simu-
lated extra-tropical column-average XCO2 from satellite observations. Carbon-concentration feedbacks fur-
ther reduce the emissions signal in the atmospheric carbon reservoir. When we remove the effects of these 
feedbacks on the atmospheric carbon reservoir, the signal in the cumulative reservoir anomaly is detectable 
above the noise of internal variability over a three consecutive year period (2022–2025).

Our study illuminates the challenges associated with detecting brief CO2 emissions reductions in glob-
al-scale atmospheric CO2 from our established observational measurement systems. In order to see the 
emergence of the signal of COVID-driven emissions reductions in atmospheric CO2, one needs to first 
remove the influence of internal climate variability and carbon-concentration feedbacks from the atmos-
pheric CO2 measurements. While we are getting closer to quantifying the internal contribution to the to-
tal signal from our measurements and producing near-real time estimates of this variability (e.g., Betts 
et al., 2016, 2020), we are not yet capable of quantifying carbon feedbacks from our current, exploratory 
observational system (e.g., Sellers et al., 2018). Further, the ocean and terrestrial carbon reservoirs are only 
sparsely observed and, with the exception of a few surface ocean buoys that measure ocean CO2 partial 
pressure (Sutton et al., 2019), the high-quality estimates of changing air-sea and air-land CO2 fluxes that 
are available in a historical context are not yet available in near-real time due to the high costs of fast data 

Figure 3.  Cumulative changes in the (a) atmosphere, (b) ocean, and (c) land carbon reservoirs from December 2019 
onwards, as simulated by the CanESM5 COVID ensemble. Colored lines show the anomaly in the ensemble-mean 
reservoir size relative to the control ensemble mean (SSP2-4.5), and gray shading indicates the spread in the cumulative 
reservoir anomaly across the control ensemble. Dashed lines in (a) show the cumulative changes in atmospheric carbon 
due to anomalous emissions alone.
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dissemination and other impediments. As we move into a world characterized by intentional emissions 
reductions associated with international climate change mitigation policies, we should consider this meas-
urement infrastructure in the ocean and terrestrial biosphere to detect the signal and monitor the impact of 
intentional emissions reductions in atmospheric CO2.

Data Availability Statement
The data from the CanESM5 simulations used in this study are published through the Government of 
Canada Open Data Portal, and can be accessed at http://crd-data-donnees-rdc.ec.gc.ca/CCCMA/publica-
tions/COVID19/. The χCO2 flask data are from the Scripps CO2 program, and can be accessed at https://
scrippsco2.ucsd.edu/data/atmospheric_co2/sampling_stations.html.
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