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Abstract

Typical machine learning frameworks heavily rely on an underlying assumption that training and 

test data follow the same distribution. In medical imaging which increasingly begun acquiring 

datasets from multiple sites or scanners, this identical distribution assumption often fails to 

hold due to systematic variability induced by site or scanner dependent factors. Therefore, we 

cannot simply expect a model trained on a given dataset to consistently work well, or generalize, 

on a dataset from another distribution. In this work, we address this problem, investigating 

the application of machine learning models to unseen medical imaging data. Specifically, we 

consider the challenging case of Domain Generalization (DG) where we train a model without any 

knowledge about the testing distribution. That is, we train on samples from a set of distributions 

(sources) and test on samples from a new, unseen distribution (target). We focus on the task of 

white matter hyperintensity (WMH) prediction using the multi-site WMH Segmentation Challenge 

dataset and our local in-house dataset. We identify how two mechanically distinct DG approaches, 

namely domain adversarial learning and mix-up, have theoretical synergy. Then, we show drastic 

improvements of WMH prediction on an unseen target domain.
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1. INTRODUCTION

In traditional machine learning, an underlying assumption is that the model is trained on 

training data that is well representative of the testing data. That is, both the training and 
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testing samples come from an identical distribution. However, this assumption has become 

difficult to satisfy in the modern medical imaging analysis community as it rapidly grows 

with multiple sites or scanners [1, 2]. Notably, datasets often exhibit heterogeneity (e.g., 

differing distributions of intensity) due to systematic variability induced by various site/

scanner dependent factors, and commonly, imaging protocols.

In this work, we view sites or scanners as distinct distributions or domains and consider 

learning in the presence of multiple domains where the identical distribution assumption no 

longer holds. Under this new training regime, a model is trained on data arising from some 

sites/scanners and tested on samples from a new site/scanner unseen during the training 

process. Formally, at train-time, we observe k domains (sites/scanners) refer to as sources 
which have distributions ℙ1, ℙ2, …, ℙk over some space X. At test-time, we test the model on 

a distinct target domain with distribution ℚ over X.

This multi-domain construct appears in the literature in several medical image segmentation 

problems. When a model pretrained on sources is further trained on additional target 

samples with labels, this is often referred to as Transfer Learning [3]. Adding constraints 

to this setup, Domain Adaptation (DA) assumes access to samples from ℚ but without 
their labels [4, 5]. This is a prevalent situation for tasks requiring costly data annotations 

(e.g., manual tracing of brain lesions). Without labels, DA techniques may still utilize the 

target information to learn domain-agnostic features [4, 6, 7], so that task performance 

is promising irrespective of the input domain. Importantly, these solutions still assume 

unlabeled data from ℚ, and this assumption of pre-existing knowledge may be too strong in 

some practical scenarios.

We therefore consider the problem of Domain Generalization (DG) where we make no 
assumptions about the target distribution, i.e., no access to the samples from ℚ during 

training. This recently developing construct has been deemed more challenging, but also, 

more useful to real world problems where we want to generalize without any data 

from our target [8, 9]. Yet, while a few DG approaches exist [10, 11], DG is still a 

nascent concept in medical imaging especially on segmentation problems. Several reasons 

contribute to this hindered progress, including the lack of theoretical understanding of 

the existing DG methods and their non-trivial adaptation to segmentation models such 

as U-Net. Nonetheless, a domain generalizable model is expected to bring practical 

benefits: retrospectively, we may better leverage existing siloed multi-domain datasets, and 

prospectively, we can reliably use these models on unseen datasets.

Contribution.

In this work, we ask the following question: Can we devise a segmentation model that 
generalizes well to unseen data? We answer this as follows: (1) We investigate two 

mechanically different DG methods, namely domain adversarial neural network and mixup, 

and identify their theoretical commonality. (2) We use these DG methods to build upon a 

U-Net segmentation model, tackling the WMH segmentation problem on a multi-site WMH 

Challenge Dataset [1] and drastically improving performance of a traditional U-Net on 
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the DG task. (3) We further test our model on our local data which is not a part of the 

aforementioned multi-site dataset. We make our code publicly available.1

2. METHODS

Intuition tells us that if our features are invariant to the domain, then the main task should 

not be affected by the domain of the input. In fact, recent theoretical argument [9] formally 

suggests such domain invariance in the feature space as a solution for DG. This motivates 

our proposed approach. We first employ the common domain adversarial training algorithm 

DANN which learns domain invariant features that fool a domain discriminator. We further 

show the data-augmentation algorithm mixup [12] may also be viewed as promoting domain 

invariance. We then propose to use both DANN and mixup after identifying their theoretical 

connection in DG.

2.1. Domain Adversarial Neural Network for DG

Based on the seminal theoretical work of Ben-David et al. [13, 14], Ganin and Lempitsky 

[5] proposed the commonly used algorithm DANN which learns domain invariant feature 

representations as desired. This algorithm breaks the model used for the task into two 

components: a feature extractor rθ parameterized by θ and a task-specific network cσ 
parameterized by σ. In addition to these, we also train a domain discriminator dμ to classify 

from which domain each data point is drawn. To learn a domain invariant representation, the 

feature extractor is trained to fool this domain discriminator. Intuitively, if dμ cannot identify 

the domain, then the feature representation learned by rθ must be void of domain-specific 

features. In more detail, we may write the DANN objective computed for multiple source 

domains ℙ1, …, ℙk as below

min
σ, θ

max
μ

E(xi)i ∼ (ℙi)i ∑i ℒT(σ, θ, xi) − γ∑i ℒD(μ, θ, xi) (1)

where ℒD is the cross-entropy loss for domains

− ℒD(μ, θ, x) = ∑j I[x ∼ ℙj] log((dμ ∘ rθ(x))j) (2)

and ℒT  is a task specific loss (e.g., in our segmentation setting, this might be the DSC loss). 

From this objective, the learned model cσ ∘ rθ may be adept at the task (i.e., by minimizing 

ℒT), but also invariant of domains (i.e., by maximizing ℒD). As is usual, we optimize this 

objective by simultaneous gradient descent implemented by inserting a Gradient Reversal 

Layer [5] between dμ and rθ.

More specific to our segmentation task, it is unclear how to break up a fully convolutional 

neural network into a feature extraction component and a task-specific component. 

Motivated by [15], suggesting domain information is typically found in the earlier 

convolutional layers of a network, we generally limit rθ to a few blocks in the downward 
path of a U-Net (Fig. 1). We provide exact details in the code.

1 https://github.com/xingchenzhao/MixDANN 
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2.2. Mixup

Besides application of DANN, we also propose to use the common data-augmentation 

algorithm Mixup [12]. At first glance, this extension is fairly simple. Still, in the presence 

of multiple domains ℙ1, …, ℙk, this algorithm complements the optimization objective in Eq. 

(1) because it also aims to produce domain invariance in our learning algorithm (discussed 

in the next sub-section). The algorithm is defined as follows. Suppose we have a batch of 

data-points {xi}i with xp and xq two distinct data-points from this sample. Further, let λ ~ 

Beta(α, α). Then, we define the new mixed data-point:

xp, q = λxp + (1 − λ)xq . (3)

With a certain probability (e.g., 0.5 in all our experiments), we can then substitute every 

data-point in the batch {xi}i with a mixed counterpart by randomly pairing the elements of 

{xi}i and using Eq. (3) to combine them. We do remark that the original proposal for mixup 

also mixes across the label space. Our segmentation setting is slightly different due to the 

common use of a Dice score loss. Thus, we adopt a loss balancing strategy similar to [7]: 

ℒ(xp, q) = λℒp(xp, q) + (1 − λ)ℒq(xp, q) where ℒi is the loss with the label yi of xi.

2.3. Theoretical Motivations

DANN and the ℋ-divergence.—While many works have used the motivation of domain 

invariant features for DG [8, 16], we note that the original theoretical motivation of 

DANN was based on the domain adaptation theory proposed by Ben-David et al. [14]. 

Further, recent work [9] has extended this theory to demonstrate that the application of 

DANN in DG is justified. In particular, it is shown that the ℋ-divergence – a measure 

of the difference between two domains – appears in an upper bound of the error on 

an unseen target. Therefore, to proxy minimization of the unseen target error, we can 

minimize the ℋ-divergence in the upper-bound (amongst other quantities, such as the error 

on the sources). The objective described in Eq. (1) can be interpreted as minimizing the 

ℋ-divergence in a fairly formal sense because the ℋ-divergence measures a classifier’s 

ability to distinguish between domains. Motivated by this, we learn invariant features in Eq. 

(1) by maximizing the errors of the domain classifier dμ.
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Algorithm 1 MixDANN for Domain Generalization

Data:Set of sample x and label y from Sources ℙ1, …, ℙk and Target ℚ
Models:U‐Net (Feature Extractor rθ and Task‐specific Network cσ), Do‐
main Discriminator dμ
1: procedure TRAIN MIXDANN USING SOURCES (ℙi)i
2: for mini‐batch of samples from sources (xi)i ∼ (ℙi)i do
3: Mixup: xp, q λxp + (1 − λ)xq for p, q pairs, λ ∼ Beta(0.7, 0.7)

4: Task Update: θ, σ arg minσ, θ∑ℒT (σ, θ, xi, j)

5: Domain Update: θ, μ arg [minθ maxμ − γ∑ℒD(μ, θ, xi, j)]
6: end for
7: end procedure
8: procedure TESTING MIXDANN ON TARGET ℚ
9: Prediction: yi cσ ∘ rθ(xi) for samples from target xi ∼ ℚ

10: end procedure

A Formal Discussion of Mixup.—Mixup [12] is a special case of Vicinal 
Risk Minimization [17]. Usually, in machine learning, we use Empirical Risk 
Minimization which suggests estimating the true data-distribution by the empirical 

measure P (x, y) = 1
n ∑i = 1

n δxi(x)δyi(y), with the Dirac measure δ* estimating density at 

each data-point. In the more general case of Vicinal Risk Minimization, we allow 

freedom to use a density estimate in the vicinity of the data-point xi using the 

vicinal measure v* as Pv(x, y) = 1
n ∑i = 1

n vxi(x)δyi(y). In Mixup, the modifications to our 

data described in Eq. (3) equate to sampling from a certain vicinal distribution u*: 

uxi(x) = 1
n ∑j = 1

n Eλ δλxi + (1 − λ)xj(x)  where λ ~ Beta.

Connecting Mixup to the ℋ-divergence.—From the perspective of the mentioned 

theory motivating DANN for DG (above), this form of density estimation has interestingly 

been linked to invariant learning by data-augmentation [17]. In particular, the vicinal 

measure v* may be defined to promote learning which is invariant to features of our data 

(e.g., augmentation by noise seeks to make a neural network’s prediction invariant to noise 

in the input). By applying Mixup as defined in Eq. (3), we coincidentally mix features across 

the domains ℙ1, …, ℙk because xp and xq may be drawn from differing domains. In this 

sense, the proposed vicinal distribution u* estimates the density of a data point xi to promote 

invariance to domain features in our learning algorithm. Hence, Mixup in the presence of 

multiple domains may be viewed as a technique complementary to DANN. It too is aimed 

at training rθ and cσ to be invariant to domain features so that the errors of the domain 

discriminator dμ are maximized, and subsequently, the ℋ-divergence is minimized. Alg. 1 

shows MixDANN, our algorithmic and theoretical combination of Mixup and DANN for 

DG.
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3. EXPERIMENTS

3.1. Experimental Setup

Datasets.—We evaluate on two WMH datasets consisting of FLAIR (Fluid Attenuated 

Inverse Recovery), T1, and manual WMH segmentation for each subject: (1) a multi-site 

public MICCAI WMH Challenge Dataset [1] from three sites (Amsterdam (A), Singapore 

(S), Utrecht (U)) and (2) our local in-house dataset [18] from a single site (Pittsburgh (P)). 

See Fig. 2 for distinct scanners/protocols and [1, 18] for details.

Metrics.—We use five evaluation metrics to assess the WMH prediction mask Ŷ against the 

ground truth segmentation mask Y (TP: true positive, FP: false positive, FN: false negative). 

(1) Dice Similarity Coefficient (DSC): 2(Y⋂Ŷ)/(∣Y∣ + ∣Ŷ∣), (2) Housdorff Distance (H95): 

H95 = max{supx∈Y infy∈Ŷ d(x, y), supyy∈Ŷ infx∈Ŷ d(x, y)} using the 95-th percentile 

distance, (3) Absolute Volume Difference (AVD) between the predicted and true WMH 

volume, (4) Lesion Recall: Computes the # of correctly detected WMH over the # of true 

WMH, (5) Lesion F1: TP / (TP + 0.5(FP+FN)).

Baseline Models.—These baselines build on U-Net [19], and we report their results by a 

recent DA/DG work [4]: (1) DeepAll is the baseline U-Net with no DA or DG mechanisms 

which the following models build on. (2) UDA [4] is an unsupervised DA method using all 
target scans but not their labels. Note this DA method requires target thus has an advantage 

over DG methods. (3) BigAug [10] is a state-of-the-art DG medical imaging segmentation 

method with heavy data augmentations. See [4, 10] for full details.

Our Model.—Our proposed approaches also build on U-Net. Standard data augmentations 

(rotation, scale, shear) are applied. (1) We implement our own DeepAll comparable to 

the DeepAll by [4] to our best effort for fair comparison. (2) DANN: We introduce the 

domain discriminator (Conv-Conv-Conv-FC-FC-FC) dμ to U-Net to the output of the second 

downsampling layer (Fig. 1). For the purpose of DANN (Eq. (1)), we can treat the U-Net 

as cσ ∘ rθ where rθ is before and cσ is after the second downsampling. We slowly introduce 

ℒD to rθ by setting γ = (2 · ξ)/(1 + exp(−κ · p)) − 1 in Eq. (1) with p = epoch/max_epoch, 

κ = 3, and ξ = 0.1. (3) Mixup: We randomly mix the samples following Eq. (3) to induce 

domain invariance. (4) MixDANN: Our final model combines DANN and Mixup. The 

initial learning rate is 2e-4 for all models. We trained on 80% of the training data against the 

comparing methods using 2 x NVIDIA RTX2080Ti.

3.2. Results and Analysis

Each model tests on one target domain after training on the remaining sources 
(Sources→Target). Generally, the comparison in DG is subjective across different 

experimental setups. For instance, despite the near identical architectures, our DeepAll 

slightly under-performs on some targets. As such, we pay special attention to the relative 

performance gain over the respective DeepAll to assess the domain generalizability.

Exp 1: DG within WMH Challenge Dataset.—We test on each target by training on 

the remaining two sources. Table 1 shows the results of all targets and the average across 
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them. We see that despite our weaker DeepAll, MixDANN shows the best absolute avg on 

three metrics (DSC, AVD, and Lesion F1) and the best relative gain on all metrics. We 

ablate and see improvements in the order of DANN, Mixup, and MixDANN, also visualized 

in Fig. 3. We note that AVD assessing the accuracy of the predicted WMH volume, which 

is often considered as a biomarker of vascular pathology, is most accurate by MixDANN. 

We also pay special attention to the improvement in the hardest case of A+S→U: This 

exactly exemplifies a possible scenario where a DeepAll may fail on an unseen dataset but 

MixDANN can assure robustness.

Exp 2: A+S+U→Pitt.—We do a “cross-dataset” DG: train on A+S+U and test on Pitt. 

We could not include Pitt as a source since it only has 5 consecutive slices of manual 

segmentation available. Nonetheless, when we test it as a target as shown in Table 2, 

we again see consistent improvements over DeepAll. Interestingly, DANN best performs, 

implying that Mixup and DANN may also individually bring benefits. Our MixDANN 

with a single U-Net is now ranked 6th on the leader board of the WMH Challenge [1], 

competitive against other top ensemble U-Nets. We observe poor performance by Mixup on 

the WMH counting metrics (Recall and F1), suspecting this to be from the different manual 

annotation standards between the two datasets. We consider this as our future work.

Do we learn domain-invariance?—Fig. 4 shows the t-SNE [20] plots of the second 

downsampling layer (rθ) output. We see that the features by DeepAll can easily identify 

certain domains while those by MixDANN blur the boundary among domains as intended. 

In the context of WMH prediction, MixDANN explicitly suppresses the site/scanner 

dependent information, thus is more robust when test on unseen data.

4. CONCLUSION

We investigate the domain generalizability of a WMH segmentation deep model to be 

trained on sources and operate well on an unseen target. We identify a theoretical connection 

between two DG approaches, namely DANN and Mixup, and jointly incorporate them into 

U-Net. Using a multi-site WMH dataset and our local dataset, we show our domain invariant 

learning frameworks bring drastic improvements over other DA/DG methods in both relative 

and absolute performances.
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Fig. 1: 
MixDANN with Amsterdam and Singapore sources.
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Fig. 2: 
Top: Datasets with FLAIR and T1 (coregistered to FLAIR). Bottom: Sample FLAIR images.
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Fig. 3: 
Visualization of WMH predictions (A+S→U). True Positive: Green, False Positive: Yellow, 

False Negative: Red.
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Fig. 4: 
t-SNE plots of U-Net features trained on Amsterdam (pink), Singapore (gold) and Utrecht 

(blue) as sources.
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Table 1:

WMH Challenge Results. Sources→Target: Trained on Sources and tested on Target among Amsterdam, 

Singapore, and Utrecht. avg: Average of the target results. gain: avg gain over the respective DeepAll.

Model A+S→U U+S→A A+U→S avg gain

DSC ↑ (Higher is better)

DeepAll ([4] Setup) 0.430 0.674 0.682 0.595 -

BigAug [10] 0.534 0.691 0.711 0.645 0.050

UDA [4] 0.529 0.737 0.782 0.683 0.087

DeepAll (for Ours) 0.183 0.619 0.781 0.528 -

DANN 0.315 0.674 0.773 0.587 0.060

Mixup 0.619 0.691 0.835 0.715 0.187

MixDANN 0.694 0.700 0.839 0.744 0.217

H95 ↓ (Lower is better)

DeepAll (Our Setup) 11.46 11.51 9.22 10.73 -

BigAug 9.49 9.77 8.25 9.17 −1.56

UDA (Full Set) 10.01 7.53 7.51 8.35 −2.38

DeepAll 42.69 18.05 4.56 21.77 -

DANN 38.56 15.48 5.15 19.73 −2.03

Mixup 24.08 13.21 5.70 14.33 −7.44

MixDANN 20.57 12.75 3.10 12.14 −9.63

AVD ↓ (Lower is better)

DeepAll 54.84 37.60 45.95 46.13 -

BigAug 47.46 30.64 35.41 37.84 −8.29

UDA (Full Set) 54.95 30.97 22.14 36.02 −10.11

DeepAll 384.19 43.28 23.26 150.24 -

DANN 134.03 26.65 24.09 61.59 −88.66

Mixup 42.09 33.47 13.41 29.66 −120.59

MixDANN 23.40 26.48 12.81 20.89 −129.35

Lesion Recall ↑ (Higher is better)

DeepAll 0.634 0.692 0.641 0.656 -

BigAug 0.643 0.709 0.691 0.681 0.025

UDA (Full Set) 0.652 0.841 0.754 0.749 0.093

DeepAll 0.309 0.623 0.705 0.546 -

DANN 0.349 0.630 0.740 0.573 0.028

Mixup 0.556 0.700 0.790 0.682 0.136

MixDANN 0.604 0.685 0.797 0.695 0.150

Lesion F1 ↑ (Higher is better)

DeepAll 0.561 0.673 0.592 0.609 -

BigAug 0.577 0.704 0.651 0.644 0.035

UDA (Full Set) 0.546 0.739 0.649 0.645 0.036

DeepAll 0.288 0.554 0.697 0.513 -
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Model A+S→U U+S→A A+U→S avg gain

DANN 0.309 0.610 0.708 0.542 0.029

Mixup 0.515 0.642 0.724 0.627 0.114

MixDANN 0.602 0.651 0.728 0.660 0.147
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Table 2:

WMH Segmentation Results of A+S+U→Pitt

Model DSC ↑ H95 ↓ AVD ↓ Recall ↑ F1 ↑

DeepAll 0.434 18.49 68.56 0.543 0.630

DANN 0.499 16.04 62.31 0.622 0.680

Mixup 0.462 16.92 65.92 0.501 0.606

MixDANN 0.488 15.93 63.41 0.466 0.566
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