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Abstract

We consider a model-agnostic solution to the problem of Multi-Domain Learning (MDL) for 

multi-modal applications. Many existing MDL techniques are model-dependent solutions which 

explicitly require nontrivial architectural changes to construct domain-specific modules. Thus, 

properly applying these MDL techniques for new problems with well-established models, e.g. 

U-Net for semantic segmentation, may demand various low-level implementation efforts. In this 

paper, given emerging multi-modal data (e.g., various structural neuroimaging modalities), we aim 

to enable MDL purely algorithmically so that widely used neural networks can trivially achieve 

MDL in a model-independent manner. To this end, we consider a weighted loss function and 

extend it to an effective procedure by employing techniques from the recently active area of 

learning-to-learn (meta-learning). Specifically, we take inner-loop gradient steps to dynamically 

estimate posterior distributions over the hyperparameters of our loss function. Thus, our method 

is model-agnostic, requiring no additional model parameters and no network architecture changes; 

instead, only a few efficient algorithmic modifications are needed to improve performance in 

MDL. We demonstrate our solution to a fitting problem in medical imaging, specifically, in the 

automatic segmentation of white matter hyperintensity (WMH). We look at two neuroimaging 

modalities (T1-MR and FLAIR) with complementary information fitting for our problem.

1. INTRODUCTION

In this paper, we consider the problem of Multi-Domain Learning (MDL) in which the goal 

is to take labeled data from some collection of domains {Di}i and minimize the risk on 

all of these domains. Note, this is in contrast to the related field of Domain Adaptation 
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(DA) which minimizes risk on only a subset of these domains referred to as the target. 

Although our focus is MDL, it is not uncommon for Multi-Task Learning (MTL) solutions 

to be applicable to MDL problems. Where MDL assumes a collection of domains {Di}i all 

paired with the same task T, MTL assumes a collection of tasks {Ti}i all paired with a 

single domain D [1]. One simple model-agnostic solution to both problems comes in the 

form of a weighted loss function used to learn new tasks without “forgetting” old tasks 

[2]. This method can be simplified and adapted for the task of MDL by specifying loss 

functions for each domain and jointly training on all domains by optimizing for the convex 

combination (weighted average) of these loss functions. Inspired by this approach, our 
main contribution is to significantly build-upon this method by dynamically estimating 

the optimal weights of the convex combination throughout the training process. To achieve 

this, we appeal to the recently growing research area of learning-to-learn (or meta-learning) 

which uses the idea of hypothetical gradient steps taken during an inner-loop optimization to 

extract “meta-information” useful to the optimization task. Our method closely follows this 

idea to estimate a posterior distribution over the optimal weights of our loss function at each 

training iteration.

We showcase this method on a fitting problem in medical imaging, specifically, in the 

automatic segmentation of white matter hyperintensity (WMH) with multi-modal structural 

neuroimaging. Caused by various factors from neurological to vascular pathologies [3], 

WMH is prevalent in population of aging, e.g., Alzheimer’s disease (AD) [4]. Typically, 

the automatic WMH segmentation task focuses on identifying hyperintense, or bright, 

white matter regions in T2-weighted fluid attenuated inversion recovery (FLAIR). However, 

FLAIR is often acquired for neurological disorders that directly search for strokes or lesions, 

whereas, in observational AD studies of our focus, FLAIR is much less common and T1-

weighted Magnetic Resonance (T1-MR) image is the norm. Unfortunately, detecting WMH 

in T1-MR is extremely difficult since contained WMH regions severely lack contrast – a 

key feature for segmentation (see Fig. 1 for the contrast difference and predictions). Hence, 

this setting provides a good opportunity for knowledge transfer across domains (T1-MR 

and FLAIR). While FLAIR may benefit from the higher quantity of T1-MR samples in a 

given dataset, T1-MR may additionally benefit from the much higher quality of the FLAIR 

samples. Further, considering how common it is for patients to only have either T1-MR or 

FLAIR, MDL is particularly relevant in this case (rather than DA) to perform well on both 

domains (i.e., train with T1-MR and FLAIR, but predicts well given T1-MR only, Fig. 1E). 

In this paper, we present a solution for MDL within this context. Importantly, the approach 

is model-agnostic, making it easily applicable to a myriad of MDL problems besides WMH 

segmentation.

2. MULTI-DOMAIN LEARNING (MDL)

Several early works on MDL combine domain-specific parameters with the classifier [5, 6]. 

More recent works separate shared parameters from domain-specific parameters [7]. These 

methods are model-dependent which requires explicit changes to network architecture. This 

is less desirable if one wishes to enable MDL in segmentation since standard existing 

methods cannot be trivially applied to U-Net [8]. Conversely, our approach is model-
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agnostic, making no model-dependent changes and is applicable to most existing models. 

This flexibility adds a great practical value for the end-users who wish to enable MDL in a 

“plug-and-play” manner.

Learning to Learn.

Learning-to-learn (meta-learning) is an algorithmic effort to not only learn some set of 

model parameters, but to learn the best way in which those model parameters can be learned. 

Many recent popularizations of this concept [9, 10] largely involve an inner- and outer-loop. 

The dual-loop scheme uses the inner-loop to extract hypothetical model performance if the 

model were optimized in some way. From this, in the outer-loop, the hyperparameters of 

interest (e.g., the way the model is optimized) can be updated [9, 10], or the model itself 

can be updated in a modified way [11]. Unlike many meta-learning solutions in the MTL 

problem space [10, 12, 13], we have only a single task, making it unclear how we could 

pre-train our hyperparameters as usual (i.e., using a distribution over tasks). Further, the 

majority of these solutions are fully gradient based – our technique, instead, uses MAP 

estimation during inner-loop optimization.

3. PROPOSED APPROACH

We describe our approach (Alg. 1, Fig. 2) which can be applied universally to nearly any 

neural network model without model-specific changes. Our meta-learning procedure with 

outer- and inner-loop is as follows: (i) outer-loop updates the model parameters θ based 

on (ii) inner-loop which learns and updates our hyperparameter (λθ). We first formalize 

the weighted loss function used in the outer-loop. Ultimately, we interpret this loss as an 

expectation over the optimal update choice, allowing us to learn λθ by MAP estimation.

3.1. Outer-loop Optimization of Model Parameter θ

We define domain D = (X, p(x)) as a feature space X paired with a distribution of samples 

from that space p(x) [14]. For the remainder of the paper, we generally assume only 

two domains A = (XA, pA(x)) and ℬ = (Xℬ, pℬ(x)). We do this for brevity and for our 

two domain neuroimaging application, but in a subsequent section, we indeed show an 

easy extension to more than two domains. Further, we assume a single task T = (Y, q(y))
(e.g., segmentation), a pre-specified model f (e.g., U-Net), and a possibly domain-specific 

loss function for both A and ℬ written ℒA and ℒB respectively. Our method aims to 

dynamically determine the optimal weighting of these losses. We seek λθ with 0 ≤ λθ ≤ 1 

for the training objective

λθℒA(f(xa; θ), ya) + (1 − λθ)ℒℬ(f(xb; θ), yb) (1)

where θ is the current model parameters. The mini-batches 

(xa, ya) ∼ (pA(x), q(y)) and (xb, yb) ∼ (pℬ(x), q(y)) are (input,label) pairs from domains A and 

ℬ respectively. In practice, this objective is achieved using a modified SGD to update θ. In 

particular, at step t, we set θt+1 to the quantity
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θt − η∇θt[λtℒA(f(xta; θt), yta) + (1 − λt)ℒℬ(f(xtb; θt), ytb)] (2)

with η the learning rate and mini-batches (xta, yta) and (xtb, ytb). Since Eq. (2) involves two 

losses, the learned λt weights the effect of gradients ∇θtℒA and ∇θtℒℬ which are best for 

A and ℬ respectively. This outer-loop optimization (Alg. 1 line 10) differs from standard 

SGD with weighted losses since λt depends on the current θt (rather than fixed).

3.2. Inner-Loop Optimization of Hyperparameter λθ

MAP Estimation of λθ.—We now discuss how to pick the best λθ. Before we describe 

the definition of best, for now, we assume some notion of an optimal update choice is given 

and that this choice boils down to taking a step in the direction best for A or ℬ. Thus, 

it is straightforward to interpret the multi-domain loss Eq. (1) as an expectation over the 

optimal update choice (i.e., the expected best gradient). We do this by assuming during the 

update process there exists a sequence of (not necessarily i.i.d.) Bernoulli random variables 

indicating whether a step in the direction best for domain A or ℬ is optimal. We can write 

the sequence (Λt)t where t indexes over the sequential update process given in Eq. (2), Λt ~ 

Bernoulli(λt), and Λt = 1 represents the event that taking a gradient step in the direction best 

for A is optimal.

Algorithm 1

Approach using the conservative configuration

Domain A input, labels, loss: xa, ya, ℒA

Domain ℬ input, labels, loss: xb, yb, ℒℬ
Model Parameters, Learned Loss Weighting, Learning-Rate: θ, λ, η

1: procedure METALEARNINGFORMDL

2:   for mini-batch t do

3:  Split xta, yta, xtb, ytb into ẋt
a, ẏt

a, ẋt
b, ẏt

b and ẍt
a, ÿt

a, ẍt
b, ÿt

b

4:  θt
a θt − η∇θtℒA(f(ẋt

a; θt), ẏt
a) ⊳ Inner‐Loop Step for A

5:  θt
b θt − η∇θtℒℬ(f(ẋt

b; θt), ẏt
b) ⊳ Inner‐Loop Step for ℬ

6:  HA
t ℒA(f(ẍt

a; θt
a), ÿt

a) + ℒℬ(f(ẍt
b; θt

a), ÿt
b)

7:  Hℬ
t ℒA(f(ẍt

a; θt
b), ÿt

a) + ℒℬ(f(ẍt
b; θt

b), ÿt
b)

8:
 Nt ∑i = t − T

t Λi(HA
i < Hℬ

i )

9:
 λt

α + Nt − 1
α + β + T − 2 ⊳ Inner-Loop MAP Estimate for λt

10:  θt+1 ← Update via Eq. (2)     ⊳ Outer-Loop Gradient Update

11:   end for

12: end procedure
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It then becomes simple to optimize λt dynamically by assuming a prior and updating 

sequentially with Maximum a Posteriori (MAP) Estimation. To meet the requirements of 

MAP, we make the simplifying assumption that the Λt are i.i.d. in a small temporal window 

of size T (e.g., we perform our MAP updates using a history of length ≤ T). Thus, we can, as 

usual, assume the Beta(α, β) as our prior over λt and explicitly compute the MAP estimate 

(Alg. 1 line 8-9).

Defining the Optimal Update Choice.—Now, we need only define the optimal update 
choice by defining when Λt = 1. We do this by comparing model performance after 

computing hypothetical gradient steps (i.e., through an inner-loop) favoring A and ℬ. 

Specifically, in the case of domain A, we randomly split the mini-batch xta, yta into meta-train 

ẋt
a, ẏt

a and meta-test ẍt
a, ÿt

a (Alg. 1 line 3). Then, we compute the hypothetical gradient 

favoring A (Alg. 1 line 4)

θt
a = θt − η∇θtℒA(f(ẋt

a; θt), ẏt
a), (3)

and the hypothetical loss favoring A at step t (Alg. 1 line 6)

HA
t = ℒA(f(ẍt

a; θt
a), ÿt

a) + ℒℬ(f(ẍt
b; θt

a), ÿt
b) . (4)

We can similarly arrive θt
b and Hℬ

t  (Alg. 1 line 5 and 7).

Now, we define two optimal update choices: (i) greedy: Λt = 1 if Hℬ
t > HA

t , otherwise Λt 

= 0; and (ii) conservative: Λt = 1 if HA
t > Hℬ

t , otherwise Λt = 0 (Alg. 1 line 8). These 

hypothetical losses are functions of the model parameters, so we can analyze them by 

looking at the dominant terms in their Taylor Expansions (centered at θt) to interpret our 

inner-loop [15, 11]. For instance, for HA
t , evaluated at θt

a, the following holds1 for small 

enough η:

HA
t = ℒA(f(xta; θt), yta) + ℒℬ(f(xtb; θt, ytb)

− η∇θtℒA(f(xta; θt), yta)T∇θtℒA(f(xta; θt), yta)
− η∇θtℒℬ(f(xtb; θt), ytb)T∇θtℒA(f(xta; θt), yta) + O(η2)

(5)

Now, there are multiple common terms in the Taylor Expansion of HA
t  and Hℬ

t  that can 

cancel out, so if we ignore O(η2) terms (which are small) and recognize the definition of the 

L2 norm, we have an approximation of HA
t − Hℬ

t  as below

η ∇θtℒℬ(f(xtb; θt), ytb) 2
2 − η ∇θtℒA(f(xta; θt), yta) 2

2 . (6)

1Since meta-train/test sets are simply samples drawn from the same distribution, we de-identify them in this expansion for 
interpretation.
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Hence, in the greedy definition with Hℬ
t > HA

t , we can infer 

∇θtℒA(f(xta; θt), yta) > ∇θtℒℬ(f(xtb; θt), ytb) . Likewise, in the conservative definition 

with HA
t > Hℬ

t , we can infer ‖∇θtℒℬ(f(xtb; θt), ytb)‖ > ‖∇θtℒA(f(xta; θt), yta)‖. Since λt is 

the probability that ∇θtℒA is the optimal update choice, we see that the greedy definition 

prefers larger gradient steps, while the conservative definition prefers smaller.

More than Two Domains.—Generalizing our approach to more than two domains is 

straightforward. Eq. (1) is extended to a convex combination with additional weights for 

each added domain. Next, the sequence of Bernoulli Distributions becomes a sequence of 

Multinomial Distributions whose conjugate prior is a Dirichlet; the MAP Estimate is still 

analytic. Lastly, the optimal update choice (Alg. 1 line 8) is defined by argmax instead of > 

and argmin instead of <.

4. EXPERIMENTS

We randomly selected N=20 older participants with WMH from our local normal aging 

AD study who were cognitively normal at the time of scan with mean age of 81.2 (s.d.= 

7.15), 14 females, and a mean education of 14.2 (s.d.= 2.44) years. For each subject, 

we used a 3T Siemens Trio TIM scanner and 12-channel head coil to collect T1-MR 

(TE=2.98ms, TR=2.3s, FA=9°, 1×1×1.2mm voxel) and FLAIR (TE=90ms, TR=9.16s, 

FA=150°, 1×1×3mm voxel). For each pair of T1-MR and FLAIR, we used FSL [16] to 

process them in the following order: (a) spatially align T1-MR to FLAIR (212×256×48 

dims), (b) N4-correction [17], (c) skull-strip using FSL BET, and (d) intensity normalize 

using WhiteStripe [18]. The ground-truth WMH in each FLAIR was labeled by a 

neuroradiologist on 5 continuous and identical slices across the subjects where WMH is 

common.

4.1. Experiment Setup

We use two base networks: (i) the standard U-Net [8] and (ii) a light-weight (LW) variant of 

U-Net with 3% of the parameters and no pooling layers or skip-connects.

Our Methods.—We setup our methods as described in Section 3 with FLAIR for A and 

T1-MR for ℬ. We try T = {25, 100} for both the greedy (Ours-G-T) and conservative 

(Ours-C-T) versions. We use a Beta(5,5) as our prior for λt; this assumes equal likelihood 

for FLAIR/T1-MR to be optimal and imposes low likelihood of 0 or 1. These are applied to 

the base models (U-Net, LW) without any architecture changes.

Other Baselines.—The baselines are applied to both U-Net and LW as follows: (1) 
F50-T50: Fix the weighting of both FLAIR and T1-MR at 0.5 to treat them equally. This 

is the most naïve way to use any models without considering MDL. (2) F10-T90: Fix the 

weighting of FLAIR at 0.10 and T1-MR at 0.90, largely favoring T1-MR. (3) F90-T10: Fix 

the weighting of FLAIR at 0.90 and T1-MR at 0.10, largely favoring FLAIR. (4) Simple: 

Heuristically update the hyperparameter λθ in Eq. (1) proportional to the difference of the 
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hypothetical losses: λt+1 = λt + γ(HFLAIR
t − HT1

t )/|HFLAIR
t |. We set Simple-G with γ = −0.1 

and Simple-C with γ = 0.1 to heuristically mimic Ours-G and Ours-C respectively.

Loss Function.—For both FLAIR and T1-MR we minimize the sum of the cross-entropy 

and dice score loss [19].

Simulating Variation in Data-Availability.—To show the efficacy of our method 

when the number of training subjects with FLAIR is reduced, we explore randomly down-

sampling the number of subjects who have FLAIR during training. We try all FLAIR 

subjects (12F) and 2/3 of FLAIR subjects (8F).

Training Details.—We use SGD with an initial learning rate of 0.01 (multiply by 0.1 if 

no validation improvement for 20 epochs and stop after 50 epochs of no improvement). We 

randomly augment each training slice by rotation, shearing, and scaling. Each mini-batch of 

size 8 is randomly sampled from both FLAIR and T1-MR. For each setup, we use 5-fold CV 

(12 train, 4 validate, 4 test) and compute the mean and standard deviations over 5 repeated 

runs on NVIDIA RTX2080Ti. For additional details, see the publicly available code.2

Metrics.—We evaluated the methods by the mean Dice Similarity Coefficient (DSC 

= 2TP / (2TP + FP + FN)) and report standard deviation to measure consistency of 

performance.

4.2. Results and Analyses

Table 1 shows the results of all methods under various setups. We emphasize that our 

approach only modifies the baseline by allowing a dynamic weighting of the two domains. 

Therefore, our approach is intended to be a simple add-on to the weighted loss approach 

and we do not expect staggering performance jumps in all cases. Instead, we hypothesize 

our method will improve upon the baseline in low resource situations (e.g., using less of 

the more informative FLAIR samples and the much smaller LW network). To this end, 

we show U-Net (8F) to demonstrate improvement when the number of FLAIR samples is 

down-sampled but the network is still large. We also show LW (8F) and LW (12F) to show 

two cases where the network is very under-parameterized.

In all of these cases, our proposed approach demonstrates improvement over the compared 

baselines. Unlike ours, fixed weight setups (F10-T90 and F90-T10) are able to improve 

DSC on a single domain, but inevitably sacrifice performance on the others (i.e., giving 

worse overall performance). Fig. 2 emphasizes the importance of an adaptive weighting, 

showing how λt is modified throughout training. But, naive adaptive weighting may still 

fail. Poor performances of simple heuristics (Simple-G and Simple-C) show that λt needs 

to be learned as in our methods. Besides increased performance in DSC gain, our method 

also reduces the variability of the results across runs. In low data regimes, standard-deviation 

in performance during cross-validation can be very large – our reduction in this measure 

indicates robustness to difficulty of the testing data and quality of the training data.

2 https://github.com/anthonysicilia/MDL-By-MetaLearning 

Sicilia et al. Page 7

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/anthonysicilia/MDL-By-MetaLearning


5. CONCLUSION

We proposed a model-agnostic solution to the problem of MDL. The solution is an extension 

of a simple weighted loss which uses meta-learning with inner-loop MAP Estimation to 

dynamically learn the weights of our loss function. On a WMH segmentation problem, we 

show that our proposed method improves both performance and consistency in low resource 

scenarios. The approach is widely applicable for MDL, making no assumptions on the 

underlying model.
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Fig. 1. 
A: FLAIR (bright WMH in the periventricular and deep white matter), B: Coregistered 

T1-MR (WMHs are less apparent), C: Manually segmented WMH, D: WMH prediction 

with FLAIR, E: WMH prediction T1-MR. T1-MR-based result (E), while reasonable, is still 

worse than FLAIR-based result (D).
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Fig. 2. 
Left: Proposed Approach. We learn a distribution over the optimal convex-combination 

of the two gradient directions. Right: Visualization of how the optimal update choice λθ 
changes over time (U-Net 8F). Line shows mean. Band shows s.d. Early spikes favor more 

informative FLAIR samples.
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Table 1.

Means and standard deviations (s.d.) of metrics across all setups using two models (U-Net and LW) and two 

numbers of FLAIR subjects (12 and 8). -F and -T indicate the metrics are computed over FLAIR and T1-MR 

samples respectively. GAIN-μ is the total (summed) increase in DSC over the baseline F50-T50. GAIN-σ is 

the total decrease in s.d. of DSC from F50-T50. Our method increases DSC and reduces s.d. in low resource 

scenarios.

LW (12F) DSC-F DSC-T GAIN-μ GAIN-σ

F50-T50 0.757 ± 0.011 0.360 ± 0.031 0.0 0.0

F10-T90 0.729 ± 0.006 0.404 ± 0.026 0.016 0.010

F90-T10 0.766 ± 0.008 0.278 ± 0.033 −0.073 0.001

Simple-G 0.740 ± 0.023 0.152 ± 0.072 −0.225 −0.053

Simple-C 0.714 ± 0.062 0.325 ± 0.050 −0.078 −0.070

Ours-G-25 0.758 ± 0.009 0.366 ± 0.029 0.007 0.004

Ours-G-100 0.759 ± 0.010 0.375 ± 0.028 0.017 0.004

Ours-C-25 0.758 ± 0.007 0.356 ± 0.025 −0.003 0.010

Ours-C-100 0.755 ± 0.008 0.351 ± 0.018 −0.011 0.016

LW (8F) DSC-F DSC-T GAIN-μ GAIN-σ

F50-T50 0.753 ± 0.008 0.361 ± 0.023 0.0 0.0

F10-T90 0.725 ± 0.008 0.393 ± 0.026 0.004 −0.003

F90-T10 0.766 ± 0.013 0.291 ± 0.030 −0.057 −0.012

Simple-G 0.738 ± 0.020 0.152 ± 0.055 −0.224 −0.044

Simple-C 0.716 ± 0.063 0.311 ± 0.081 −0.087 −0.113

Ours-G-25 0.755 ± 0.007 0.361 ± 0.023 0.002 0.001

Ours-G-100 0.756 ± 0.010 0.368 ± 0.030 0.010 −0.009

Ours-C-25 0.752 ± 0.007 0.355 ± 0.021 −0.007 0.003

Ours-C-100 0.753 ± 0.013 0.364 ± 0.035 0.003 −0.017

U-Net (8F) DSC-F DSC-T GAIN-μ GAIN-σ

F50-T50 0.767 ± 0.013 0.556 ± 0.025 0.0 0.0

F10-T90 0.745 ± 0.014 0.574 ± 0.017 −0.004 0.007

F90-T10 0.775 ± 0.011 0.499 ± 0.028 −0.049 −0.001

Simple-G 0.745 ± 0.030 0.498 ± 0.129 −0.080 −0.121

Simple-C 0.750 ± 0.015 0.555 ± 0.025 −0.018 −0.002

Ours-G-25 0.769 ± 0.014 0.555 ± 0.022 0.001 0.002

Ours-G-100 0.769 ± 0.012 0.545 ± 0.022 −0.009 0.004

Ours-C-25 0.768 ± 0.014 0.566 ± 0.012 0.011 0.012

Ours-C-100 0.771 ± 0.009 0.561 ± 0.020 0.009 0.009
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