Skip to main content
. 2021 Nov 29;11(23):17238–17259. doi: 10.1002/ece3.8360
Trait category Specific trait Included in subset Studies appeared in
Performance/behavior Number times of righted X 1
Fastest time righting X 1
Righting response time X 2
Tactile response (0/1) 4
Distance traveled 4
Time basking/under shelter 4, 18
Exploratory rate 7
Thigmotaxis rate 7
Sprint speed X 9, 10, 16
Escape behavior 12, 47
Dispersal rate/probability X 13, 19, 20, 21
Dispersal distance 31
Swimming endurance X 14
Latency to resume normal behavior after predator cue 14
Time spent moving 18
Likelihood of seeking refuge 21
Time spent scratching in new environment 21
Time active in new environment 21
Begging duration/loudness/max frequency/rate 24, 26, 35, 36
Reversal‐to‐prone response X 35
Activity 24
Tonic immobility in response to restraint 26
Open field trial responses 37
Maze test responses 37
Time spent alert/foraging/exploring/hiding 40
Contribution to care activities 46
Survival Survival to time point/life history event (e.g., dispersal) X 1, 6, 17, 22, 46
Mass/size Mass X 1, 3, 4, 5, 6, 9, 10, 11, 13, 14, 16, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46
Total/body length X 1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 31, 33, 38, 40, 43
Feather length X 44
Tail length X 42
Limb/wing length X 4, 10
Growth (general, of specific body part) X

3, 4, 22, 23, 26, 29, 31, 42, 47

8, 9, 10, 17, 25, 30, 32, 39, 40

Lean dry muscle mass X 27
Body condition metric X 5, 6, 9, 13, 17, 21, 28, 38, 44
Stress response PHA response (stress) X 3, 25, 29
CORT levels (baseline/stress‐induced/CORT in recovery phase) X 4, 22, 24, 28, 34, 37, 39, 40, 45, 46, 47
CBG capacity 24
Stress‐induced blood glucose 37
ACTH levels 4, 40
Physiology Hematocrit 3
fluctuating asymmetry 15
Antioxidant capacity 23
Oxidative status 23
Heterophil/lymphocyte ratio and counts 24, 37, 41
Breathing rate 24
Antibody response/T‐cell response 26
Muscle water/fat content 27
Wing loading 27
Enzyme activity 27
Antibody titer 37, 41
Immune swelling response 37
Blood glucose 37
Organ mass to body mass ratio 40, 41, 44
fosB mRNA expression/protein levels 40
Hormone levels 44
Telomere length/telomerase activity 45, 48
Mitochondrial content 47
DNA methylation 47

1. Polich, R., Bodensteiner, B. L., Adams, C. I. M., & Janzen, F. J. (2018). Effects of augmented corticosterone in painted turtle eggs on offspring development and behavior. Physiology and Behavior, 183, 1–9.

2. Carter, A. W., Paitz, R. T., McGhee, K. E., & Bowden, R. M. (2016). Turtle hatchlings show behavioral types that are robust to developmental manipulations. Physiology and Behavior, 155, 46–55.

3. Strange, M. S., Bowden, R. M., Thompson, C. F., & Sakaluk, S. K. (2016). Pre‐ and postnatal effects of corticosterone on fitness‐related traits and the timing of endogenous corticosterone production in a songbird. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 325(6), 347–359.

4. Ensminger, D. C., Langkilde, T., Owen, D. A. S., MacLeod, K. J., & Sheriff, M. J. (2018). Maternal stress alters the phenotype of the mother, her eggs and her offspring in a wild‐caught lizard. Journal of Animal Ecology, 87(6), 1685–1697.

5. Owen, D. A. S., Sheriff, M. J., Engler, H. I., & Langkilde, T. (2018). Sex‐dependent effects of maternal stress: stressed moms invest less in sons than daughters. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(6–7), 317–322.

6. Dupoué, A., Le Galliard, J. F., Josserand, R., DeNardo, D. F., Decencière, B., Agostini, S., Haussy, C., & Meylan, S. (2018). Water restriction causes an intergenerational trade‐off and delayed mother–offspring conflict in a viviparous lizard. Functional Ecology, 32(3), 676–686.

7. Rozen‐Rechels, D., Dupoué, A., Meylan, S., Decencière, B., Guingand, S., & Le Galliard, J. F. (2018). Water restriction in viviparous lizards causes transgenerational effects on behavioral anxiety and immediate effects on exploration behavior. Behavioral Ecology and Sociobiology, 72(2).

8. Dupoué, A., Angelier, F., Brischoux, F., DeNardo, D. F., Trouvé, C., Parenteau, C., & Lourdais, O. (2016). Water deprivation increases maternal corticosterone levels and enhances offspring growth in the snake Vipera Aspis. The Journal of Experimental Biology, 219(5), 658–667.

9. Cadby, C. D., Jones, S. M., & Wapstra, E. (2010). Are increased concentrations of maternal corticosterone adaptive to offspring? A test using a placentotrophic lizard. Functional Ecology, 24(2), 409–416.

10. Warner, D. A., Rajkumar, R. S., & Shine, R. (2009). Corticosterone exposure during embryonic development affects offspring growth & sex ratios in opposing directions in two lizard species with environmental sex determination. Physiological & Biochemical Zoology, 82(4), 363–371.

11. Uller, T., Hollander, J., Astheimer, L., & Olsson, M. (2009). Sex‐specific developmental plasticity in response to yolk corticosterone in an oviparous lizard. Journal of Experimental Biology, 212(8), 1087–1091.

12. Robert, K. A., Vleck, C., & Bronikowski, A. M. (2009). The effects of maternal corticosterone levels on offspring behavior in fast‐ and slow‐growth garter snakes (Thamnophis elegans). Hormones and Behavior, 55(1), 24–32.

13. Vercken, E., de Fraipont, M., Dufty, A. M., & Clobert, J. (2007). Mother's timing and duration of corticosterone exposure modulate offspring size and natal dispersal in the common lizard (Lacerta vivipara). Hormones and Behavior, 51(3), 379–386.

14. Uller, T., & Olsson, M. (2006). Direct exposure to corticosterone during embryonic development influences behaviour in an ovoviviparous lizard. Ethology, 112(4), 390–397.

15. Uller, T., Meylan, S., de Fraipont, M., & Clobert, J. (2005). Is sexual dimorphism affected by the combined action of prenatal stress and sex ratio? Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303(12), 1110–1114.

16. Preest, M. R., Cree, A., & Tyrrell, C. L. (2005). ACTH‐induced stress response during pregnancy in a viviparous gecko: No observed effect on offspring quality. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 303(9), 823–835.

17. Meylan, S., & Clobert, J. (2005). Is corticosterone‐mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Hormones and Behavior, 48(1), 44–52.

18. Belliure, J., Meylan, S., & Clobert, J. (2004). Prenatal and postnatal effects of corticosterone on behavior in juveniles of the common lizard, Lacerta Vivipara. Journal of Experimental Zoology, 301A, 401–410.

19. Meylan, S., de Fraipont, M., & Clobert , J. (2004). Maternal size and stress and offspring philopatry: An experimental study in the common lizard (Lacerta Vivipara). Écoscience, 11(1), 123–129.

20. Meylan, S., Belliure, J., Clobert, J., & de Fraipont, M. (2002). Stress and body condition as prenatal and postnatal determinants of dispersal in the common lizard (Lacerta Vivipara). Hormones and Behavior, 42, 319–326.

21. De Fraipont, M., Clobert, J., John Alder, H., & Meylan, S. (2003). Increased pre‐natal maternal corticosterone promotes philopatry of offspring in common lizards Lacerta Vivipara. Journal of Animal Ecology, 69(3), 404–413.

22. Weber, B. M., Bowers, K. E., Terrell, K. A., Falcone, J. F., Thompson, C. F., & Sakaluk, S. K. (2018). Pre‐ and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house Wrens. Functional Ecology, 32(8), 1995–2007.

23. Possenti, C. D., Secomandi, S., Schiavon, A., Caprioli, M., Rubolini, D., Romano, A., Saino, N., & Parolini, M. (2018). Independent and combined effects of egg pro‐ and anti‐oxidants on gull chick phenotype. The Journal of Experimental Biology. jeb.174300‐jeb.174300.

24. Tilgar, V., Mägi, M., Lind, M., Lodjak, J., Moks, K., & Mänd, R. (2016). Acute embryonic exposure to corticosterone alters physiology, behaviour and growth in nestlings of a wild passerine. Hormones and Behavior, 84, 111–120.

25. Love O. P., Chin, E. H., Wynne‐Edwards, K. E., & Williams, T. D. (2017). Stress hormones: A link between maternal condition and sex‐biased reproductive investment. The American Naturalist, 166(6), 751–751.

26. Rubolini, D., Romano, M., Boncoraglio, G., Ferrari, R. P., Martinelli, R., Galeotti, P., Fasola, M., & Saino, N. (2005). Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow‐legged gull (Larus michahellis) chicks. Hormones and Behavior, 47(5), 592–605.

27. Chin, E. H., Love, O. P., Verspoor, J. J., Williams, T. D., Rowley, K., & Burness, G. (2009). Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proceedings of the Royal Society B: Biological Sciences, 276(1656), 499–505.

28. Love, O. P., & Williams, T. D. (2008). Plasticity in the adrenocortical response of a free‐living vertebrate: The role of pre‐ and post‐natal developmental stress. Hormones and Behavior, 54(4), 496–505.

29. Love, O. P., & Williams. T. D. (2008). The adaptive value of stress‐induced phenotypes: Effects of maternally derived corticosterone on sex‐biased investment, cost of reproduction, and maternal fitness. The American Naturalist, 172(4), E135–E149.

30. Henderson, L. J., Evans, N. P., Heidinger, B. J., Adams, A., & Arnold, K. E. (2014). Maternal condition but not corticosterone is linked to offspring sex ratio in a passerine bird. PLoS ONE, 9(10), 1–10.

31. Coslovsky, M., & Richner, H. (2011). Predation risk affects offspring growth via maternal effects. Functional Ecology, 25(4), 878–888.

32. Dantzer, B., Newman, A. E. M., Boonstra, R., Palme, R., Boutin, S., Humphries, M. M., & McAdam, A. G. (2013). Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science, 1215, 1215–1218.

33. Sheriff, M. J., Krebs, C. J., & Boonstra, R. (2009). The sensitive hare: Sublethal effects of predator stress on reproduction in snowshoe hares. The Journal of Animal Ecology, 78(6), 1249–1258.

34. Bian, J. H., Du, S. Y., Wu, Y., Cao, Y. F., Nue, X. H., & You, Z. B. (2015). Maternal effects & population regulation: Maternal density‐induced reproduction suppression impairs offspring capacity in response to immediate environment in root voles microtus oeconomus. Journal of Animal Ecology, 84(2), 326–336.

35. Possenti, C. D., Parolini, M., Romano, A., Caprioli, M., Rubolini, D., & Saino, N. (2018). Effect of yolk corticosterone on begging in the yellow‐legged gull. Hormones and Behavior, 97(2017), 121–127.

36. Bowers, K. E., Bowden, R. M., Thompson, C. F., & Sakaluk, S. K. (2016). Elevated corticosterone during egg production elicits increased maternal investment and promotes nestling growth in a wild songbird. Hormones and Behavior, 83, 6–13.

37. Brachetta, V., Schliech, C. E., Cutrera, A. P., Merlo, J. L., Kittlein, M. J., & Zenuto, R. R. (2018). Prenatal predatory stress in a wild species of subterranean rodent: Do ecological stressors always have a negative effect on the offspring? Developmental Psychobiology, 60(5), 567–581.

38. Meylan, S., Haussy, C., & Voituron, Y. (2010). Physiological actions of corticosterone and its modulation by an immune challenge in reptiles. General and Comparative Endocrinology, 169(2), 158–166.

39. Bian J., Wu, Y., & Liu, J. (2005). Effect of predator‐induced maternal stress during gestation on growth in root voles Microtus Oeconomus. Acta Theriologica, 50(4), 473–482.

40. Gu, C., Wang, W., Ding, X., Yang, S., Wang, A., Yin, B., & Wei, W . (2018). Effects of maternal stress induced by predator odors during gestation on behavioral and physiological responses of offspring in Brandt's Vole (Lasiopodomys brandtii). Integrative Zoology, 13(6), 723–734.

41. Yan, W., Jianghui, B., & Yifan, C. A. O. (2008). 围栏条件下母体社群应激对根田鼠 子代免疫力的影响 吴雁 28, 250–259.

42. Saino, N., Romano, M., Ferrari, R. P., Martinelli, R., & Møller, A. P. (2005). Stressed mothers lay eggs with high corticosterone levels which produce low‐quality offspring. J. Exp. Zool, 303, 998–1006.

43. Lancaster, L. T., Hazard, L. C., Clobert, J., & Sinervo, B. R . (2008). Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade‐offs in r‐Strategist and K‐Strategist females. Journal of Evolutionary Biology, 21(2), 556–565.

44. Gu, C., Liu, Y., Huang, Y., Wang, A., Yin, B., & Wei, W. (2020). Effects of predator‐induced stress during pregnancy on reproductive output and offspring quality in Brandt's voles (Lasiopodomys brandtii). European Journal of Wildlife Research, 66(1), 14.

45. Noguera, J. C., & Velando, A. (2019). Reduced telomere length in embryos exposed to predator cues. Journal of Experimental Biology, jeb.216176.

46. Dantzer, B., Dubuc, C., Goncalves, I. B., Cram, D. L., Bennett, N. C., Ganswindt, A., Heistermann, M., Duncan, C., Gaynor, D., & Clutton‐Brock, T. H. (2019). The development of individual differences in cooperative behaviour: Maternal glucocorticoid hormones alter helping behaviour of offspring in wild Meerkats. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1770), 20180117.

47. Noguera, J. C., & Velando, A. (2019). Bird embryos perceive vibratory cues of predation risk from clutch mates. Nature Ecology & Evolution, 3(8), 1225–1232.

48. Noguera, J. C., Silva, A., & Velando, A. (2020). Egg corticosterone can stimulate telomerase activity and promote longer telomeres during embryo development. Molecular Ecology. mec.15694