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Genetic determinants of liking 
and intake of coffee and other 
bitter foods and beverages
Marilyn C. Cornelis1* & Rob M. van Dam2,3,4

Coffee is a widely consumed beverage that is naturally bitter and contains caffeine. Genome-wide 
association studies (GWAS) of coffee drinking have identified genetic variants involved in caffeine-
related pathways but not in taste perception. The taste of coffee can be altered by addition of milk/
sweetener, which has not been accounted for in GWAS. Using UK and US cohorts, we test the 
hypotheses that genetic variants related to taste are more strongly associated with consumption 
of black coffee than with consumption of coffee with milk or sweetener and that genetic variants 
related to caffeine pathways are not differentially associated with the type of coffee consumed 
independent of caffeine content. Contrary to our hypotheses, genetically inferred caffeine sensitivity 
was more strongly associated with coffee taste preferences than with genetically inferred bitter taste 
perception. These findings extended to tea and dark chocolate. Taste preferences and physiological 
caffeine effects intertwine in a way that is difficult to distinguish for individuals which may represent 
conditioned taste preferences.

Coffee and tea are among the most widely consumed beverages in the world1. The consumption of these plant-
based beverages has been associated with a lower risk of chronic diseases such as type 2 diabetes, cardiovascular 
diseases, and several types of cancer2–9. Although plausible underlying biological mechanisms have been identi-
fied, more research is needed to establish the causal role of these beverages in human health10. Thus, understand-
ing determinants of beverage choice and consumption level is important to inform research and public health 
strategies.

Genome-wide association studies (GWAS) of coffee and tea drinking behavior have identified genetic vari-
ants involved in the metabolism and physiological effects of caffeine as determinants of the amount of these 
beverages consumed (Supplementary Table S1)11–20. Furthermore, a variant near a gene encoding an olfactory 
receptor (OR5M8) has been associated with coffee intake. As coffee and tea have a bitter taste, it is also plausible 
that genetic variants related to bitter taste perception affect coffee and tea consumption. However, none of the 
loci identified in GWAS of coffee and tea intake overlap with TAS2R loci associated with taste perception of bitter 
compounds including propylthiouracil (PROP)/phenylthiocarbamide (PTC), caffeine, and quinine in GWAS 
(Supplementary Table S1)22–25. Caffeine seeking behavior might explain the persistent consumption of coffee 
and tea despite their bitter taste21,26. However, the taste of these beverages is easily manipulated by the addition 
of sweetener and milk; behaviors not previously accounted for in GWAS or the vast majority of epidemiological 
studies.

The current study uses genetic, dietary, and food preference (“liking”) data available from the UK Biobank 
(UKB) and two US cohorts, the Nurses’ Health Study (NHS) and Health Professionals Follow-up study (HPFS). 
We first test the hypothesis that published GWAS-confirmed variants related to taste are more strongly associ-
ated with black coffee consumption than with the consumption of total coffee or coffee with added sweetener 
or milk because their effects would not be masked by coffee taste manipulation. We focus on coffee but extend 
this hypothesis to tea since we expect similar but weaker associations of taste-related genetic variants with tea 
consumption, because tea is reportedly less bitter than coffee27,28. As a negative control, we also examine pub-
lished GWAS-confirmed loci involved in the metabolism and physiology of caffeine which we would not expect 
to be differentially associated with type of coffee and tea consumed independent of caffeine content. Second, we 
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examine whether there are shared genetic determinants of coffee and tea traits with other bitter tasting foods; 
specifically, beer and dark chocolate. Finally, we perform GWAS of liking or consumption of specific types of 
coffee and tea (e.g., with sugar versus without sugar) that may yield genetic variants not reported previously by 
GWAS of total coffee and tea consumption.

Methods
UK biobank.  In 2006–2010, the UKB recruited over 502,633 participants aged 37–73 years at 22 centers 
across England, Wales, and Scotland29. Participants provided informed written consent, completed touchscreen 
questionnaires on sociodemographic factors, lifestyle, and medical history followed by an interviewer-adminis-
tered questionnaire, physical assessment, and biospecimen collection30. Subsets of the cohort have returned for 
follow-up assessments and have completed additional on-line questionnaires. The latter are the primary source 
of data for the current analysis. This study was covered by the generic ethical approval for UKB studies from 
the National Research Ethics Service Committee North West–Haydock (approval letter dated 17th June 2011, 
Ref 11/NW/0382), and all study procedures were performed in accordance with the World Medical Association 
Declaration of Helsinki ethical principles for medical research.

Coffee and tea consumption.  In 2009–2012, a subset of 122,292 participants who completed the baseline assess-
ment center visit also completed at least two of five on-line 24 h dietary recalls31,32. Detailed collection methods 
for coffee and tea intake and methods for estimating added milk and sweetener are provided in Supplementary 
Methods S2. Briefly, participants reporting consumption of coffee were probed for details concerning quantity 
(0.5–6 + cups/day), brew type (instant, filtered, espresso, cappuccino, latte, and other), and whether the coffee 
was decaffeinated (yes, no, varied) and sweetened (half, 1, 2, 3 + teaspoons or “varied” for sugar and artificial 
sweetener). Categorical measures of coffee quantity were converted to cups/day by using the midpoint of each 
category; those reporting 6 + cups/day were assigned an intake of 6 cups/day. Those reporting consumption of 
instant, filtered, espresso or other coffee were additionally asked if milk was added (yes, no, varied). Participants 
reporting consumption of tea were probed for details concerning quantity (1–6 + cups/day), brew type (green, 
black, rooibos, herbal and other), and whether it was decaffeinated (black tea only) and sweetened. Those report-
ing consumption of black or rooibos tea were additionally asked if milk was added. We also considered responses 
to the following bitter tasting food items: "How many pints of beer, lager or cider?", "How many plain/dark 
chocolate bars (~ 50 g) did you have?", "How many servings of sprouts did you have?", and "How many servings 
of cabbage/greens/kale did you have?" which aligned with food preference items of interest (see below). Data 
collected via dietary recalls also allowed derivation of the energy content (KJ) and macronutrient composition 
of the diet. Unsweetened coffee consumers were defined as participants who never reported the addition of sweet-
ener to coffee and never reported consumption of cappuccinos or lattes. No-milk coffee consumers were defined 
as participants who never reported the addition of milk to coffee and never reported consumption of cappuc-
cinos or lattes. Black coffee consumers were those previously defined as both unsweetened and no-milk coffee 
consumers. Sweetened coffee consumers were defined as participants who always reported the addition of sweet-
ener to coffee or who only consumed cappuccinos or lattes. Milk coffee consumers were defined as participants 
who always reported the addition of milk to coffee or who only consumed cappuccinos or lattes. Consumption 
data for coffee drinkers not defined as milk coffee consumers were set missing for genetic analysis but set to 0 
for trait correlation analysis; the same approach was applied to other coffee consumption traits. Similar criteria 
were applied when defining different tea consumers while considering the relatively less detailed data collected 
for this beverage. Herein, tea-prepared-black refers to tea prepared without sweetener and milk to avoid confu-
sion with tea type (i.e., black, green). The comprehensive list of coffee and tea traits account, in part, for cultural 
differences in how these beverages are prepared between UK and US cohorts.

Coffee and tea preferences.  In 2019, UKB participants with valid emails were invited to complete a food prefer-
ences questionnaire (see Supplementary Methods S2 for details). The questionnaire included 140 items which 
comprise food items that reflect both sensory preferences and foodstuff preferences. Liking was measured using 
a 9-point hedonic scale which has good statistical properties, good discrimination between points, and linearity 
between each point on the scale33. Questionnaire items were randomized on a participant basis to reduce any 
bias that may occur due to tiredness. Participants were asked to rate how much he/she like each presented item 
on a scale from 1 (extremely dislike) to 9 (extremely like). Alternatively, they were given the option to select 
“Never tried” or “Prefer not to answer”. The current study focused on the following questionnaire items: liking 
for coffee with sugar, liking for coffee without sugar, liking for tea with sugar, and liking for tea without sugar. 
We also considered other bitter- and sweet-related items: liking for bitter foods, liking for dark chocolate, liking 
for Brussel sprouts, liking for cabbage, liking for bitter/ale and liking for sweet foods. In preliminary analysis, (1) 
liking for bitter vegetables was only weakly correlated with intake of bitter vegetables (r < 0.16) and liking for bit-
ter foods (r < 0.10) and (2) liking for or intake of bitter vegetables were only weakly associated with coffee and tea 
traits (r < 0.15). Therefore, we did not pursue genetic analysis of bitter vegetable traits as results would unlikely 
be relevant for coffee and tea traits. After excluding 31 participants with liking score ranges of less than 4 across 
all 140 food items (an indicator of scale bias), up to 181,974 participants had data on food items of interest for 
the current analysis.

Genetic data.  All UKB participants were genotyped using genome-wide arrays as detailed previously34,35. QC 
and imputation to the HRC v1.1 and UK10K reference panels was performed by the Wellcome Trust Centre for 
Human Genetics35. We excluded sample outliers based on heterozygosity and missingness, participants with 
sex discrepancies between the self-reported and X-chromosome heterozygosity, and those potentially related to 
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other participants, based on estimated kinship coefficients for all pairs of samples. To avoid bias due to popula-
tion stratification, genetic analysis performed in the current study were limited to unrelated individuals who 
self-report as “British” and who have very similar ancestral backgrounds based on results of principal compo-
nent (PC) analysis35.

Of this UKB genetic sample, up to 126,599 individuals completed coffee- or tea-related liking scales and up to 
86,006 participants had detailed coffee or tea consumption data based on 24-h recalls. Up to 61,955 participants 
had both liking and dietary intake data.

Other covariates.  Self-reported smoking status, physical activity, Townsend deprivation index, education, 
income, employment status as well as technician-measured body weight and height were collected during the 
UKB baseline assessment as described in detail previously29,36.

US cohorts.  In 1986, the HPFS enrolled 51,529 U.S. male health professionals aged 40–75 years37. In 1976, 
the NHS enrolled 121,700 U.S. female registered nurses aged 30–55  years38. Participants completed a mailed 
questionnaire on medical history and lifestyle characteristics every 2 years and a validated semi-quantitative 
food frequency questionnaire (FFQ) every 2–4 years39. All participants provided informed consent and study 
protocols were approved by the institutional review boards of Brigham and Women’s Hospital and Harvard 
School of Public Health.

Coffee and tea consumption.  We considered diet data collected by the FFQ administered closest to and before 
the 2018 supplementary questionnaire described below. For NHS this was the 2010 FFQ and for HPFS the 2014 
FFQ. For each FFQ item, participants were asked how often, on average, they had consumed a specified amount 
of each beverage or food over the past year. The participants could choose from nine frequency categories (never, 
1–3 per month, 1 per week, 2–4 per week, 5–6 per week, 1 per day, 2–3 per day, 4–5 per day, and 6 or more per 
day). Categorical measures of intake were converted to servings or cups/day by using the midpoint of each 
category; those reporting 6 or more servings or cups/day were assigned a daily intake of 6. The current analysis 
focused on coffee (regular or decaf) and tea (regular or decaf, not herbal) but also considered beer and dark 
chocolate as done for UKB. Total dietary energy intake and macronutrient composition of the diet were also 
derived from FFQs.

Coffee and tea drinking behaviors.  In 2018, more detailed questions regarding coffee and tea drinking behavior 
were included on a supplementary questionnaire mailed to NHS and HPFS participants previously selected for 
GWAS whom had not completed a supplementary questionnaire in 201040. Participants were asked “How do 
you usually drink your coffee or tea?” and for each beverage he/she could mark all response items as appropri-
ate: “I do not drink this beverage”, “Black (nothing added)”, “Milk or cream”, “Non-dairy creamer/whitener”, 
“Sweetener (e.g., sugar, honey, syrup)”, “Non-caloric sweetener (e.g., Splenda, Equal, stevia)”. Participants were 
also asked “Do you avoid or drink less coffee because it tastes bitter?” (yes or no), “Do you avoid or drink less 
tea because it tastes bitter?” (yes or no). After one mailing, 5173 NHS (80% response) and 2940 HPFS (70%) 
returned the questionnaire.

Genetic data.  Genetic data contributing to the current study were obtained from independent GWAS case–
control studies nested within the cohorts, initially designed for outcomes of type 2 diabetes, coronary heart dis-
ease, gout, kidney stone, open-angle glaucoma, venous thromboembolism, prostate cancer (HPFS only), pancre-
atic cancer, colon cancer, mammographic density (NHS only), endometrial cancer (NHS only), ovarian cancer 
(NHS only) and breast cancer (NHS only). Studies were genotyped on Affymatrix, Illumina, Omni, OncoArray 
or HumanCoreExome platforms41. To allow for maximum efficiency and power, we pooled HPFS and NHS sam-
ples genotyped on the same platforms and for each of the resulting datasets we imputed SNPs based on the 1000 
Genomes (version 1.1 2016) cosmopolitan reference panel. Detailed methods and quality assurance pertaining 
to these genetic datasets have been reported elsewhere41. Any samples that had substantial genetic similarity to 
non-European reference samples were excluded from genetic analysis.

Of the participants with high-quality genetic data, 4295 NHS and 2447 HPFS participants had survey data 
on coffee or tea behaviors. Because these data were used in conjunction with FFQ data to derive a quantity of 
specific type of coffee consumed that aligned with that derived for UKB (see above for definitions), we excluded 
286 HPFS and 175 NHS who did not complete an FFQ. We also excluded coffee data from 130 HPFS and 246 
NHS who changed coffee drinking status (yes/no) between the FFQ and survey. The same approach was taken 
for tea data resulting in the exclusion of 497 HPFS and 836 NHS participants. In total, up to 2123 HPFS and 4064 
NHS participants with genetic and coffee or tea data were included for the current analysis.

Other covariates.  Smoking status, physical activity, height, and body weight of participants were self-reported 
and obtained from questionnaires administrated to the entire NHS (2014) and HPFS (2016) cohorts preceding 
the 2018 supplementary questionnaire.

Candidate SNP selection.  We first selected GWAS-confirmed SNPs for taste perception of PROP/PTC, 
caffeine, and quinine22–25 (Supplementary Table  S1); herein referred to as “Taste-loci”. Genetically inferred 
PROP-taster status was defined using rs1726866, rs713598 and rs10246939: AVI/AVI, PAV/PAV were coded as 0 
(non-taster) and 2 (super taster), respectively, while all other haplotypes were coded 1 (medium taster). We next 
selected GWAS confirmed SNPs for liking or consumption of coffee and tea11–20, herein referred to as “Behavior-
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loci”. Because ADORA2A variants were among this list we additionally included ADORA2A rs5751876, an often-
cited variant associated with caffeine consumption and caffeine-induced anxiety and wakefulness42–45. We also 
included a CYP2A6 variant associated with paraxanthine/caffeine plasma levels in GWAS and also with coffee 
consumption in UKB46.

Statistical analysis.  All statistical analyses were performed using the SAS statistical package (version 9.1 
for UNIX; SAS Institute, Cary, NC) unless indicated otherwise. Potential bias in use of the 9-point liking scale 
(unrelated to the content of the items) was evaluated by comparing mean scores of all 140 food items by age (at 
or above/below the median of 67 years), sex, smoking and BMI (at or above/below 25 kg/m2) using ANOVA. 
Significantly higher mean food liking scores were reported by participants who were younger, male, and had 
lower BMI compared to their respective counterparts (P < 0.0001). Because mean score differences were small, 
ranging from 0.19 (sex) to 0.03 (age), we only adjusted for these factors in our primary analyses as opposed 
to performing stratified analyses. The distributions of all coffee- and tea-related traits of interest were highly 
skewed and thus non-parametric tests were applied. Bivariate Spearman correlations were used to evaluate cor-
relations among traits.

For UKB, multivariable-adjusted generalized linear modelling (GLM) was used to examine the association 
between each SNP (independent variable) and each continuous coffee/tea trait (dependent variable), adjusting for 
age, sex, smoking status, genotyping array and the top 20 PCs. Additional adjustments for BMI, physical activity, 
education level, Townsend index of socio-economic status, employment status, self-reported diabetes and heart 
disease and intake of total energy, alcohol, and other macronutrients (expressed as a proportion of energy) did not 
substantially change the results and thus we present results for the more basic model only. For NHS and HPFS, 
GLM was also used to examine the association between each SNP and each continuous coffee/tea trait, adjusting 
for age, smoking status, genotyping array and GWAS-specific case–control status. Results for NHS and HPFS 
were meta-analyzed with fixed effects using METAL47. We applied the same statistical models defined above to 
the analysis of coffee (tea) avoiders due to bitter taste (yes vs no) using a logistic regression analysis. Given the 
highly correlated coffee and tea traits as well as the confirmatory and hypothesis testing nature of the current 
analysis, statistical significance was defined as P < 0.002 (0.05/23 SNPs) for both UKB and US (NHS/HPFS) 
cohorts; correcting only for the number of independent SNPs tested. Differences between beta-coefficients (i.e. 
βSNP-total coffee vs βSNP-black coffee or βSNP-black coffee vs βSNP-sweetened coffee) in UKB were declared significantly different when 
their corresponding 95% confidence intervals did not overlap; an approach considered highly conservative48. 
Nevertheless, emphasis is placed on results consistent across UK and US cohorts.

We performed GWAS of continuous coffee and tea traits in UKB (excluding total coffee/tea). The rank-based 
inverse (blom) normal transformation was applied to each trait prior to GWAS and we excluded SNPs with 
MAF < 0.05 and INFO scores < 0.4. We performed genome-wide linear regressions using PLINK2 assuming an 
additive genetic model and adjusting for age, sex, smoking status and top 20 PCs. FUMA was used for display-
ing, pruning and annotating UKB summary-level results49. Genome-wide significant (P < 5 × 10–8) SNP-trait 
associations were followed up in NHS and HPFS when possible and using statistical models as described above 
for candidate SNP-analysis.

Results
Participant characteristics.  Table 1 presents the characteristics of UKB, NHS and HPFS participants by 
coffee drinking status; 82, 86, and 85% of the cohort participants, respectively, were coffee drinkers (consum-
ing more than 0 cups/day). Across cohorts, coffee drinkers were 1–2 years older and more likely to be male and 
consume more alcohol and beer than non-coffee drinkers. In the UKB and NHS, coffee drinkers were also more 
likely to be current smokers. HPFS non-coffee drinkers were more likely to be current smokers. Supplementary 
Table S2 presents corresponding data by tea drinking status; 87, 82 and 65% of UKB, NHS, and HPFS partici-
pants, respectively, were tea drinkers (consuming more than 0 cups/day). Across cohorts, tea drinkers were more 
likely to be female and non-smokers and to consume less alcohol and beer. In the UKB, tea drinkers were also 
less likely to be overweight.

The consumption of coffee and tea prepared black was more common in the US cohorts than the UKB, 
because US participants were less likely to add milk to these beverages than UKB participants (Table 1, Sup-
plementary Table S2). Correlations among coffee, tea and other diet behavior traits for UKB are presented in 
Fig. 1 (details in Supplementary Table S3). Corresponding correlations for NHS and HPFS are presented in 
Supplementary Tables S4 and S5, respectively. In UKB, liking coffee and tea traits were generally moderately 
(r = 0.5–0.7) correlated with the respective intake trait (e.g., liking coffee with sugar correlated with sweetened 
coffee intake). Total coffee and total tea intake were each more strongly associated with liking of coffee and tea 
without sugar (r > 0.3), than with liking coffee and tea with sugar (|r|< 0.01). In the UKB, liking bitter foods was 
more strongly correlated with liking coffee without sugar (r = 0.17) and intakes of black (r = 0.10) or unsweet-
ened (r = 0.11) coffee than with liking coffee with sugar (r = − 0.07) and intakes of sweetened (r = − 0.10) or milk 
(r = − 0.04) coffee. Liking bitter foods was also positively correlated with liking dark chocolate (r = 0.16) and 
negatively correlated with sweetened tea intake (r = − 0.10).

Candidate “Taste” and “Behavior” loci selected for the current analysis are presented in Supplementary 
Table S1 and, with the exceptions of rs5751876 (ADORA2A), are previously reported GWAS-confirmed loci for 
indicated traits. Following, we present associations between our novel consumption/liking traits and i) GWAS-
confirmed loci for bitter taste perception and ii) GWAS-confirmed loci for coffee/tea consumption behavior. We 
annotate statistically significant (P < 0.002) associations in Tables and note nominally significant (0.002 < P < 0.05) 
associations below. We then present results from GWAS of our novel consumption/liking traits in UKB applying 
the traditional GW-significance threshold (P < 5 × 10–8) along with replication in NHS/HPFS.
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GWAS‑confirmed loci for bitter taste perception.  Associations between genetic variants related to 
taste perception and the liking and intake of different types of coffee, tea, and other bitter foods in UKB are 
shown in Table 2 (details in Supplementary Table S6). Related results for the US cohorts, NHS and HPFS, were 
pooled and shown in Supplementary Table S7. The quinine-taste sensitive variant near TAS2R19 (rs10772420 
A) was significantly (P < 0.002) inversely associated with liking coffee with sugar (β = − 0.04) in UKB. Similarly, 
the variant was nominally (0.002 < P < 0.05) associated with less liking of tea with sugar (β = − 0.03) and greater 
liking of tea without sugar (β = 0.03). In UKB, the variant was nominally associated with lower coffee intake 
(β = − 0.02), regardless of the type of coffee. In the US cohorts, the variant was nominally significantly associated 
with higher intake of black (β = 0.12), unsweetened (β = 0.07), and no-milk (β = 0.10) coffee, but not substantially 
with total or other types of coffee. Although the TAS2R19 variant was significantly associated with less liking of 
dark chocolate (β = − 0.03) in UKB, it was not associated with intake of tea, beer, or dark chocolate in any of the 
cohorts.

Table 1.   Characteristics by coffee drinking status. Shown are mean ± SD for continuous variables or n (%) for 
categorical variables. Non-drinkers are defined as consuming no coffee. Drinkers are defined as consuming 
any coffee (> 0 cups/day). Coffee preference type was derived from diet-recalls in UKB and a combination of 
food frequency questionnaires and supplemental beverage surveys in NHS/HPFS (see “Methods” for details). 
a Missing data for 145 NHS and 64 HPFS participants. This information was not collected in UKB.

Variable

UK Biobank NHS HPFS

Non-drinkers
n = 15,489

Drinkers
n = 70,517

Non-drinkers
n = 517

Drinkers
n = 3357

Non-drinkers
n = 305

Drinkers
n = 1726

Age at diet collection, years 56.6 ± 7.9 58.5 ± 7.7 72.9 ± 6.0 74.0 ± 5.9 76.8 ± 6.6 77.3 ± 6.5

Age at liking/preference collection, years 64.8 ± 7.7 66.8 ± 7.5 80.5 ± 5.9 81.6 ± 5.9 80.8 ± 6.6 81.3 ± 6.5

Female, n (%) 9316 (60) 38,550 (55) 517 (100) 3357 (100) 0 (0) 0 (0)

Current smoker, n (%) 859 (6) 4870 (7) 12 (2) 108 (3) 125 (41) 20 (1)

BMI, kg/m2 26.7 ± 4.8 26.7 ± 4.5 26.9 ± 5.7 26.5 ± 5.1 26.0 ± 4.4 26.1 ± 3.8

BMI ≥ 30 kg/m2, n (%) 3101 (20) 13,581 (19) 124 (24) 719 (21) 41 (13) 243 (14)

Alcohol intake, g/day 13.9 ± 19.2 16.9 ± 18.5 3.1 ± 7.3 7.7 ± 11.7 7.4 ± 13.3 15.5 ± 16.3

Energy intake, Kcal/day 2001 ± 445 2053 ± 430 1687 ± 563 1639 ± 529 1949 ± 557 2051 ± 579

Total coffee, cups/day – 2.1 ± 1.3 – 1.9 ± 1.3 – 2.0 ± 1.4

Coffee preference, n (%)

  Black – 9034 (13) – 1164 (35) – 824 (48)

  Unsweetened – 37,615 (53) – 2495 (74) – 1241 (72)

  No-milk – 11,102 (16) – 1359 (40) – 974 (56)

  Sweetened – 22,265 (32) – 891 (27) – 495 (29)

  Milk – 50,360 (71) – 2027 (60) – 762 (44)

Total tea, cups/day 3.8 ± 1.8 2.4 ± 1.7 1.4 ± 1.6 0.7 ± 1.0 0.6 ± 1.1 0.5 ± 0.8

Avoid/drink less coffee because bittera, n % – – 180 (42) 286 (9) 88 (35) 131 (8)

Dark chocolate, servings/day 0.04 ± 0.15 0.04 ± 0.15 0.12 ± 0.27 0.08 ± 0.21 0.13 ± 0.26 0.14 ± 0.29

Beer, servings/day 0.30 ± 0.71 0.32 ± 0.68 0.02 ± 0.14 0.04 ± 0.20 0.18 ± 0.62 0.26 ± 0.52

Figure 1.   UKB trait spearman correlations.
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PROP-taste sensitive TAS2R38 variants were also inversely associated with liking dark chocolate (β = − 0.03, 
P < 0.002), but not associated with liking coffee, tea, or bitter foods. However, the same variants were significantly 
associated with lower coffee intake (β = − 0.02), and higher tea intake (β = 0.03). The effect estimates were greatest 
for sweetened tea (β = 0.06) but not significantly different from other tea types. Results in the US cohorts were 
directionally consistent for coffee and tea intake but were not significant.

The caffeine-taste sensitive TAS2R14 alleles were nominally associated with higher liking for coffee and intake 
of caffeinated coffee, regardless its preparation type. In the US cohorts this variant was nominally associated with 
higher intake of dark chocolate (β = 0.01, P < 0.05) but not with intake of coffee or tea.

GWAS‑confirmed loci for coffee/tea consumption behavior.  Variants near TMEM18, GCKR, POR, 
ADORA2A (rs2330783), CYP1A2 (rs2472297, rs762551), AHR, CYP2A6, SEC16B, OR5M7P, ENSA, and MLX-
IPL were significantly associated with total coffee intake (P < 0.002, Table 3, details in Supplementary Table S8); 
consistent with previous GWAS (Supplementary Table S1). In addition, variants near ABCG2, MC4R and AKAP6 
were nominally associated with total coffee intake (0.002 < P < 0.05). Variants near AHR (rs4410790 C), CYP1A2 
(rs2472297 C), and OR5M7P (rs597045 A) were more strongly associated with higher intakes of caffeinated 
than decaffeinated coffee intake. Variants near AHR (rs4410790 C), CYP1A2 (rs2472297 C), ABCG2 (rs1481012 
A), ADORA2A (rs2330783 G), CYP2A6 (rs56113850 C), MC4R (rs66723169 A), SEC16B (rs574367 T), POR 
(rs17685 A) and TMEM18 (rs10865548 G) were exclusively or more strongly associated with liking coffee with-

Table 2.   Bitter taste perception loci associations with coffee and other traits in UKB. Shown are β-coefficients 
from linear regressions between SNPs (independent variable) and traits (dependent variable). EA effect allele.
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out sugar (P < 0.002) than liking coffee with sugar, but their association with higher coffee intake did not vary 
substantially by preparation type. Variants near ALDH2, EFCAB, FIBIN, NRCAM, PDSS2, and BDNF were not 
associated with coffee consumption in the current UKB sample, regardless of how coffee was usually prepared.

Variants near AHR (rs4410790 C) and CYP1A2 (rs2472297 C) were also significantly associated with higher 
total tea intake (P < 0.002). This association was stronger for tea with milk than for tea-prepared black, and 
stronger for caffeinated than for decaffeinated tea. TMEM18 (rs10865548 G) was significantly associated with 
lower tea intake and ADORA2A (rs5751876 C) was significantly associated with higher tea intake regardless 
of how it was prepared. ABCG2 (rs1481012 A) was significantly associated with liking tea without (β = 0.06) 
but not with sugar, and was associated with higher tea intake regardless the type. MC4R (rs66723169 A) and 
SEC16B (rs574367 T) were significantly associated with less liking of tea with sugar (β = − 0.04), but neither was 
significantly associated with tea intake.

Variants near ADORA2A (rs2330783 G), AHR (rs4410790 C), CYP1A2 (rs2472297 C), CYP2A6 (rs56113850 
C), and POR (rs17685 A) associated with higher coffee intake in published GWAS were also significantly 
(P < 0.002) associated with greater liking of dark chocolate with effect estimates similar to those for liking coffee 
without sugar. The ADORA2A rs5751876 C variant previously associated with caffeine-induced anxiety and 
wake promotion was nominally inversely associated with all coffee-liking traits (β ~ − 0.02, 0.002 < P < 0.05) and 
more strongly and significantly with less liking of dark chocolate (β = − 0.11, P < 0.0001). The same pattern of 
results was observed for the correlated ADORA2A rs5760444 C variant (r2 = 0.90, EUR) previously linked to 
coffee intake in GWAS of Asians17. ADORA2A (rs2330783 G) was also significantly associated with higher dark 
chocolate intake and lower beer intake. No other behavior-loci were associated with dark chocolate intake in 
UKB. In post-hoc analysis we examined SNP associations with milk chocolate in UKB and observed statistically 
significant associations of ADORA2A (rs2330783 G), AHR, CYP1A2, and POR with liking milk chocolate, but not 
milk chocolate intake. The directions of associations with liking milk chocolate were opposite to those reported 
for liking dark chocolate. None of the loci was associated with liking of bitter foods.

Few associations of the evaluated genetic variants with coffee intake met statistical significance (P < 0.002) 
in US cohorts (Supplementary Table S9). Variants near AHR (rs4410790 C) and CYP1A2 (rs2472297 T) were 
significantly associated with higher total coffee intake and effect sizes tended to be larger for black, unsweetened, 
or no-milk coffee than for coffee with added milk or sugar. CYP1A2 (rs2472297 T) was significantly associated 
with caffeinated but not decaffeinated coffee. A similar but smaller difference in association between caffeinated 
and decaffeinated coffee was observed for the AHR variant. The odds ratio (95% CI) of reporting ‘avoiding coffee 
because of its bitterness’ for each additional allele was 0.83 (0.66, 0.99) for CYP2A6 (rs56113850 C), 0.64 (0.25, 
1.03) for ADORA2A (rs2330783 G), and 1.13 (1.01, 1.25) for ADORA2A (rs5751876 C).

Genome‑wide analysis.  Table  4 presents novel genome-wide significant (P < 5 × 10–8) loci based on a 
GWAS leveraging the new and more refined coffee and tea phenotypes in UKB (Supplementary Fig. S1, see 
details in Supplementary Table  S10 and S11). Low (λ = 1.04) to moderate (λ = 1.15) genomic inflation was 
observed across traits.

Only associations of new variants at 22q11.23 (near ADORA2A, Supplementary Fig. S2) and 12p13 (TAS2R-
locus, Supplementary Fig. S3) were genome-wide significant in UKB and were also nominally (0.01 < P < 0.04) 
associated with coffee and tea traits in the US cohorts (Supplementary Table S12). ADORA2A (rs3788372 
G) was associated with lower unsweetened tea intake in the UKB (P = 2.3 × 10–8) and US cohorts (P = 0.02). 
TAS2R (rs2418224 G) was associated with greater liking of tea with sugar (P = 1.6 × 10–8) and coffee with sugar 
(P = 4.3 × 10–6) and less liking of tea without sugar (P = 0.0003) and coffee without sugar (P = 0.001) in the UKB. 
The same variant was nominally associated with liking sweet foods (β = 0.02, P = 0.02) but not bitter foods, dark 
chocolate or beer (results not shown). While not associated with consumption behavior in UKB, this TAS2R 
variant was associated with lower intakes of black (β = − 0.11, P = 0.02), unsweetened (β = − 0.09, P = 0.03), and 
no milk (β = − 0.10, P = 0.02) coffee in the US cohorts.

Discussion
The current study aimed to gain causal insight to the role that taste plays in coffee drinking behavior. Geneti-
cally inferred caffeine and bitter taste perception contributed to coffee drinking behavior but, contrary to our 
hypothesis, to a weaker extent than genetically inferred caffeine sensitivity. Specifically, a greater preference for 
caffeine inferred by genetic differences in the physiological effects of caffeine leads to a stronger preference for 
the taste/smell of coffee inferred by liking-scales and reported intake. Similar findings were reported for tea but 
also dark chocolate.

We examined genetic variants that have previously been associated with bitter taste perception in relation to 
coffee and tea related traits. In previous GWAS, variants in the TAS2R gene have been associated with caffeine 
(rs2708377 C) and quinine (rs10772420 A) perception; explaining about 2% and 6% of the phenotype vari-
ance, respectively23,25. The quinine-taste sensitive variant (rs10772420 A) has also been associated with caffeine 
perception but the effect is weaker and in the opposite direction to that for quinine25. We previously examined 
taste-related variants in relation to total coffee and tea intake in UKB. In that analysis, the quinine-taste sensitive 
TAS2R variant was associated with lower coffee intake and higher tea intake, whereas the caffeine-taste sensitive 
TAS2R variant was associated with higher coffee intake and lower tea intake19,21. We now extend that genetic 
research by using data on food liking and intake of different types of coffee and tea available for a subset of UKB 
participants. We show that the caffeine-taste sensitive variant (rs2708377 C) is associated with consumption 
of coffee regardless of how it is prepared but tends to be more strongly associated with caffeinated than with 
decaffeinated coffee. This result reiterates that caffeine-learned behavior (i.e., experience with its post-ingestive 
effects), may explain the preference for this naturally bitter tasting chemical21,51,52. Coffee, tea, and chocolate do 
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not contain quinine. We observed significant to nominal associations between several of our novel traits and 
quinine-taste variation (rs10772420) but in directions difficult to interpret. The opposing effects of this variant on 
quinine and caffeine perception25 or complex bitter-sweet taste interactions53 may underlie the unusual pattern 
of associations but merits further study. The well-studied PROP-sensitive TAS2R38 variants were associated with 
lower coffee and higher tea intake as we reported previously19,21. The direct association between these PROP-
sensitive variants and tea consumption was especially strong for sweetened tea suggesting a bitterness-threshold 
at which tea becomes unpleasant tasting for individuals with these variants. The specificity of these associations 
with coffee/tea intake (vs. coffee/tea liking), which was not observed for rs2708377 and rs10772420, may be due 
to chance or perhaps a latent trait distinguishing intake from hedonic traits54,55.

Our GWAS identified an additional independent and novel TASR2 variant in the 12p13.2 region (rs2418224 
G) that was associated with greater liking of tea with sugar. The nominally significant and opposite directions 
of effect on liking sweetened and non-sweetened versions of the beverages, the lack of association with other 
bitter taste traits, and the association with liking sweet foods, together suggest an effect of this SNP on general 
sweet-perception or preference. Our GWAS analysis in UKB also pointed to FTO, a well-established obesity 
locus. An FTO variant (i.e., rs1421085 C), previously associated with higher BMI, was associated with higher 
unsweetened coffee intake and liking and less liking of sweetened coffee and tea. In our previous GWAS of bitter 
and sweet beverages the same FTO variant was associated with higher coffee intake in the UKB but this result 
was not replicated in US cohorts19. However, the same variant was associated with lower SSB intake in both the 
UKB and US cohorts. A recent GWAS in UKB also observed associations between FTO variants and total sugar 
intake56. Taken together, our current study findings are likely attributed to sweet taste as opposed to coffee or 
bitter taste and the inability to replicate UKB FTO-coffee associations in US cohorts may be due to population 
differences in the social or food environment. Variants in MC4R, SEC16B and TMEM18 that associated with 
coffee consumption in previous GWAS are also GWAS-confirmed obesity loci. In the current study, the coffee-
increasing variants (also the obesity-increasing variants) were inversely associated with liking sweetened coffee 
and tea. None of these loci were associated with SSB or sweet taste perception in GWAS19,56.

Most SNPs identified in previous GWAS of coffee consumption were replicated in the UKB subsample used 
in the current study. Replicated SNPs were generally more associated with liking coffee without sugar than cof-
fee with sugar but their association with increased coffee intake did not vary substantially by preparation type. 
The stronger association with liking coffee without sugar was unexpected for loci with known roles in caffeine 
metabolism or physiological effects, but not in taste perception, such as AHR, CYP1A2, POR, CYP2A6 and 
ADORA2A. Again, these findings suggest that taste/smell and caffeine effects are not as distinct as expected. Indi-
viduals consuming more coffee because of a genetic predisposition to increased caffeine metabolism or tolerance 
may learn to associate coffee/caffeine bitter taste with the favorable physiological effects of caffeine. Our genetic 
findings align with results of a small clinical study by Masi et al.57. Individuals with a higher caffeine metabolism 
rate (determined by change in salivary caffeine concentrations following intake of caffeine) gave lower bitter-
ness ratings for espresso coffee samples and caffeine, but not quinine, solutions and added less sugar to coffee57.

SNPs in AHR and CYP1A2 are the strongest and most robust signals in GWAS of coffee and caffeine 
intake11–20. Consistent with the role of the enzymes encoded by these genes in caffeine metabolism58, we observed 
stronger associations of these variants with caffeinated than with decaffeinated coffee in all cohorts included in 
the current study. We also observed that OR5M7P (rs597045 A) was more strongly associated with caffeinated 
than decaffeinated coffee in UKB. This variant is not associated with caffeine perception in GWAS23,25. OR5M7P 
is a pseudogene upstream of OR5M8, one of many genes encoding specific olfactory receptors which function 
in the perception of smell. Smell and taste are highly related but why this variant affects caffeine-and not taste-
related traits is unclear but may be another case in-point of conditioned taste preferences.

We investigated three SNPs in ADORA2A, encoding the adenosine 2A receptor, a target for caffeine which 
mediates the psychostimulant effect of the drug58. As such, we did not expect SNPs in ADORA2A to be differ-
entially associated with coffee and tea traits defined independent of caffeine content. ADORA2A (rs5751876 C) 
is thought to increase sensitivity to caffeine as it has been associated with greater caffeine-induced anxiety and 
alertness and lower caffeine intake in several candidate gene studies45,58,59. In the current study, this variant was 
associated with less liking of coffee (with or without sugar) and while not associated with coffee consumption 
it was associated with higher tea intake in the UKB. Taken together, these results suggest that individuals with 
ADORA2A (rs5751876 C) avoid heavy caffeine intake. Since coffee contains twice the amount of caffeine than 
tea, these individuals may prefer tea over coffee. In US cohorts, rs5751876 C carriers were more likely to avoid 
coffee because it tastes bitter; a finding that further illustrates how some individuals are unable to separate the 
physiological effects of caffeine from taste preferences. ADORA2A (rs2330783 G) was associated with liking 
coffee without sugar and higher coffee intake without differences in association by type of coffee. In US cohorts, 
rs2330783 G carriers were less likely to avoid coffee because of its bitter taste. Our GWAS of unsweetened tea in 
UKB identified variants near ADORA2A (i.e., rs3788372) not in LD with those described above that was also 
associated with unsweetened tea in the US cohorts. Unlike AHR and CYP1A2, none of the SNPs in ADORA2A 
differentially associated with caffeinated and decaffeinated coffee or tea. To our knowledge, adenosine receptors 
do not play a role in taste perception. Whether our results for ADORA2A rs2330783 and rs3788372 are mediated 
by taste or caffeine is unclear and warrants further investigation.

ADORA2A, CYP1A2, CYP2A6, AHR and, to a weaker extent, POR variants associated with higher coffee 
intake (US cohorts) and liking (UKB) were also associated with increased dark chocolate intake (US cohorts) 
and liking (UKB). No association or associations in the opposite direction were observed with liking and intake 
of milk chocolate and other bitter foods, suggesting that caffeine (its psychostimulant effects, taste, or both) may 
be underlying the observed associations with dark chocolate. Dark chocolate contains more caffeine per weight 
than milk chocolate60 and while the amount is still less than the content in coffee and tea it may be detected by 
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individuals sensitive to caffeine. Dark chocolate is also a unique source of theobromine, another methylxanthine 
with psychostimulant effects60–63.

Strengths of the current study include the use of novel and comprehensive coffee and tea traits in independent 
cohorts. Nevertheless, several limitations need to be considered. The liking and dietary intake measures used are 
subject to bias and measurement error as discussed in detail previously64–66. Specifically, the 24-h diet collections 
in UKB may not reflect usual intake and the FFQs used in the US cohorts may be prone to reporting errors. In 
addition, liking traits were only available for UKB and not for the US cohorts. The US cohorts included a non-
representative group of elderly whose sense of taste and small may be reduced and beverage choices more likely 
affected by medical issues. Several genetic variants that were associated with coffee or caffeine intake in previous 
GWAS studies were not replicated in the current study. That probably reflects the smaller sample size in the sub-
cohorts with more detailed information used in the current analysis. In addition, the association between ALDH2 
variation and coffee consumption has only been reported in Japanese14 and given the low frequency of these 
variants in populations of European ancestry the lack of replication in the current study was expected. Finally, 
there are currently no published GWAS-SNPs for perception of other bitter compounds in coffee such as maillard 
reaction products, cafestol, chlorogenic acid derivatives or other uncharacterized coffee-bitter compounds67–69 
thus limiting our candidate SNP-approach.

Genetic markers of coffee and caffeine consumption are increasingly used as instrumental variables to seek 
causal insight to coffee/caffeine and health70. Whether a genetic instrument captures total coffee/caffeine intake, 
only certain types of coffee, or not only coffee but a broader characteristic, impacts the interpretation and 
translation of studies. For example, evidence for a causal relationship between black coffee and type 2 diabetes 
is very different than a causal relationship between coffee and type 2 diabetes. A cautionary approach to genetic 
instrumental variable studies is particularly relevant now that weaker non-genome-wide significant variants are 
included in such studies.

In summary, our genetic analysis suggests the psychostimulant effects of caffeine outweighs the bitterness 
of caffeine. A greater preference for caffeine based on genetic differences in the physiological effects of caffeine 
leads to a stronger preference for the taste/smell of coffee and dark chocolate. Similarly, greater sensitivity to the 
adverse physiological effects of caffeine was associated with avoiding the taste of coffee. Taste preferences and 
physiological caffeine effects thus seem to become entangled in a way that is difficult to distinguish for individu-
als. These potential examples of conditioned taste preferences or aversions merit further clinical investigation. 
This apparent disruption of an innate aversion to bitter taste and its genetic correlation with coffee preferences 
has important relevance to food and beverage development as well as genetic epidemiological studies of coffee.

Data availability
Data described in the manuscript is available to all researchers and can be accessed upon approval of the UK 
Biobank https://​www.​ukbio​bank.​ac.​uk/​enable-​your-​resea​rch/​apply-​for-​access , HPFS https://​sites.​sph.​harva​rd.​
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