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Abstract
Breast cancer is the most common cancer in women, and hundreds of thousands of unnecessary biopsies are done around 
the world at a tremendous cost. It is crucial to reduce the rate of biopsies that turn out to be benign tissue. In this study, we 
build deep neural networks (DNNs) to classify biopsied lesions as being either malignant or benign, with the goal of using 
these networks as second readers serving radiologists to further reduce the number of false-positive findings. We enhance 
the performance of DNNs that are trained to learn from small image patches by integrating global context provided in the 
form of saliency maps learned from the entire image into their reasoning, similar to how radiologists consider global context 
when evaluating areas of interest. Our experiments are conducted on a dataset of 229,426 screening mammography exami-
nations from 141,473 patients. We achieve an AUC of 0.8 on a test set consisting of 464 benign and 136 malignant lesions.
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Introduction

Breast cancer is the most common cancer in women world-
wide, after skin cancers and about 42,170 women will die 
from breast cancer in the United States for 2020, according 
to The American Cancer Society’s estimate [1]. Screen-
ing mammography, a low-dose X-ray examination, is typi-
cally used for early detection of breast cancer. The United 

States Preventive Services Task Force suggests women 
urdergo such examinations every two years if they are 50 
to 74 years old and are at average risk for breast cancer [2]. 
Although multiple studies have demonstrated that screen-
ing mammography reduces breast cancer mortality [2–5], 
performance benchmarks demonstrate that 10% of the per-
formed examinations are recalled for additional imaging, and 
approximately 80% of biopsies subsequently performed are 
benign [6]. The yearly national cost of breast care caused by 
the false-positive mammograms is estimated to be several 
billion dollars [7, 8] and for women with a false-positive 
diagnosis, their mean cost of breast care is even higher than 
the cost of breast care services for women with cancer [9]. It 
is therefore an important task to reduce the recall and biopsy 
rates so that to decrease patients’ anxiety and reduce health-
care costs while still maintaining optimal cancer detection 
rates, according to relevant guidelines [5].

Traditional computer-aided detection (CAD) tools for 
mammography neither detected more breast cancers nor 
decreased the recall rates for additional imaging [10, 11]. 
Early studies used deep neural networks (DNNs) to assist 
radiologists intrepreting screening mammograms by mak-
ing predictions for cancer of each breast [12–18]. This task 
is frequently considered in the literature. It can be viewed 
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as breast-level classification, and models developed accord-
ingly have shown comparable performance to radiolo-
gists [15–17]. However, these models suffer from perfor-
mance degradation when evaluated on a population only 
containing examinations which lead to biopsies, without 
healthy breasts as negative cases [17]. Meanwhile, models 
built for the breast-level classification task cannot provide 
independent risk estimations for multiple areas of interests 
appearing in the same breast. It is common to encounter 
cases with multiple findings [19]. For example, multiple 
bilateral circumscribed breast masses are detected in approx-
imately 1.7% of routine screening mammograms [20]. In the 
NYU Breast Cancer Screening Dataset [21], a representative 
sample of screening mammograms from 2010 to 2018, there 
are 7.45% images with more than one annotated lesions, and 
25.75% of these images have lesions of different categories. 
Some examples are shown in Fig. 1. In light of this, the pre-
viously proposed models for breast-level classification are 
difficult to use for the goal of reducing unnecessary biopsies.

Besides breast-level malignancy classification, deep 
learning methods have also been used to identify high-risk 
lesions [22–25]. Some of these works can provide risk esti-
mation across regions of the breast, but usually only consider 
information in a small local region [22, 25]. The majority 
of the existing works often utilize object detection models 
such as Mask-RCNN [26], which neither explicitly utilize 
fine details nor consider global context. In contrast, radi-
ologists often consider global context factors to make their 
diagnoses [27, 28]. These global context factors include the 

mammographic breast density, i.e. the global amount of 
fibroglandular tissue, and the associated parenchymal and 
nodular patterns of the breasts [27]. Dense fibroglandular 
breast tissue is a known risk factor for breast cancer [29]. 
Other global context factors include the distribution of 
microcalcifications in the tissue adjacent to an index lesion, 
or throughout the breast. These global findings often affect 
radiologists’ level of suspicion for a particular lesion. Within 
deep learning methodology, these scenarios could be viewed 
as utilizing global image context for classifying a patch of an 
image. This motivates investigating whether global context 
is as important for neural networks as it is for human experts.

In this study, we consider lesion-level classification, and 
design models to directly distinguish biopsy-confirmed 
lesions as being either benign or malignant. With this strat-
egy, we enable the models to make accurate lesion-wise 
predictions. To show that deep learning approaches can 
benefit from utilizing global image context in classifying 
local findings on mammograms, we first train DNNs with 
cropped image patches to enable the learning of local infor-
mation from a specific region, then integrate the extracted 
local information with the global context. The global context 
is provided in the form of saliency maps (Fig. 2) extracted by 
a model classifying the entire image. Here we use Globally-
Aware Multiple Instance Classifier [16] as the model to pro-
vide such saliency maps. In addition, we evaluate the mod-
els’ performance on a challenging population which consists 
only of difficult to diagnose cases for which the radiolo-
gist requested a biopsy. This further differentiates our work 
from previous works [14–17, 30] and makes our results not 
directly comparable to theirs. This is because these methods 
were developed and evaluated for the screening population, 
which contains a lot of negative cases not requiring biopsy, 
which can inflate their evaluation metrics [17].

Our results show that DNNs trained with image patches 
can effectively decrease the number of unnecessary biopsies, 
and that this ability can be further improved by utilizing 
global image context. Our best model is able to distinguish 
between benign and malignant findings on a test set of 600 
lesions, achieving an area under the receiver operating 
characteristic curve (AUC) of 0.799±0.002. If the model is 
utilized to assist in reading mammograms, about 2% unnec-
essary biopsies could be avoided, in addition to cases that 
radiologists can easily exclude as benign or normal and not 
needing additional imaging, while catching all malignancies. 
It reduces 15% more unnecessary biopsies than the model 
using only local information, when missing 2% malignan-
cies. It is worth noting that these performance measurements 
are computed on the population from which we exclude 
benign cases that radiologists can discount confidently by 
reading mammograms or other imaging examinations. Over-
all, our results strongly suggest that the proposed strategy 
can be considered as a viable and valuable enhancer for deep 

Fig. 1  Images with both malignant and benign lesions. a. An image 
of the left breast from mediolateral oblique view (L-MLO). The 
breast has two lesions confirmed by biopsy, one as malignant (anno-
tated with red), and the other as benign (annotated with green). b. 
An L-MLO mammogram image from another patient. There are two 
lesions on the image, one as malignant (annotated with red), and the 
other as high-risk benign (annotated with yellow)
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learning methods in reducing unnecessary biopsies based on 
screening mammography.

Materials and Methods

This retrospective study was approved by our IRB and 
is compliant with the Health Insurance Portability and 
Accountability Act. Informed consent was waived.

Data

We utilize a dataset consisting of 229,426 digital screen-
ing mammogramphy examinations (1,001,093 images) 
from 141,473 unique patients screened between 2010 and 
2017 [21]. Each examination has four standard views and 
the resolution of images is approximately 2000×3000 pixels. 
We asked fellowship-trained breast imagers to annotate both 
benign lesions (e.g. cyst, fibroadenoma, fibrocystic change) 
and malignant lesions (e.g. IDC, ILC, DCIS), on the pixel-
level. In the entire dataset, there are 8842 lesions from 8080 
images with diagnosis confirmed by biopsy, which reveals 
the fact that a single breast can contain multiple lesions of 
differing types. The dataset is divided into disjoint train-
ing (80%), validation (10%) and test (10%) sets. Detailed 
statistics of training, validation and test sets are in Table 1.

The Proposed Method

Lesions in mammograms vary in size and shape, so if we 
crop these regions entirely and resize them to the same size 
to use them as inputs to standard deep neural networks, we 
will introduce information distortion and lose the fine details 
of the lesions. Therefore, we start by learning features of a 
number of image patches that are cropped from regions over-
lapping with one of the lesions, and then aggregate informa-
tion from all patches to render a prediction for that lesion.

To extract information from image patches, we train 
a deep convolutional neural network (DCNN) to classify 
image patches of 256×256 pixels as one of the four classes: 
“malignant”, “benign”, “outside” and “negative.” Malignant 
and benign patches are cropped from windows that over-
lap with the segmentation of a malignant or benign lesion. 
Besides cropping image patches that overlap with the anno-
tations, we sample patches that have no overlap with any 
lesion (“outside”), as well as patches from breasts without 
records of biopsy (“negative”). The inclusion of these addi-
tional data is intended to regularize the model similarly to 
data augmentation. Examples of patches from each class are 
shown in Fig. 3.

This DCNN is used to produce representations of local 
information. It is denoted as floc and is shown in Fig. 4a. 
We use DenseNet-161 [31] as its architecture. We add an 
additional fully connected layer with 32 neurons between 
the global average pooling layer and the classification layer 
to obtain concise representations of the patch. The additional 
layer results in the feature vector � ∈ ℝ

32 for the patch, 
which we use as the representation for the local information 
extracted by floc.

To further incorporate global image context and curate 
the local information extracted by the DCNN, we train an 
“aggregation network” with inputs formed by aggregating 

Fig. 2  An example of sali-
ency maps. From left to right: 
a mammogram image of a 
right breast from craniocaudal 
view (R-CC) with an annotated 
malignant lesion, a saliency 
map indicating suspicious 
regions for benign lesions, a 
saliency map indicating suspi-
cious regions for malignant 
lesions

Table 1  Number of biopsy-confirmed lesions and number of mam-
mogram images presenting no lesions, benign lesions, and malignant 
lesions in the training, validation and test set

images lesions

negative benign malignant benign malignant

training 808,730 5,188 1,648 5,602 1,790
validation 123,130 687 110 722 128
test 60,959 432 116 464 136
overall 992,819 6,307 1,874 6,788 2,054
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maps containing information relative to the patch and the 
image it is cropped from, as illustrated in Fig. 4b. This 
aggregation network is a shallow convolutional network, 
denoted as fagg . It consists of two convolutional layers, 
each with 32 3×3 convolutional filters, a global average 
pooling layer and, finally, a classification layer. We apply 
batch normalization and the ReLU activation function 
prior to each convolutional layer. This network is trained 
for the same patch classification task. The maps formed 
as inputs to the aggregation network are described in the 
following paragraphs.

The first type of maps is saliency maps which represent 
global context. We generate the saliency maps by training 
a network on full-resolution mammography images to pre-
dict the presence of benign and malignant lesions in the 
breast. We refer to this network as the “context network.” 
We use Globally Aware Multiple Instance Classifier [16, 
30] as the context network, which is explicitly designed to 
provide interpretability by highlighting the most informa-
tive regions of the input images. To be more precise, the 
feature maps obtained after the last residual block of the 
context network are transformed by a 1×1 convolutional layer 

Fig. 3  Examples of image 
patches along with the mammo-
gram images from which they 
come. a. “malignant” patches, 
which overlap only with 
malignant findings (marked 
with red); b. “benign” patches, 
which overlap only with benign 
findings (marked with yellow 
or green); c. “outside” patches, 
which are from regions outside 
the annotated lesions; d. “nega-
tive” patches, which are from 
images without any biopsied 
findings

Fig. 4  Illustration of the pro-
posed method. Left: a deep con-
volutional neural network which 
takes image patches of 256×
256 pixels as inputs, denoted 
as floc . Right: the aggregation 
network, fagg , that takes the 
concatenation of three types 
of maps as inputs: 1) location 
indicator map, � , in gray, gener-
ated by downscaling the binary 
mask indicating the cropping 
window’s location, 2) saliency 
maps, �m and �b , in red and 
green, generated by the context 
network, based on Globally 
Aware Multiple Instance Classi-
fier [16], 3) embedding map, � , 
in blue, formed by the represen-
tation � , produced by floc
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with sigmoid activation into two saliency maps, denoted as 
�m ∈ [0, 1]46,30 and �b ∈ [0, 1]46,30 . Each pixel in the sali-
ency map corresponds to a region in the full image, and its 
element denotes a score indicating the contribution of this 
region towards classifying the input image as containing 
malignant or benign lesions. A pair of saliency maps for an 
image is shown in Fig. 2.

Another type of maps are location indicator maps. Given 
a patch, this map indicates its cropping window’s location 
on the mammogram, but is downscaled to be the same size 
as the saliency maps. The location indicator map is denoted 
as � ∈ [0, 1]46,30 . Same with the saliency maps, each pixel 
on the location indicator map corresponds to a region in the 
full image and the value of this pixel reflects how much the 
region is covered by the patch.

The last type of maps, called embedding maps, are 
formed utilizing the representation � generated by floc . To 
construct this map, for each �k ∈ � , we take a copy of the 
location indicator map of the patch � and replace its nonzero 
elements by �k . We denote the obtained map by �k . We con-
catenate �k ’s to form the full embedding map � ∈ ℝ

46,30,32 . 
The embedding maps contain information learned by floc 
specific to the fine details in the image patch.

These maps can be concatenated along the last dimension 
and served as inputs to the aggregation network, denoted 
as � ∈ ℝ

46,30,M where M is the number of maps. For exam-
ple, when using both embedding maps and saliency maps as 
inputs, M would be 34.

Model Training

We first train floc that takes image patches as inputs, followed 
by the aggregation network fagg , which takes the concate-
nated maps, � , as inputs. We use 20, 35, 5000, 4945 patches 
for malignant, benign, outside and negative patch classes in 
each training epoch. For data augmentation, we use random 
rotations (-30 to 30 degrees), and random sizes (128×128 
to 384×384 pixels) when setting the cropping window to 
obtain the patch.

In order to address the extreme class imbalance, we use 
weighted cross-entropy as the training loss. The class weight 
for each patch class is set as inverse to the ratio of patches from 
this class among all patches used in each epoch. Therefore, 
losses on incorrect predictions of “malignant” and “benign” 
patches are appropriately up-weighted. For both floc and fagg , 
we adopt the same configuration while using 256×256 image 
patches as inputs for floc , and the concatenated maps, � , as 
inputs for fagg , in which the embedding maps is produced by 
the best performing floc and saved to be used.

We minimize the training loss with the Adam opti-
mizer [32], setting the batch size to 25 for training floc , 
and 100 for fagg . We initialize weights in floc of all layers 

except the last two fully connected layers with weights 
from DenseNet-161 [31] pretrained on the ImageNet ILS-
VRC-2012 dataset [33], then fine-tune the entire network. 
We randomly initialized the weights of fagg . We optimize 
the hyperparameters using random search [34]. Specifically, 
we search for the learning rate on the logarithmic scale in 
[10−6, 10−4] for floc , and in [10−5, 10−3] for fagg . Early stop-
ping is performed if we observed that the AUC on the vali-
dation set has not increased for ten epochs. We implement 
the models in PyTorch [35], and use NVIDIA Tesla V100 
GPUs for model training and inference.

Model Evaluation

During training, we consider patches from mammograms 
with and without lesions, and perform multi-class classi-
fication over four classes: malignant, benign, outside and 
negative. In the validation and test phases, we only consider 
patches from images with lesions, and transform the patch-
level predictions into a malignancy prediction for each lesion 
in the images. To get a prediction for a lesion, as shown in 
Fig. 5, we crop 100 patches that overlap with the segmenta-
tion of the lesion. The size of the cropping window varies 
from 128×128 to 384×384 pixels, which is the same range 
we used for data augmentation. After cropping, each patch 
is resized to 256×256 pixels, and we use it as input to floc to 
produce a feature vector. Then, we apply fagg on the concat-
enated maps, including the embedding maps transformed 
by the feature vector and we get its prediction, each as four 
scores for the four patch classes. For each patch, we normal-
ize the scores for malignant and benign patch classes so that 
they sum to one. Finally, we average the 100 normalized 
scores of the 100 sampled patches to obtain a prediction 
for the lesion. Based on these estimated probabilities, we 
compute the AUC that the model achieves in classifying the 
lesions as malignant or benign. We use the AUC computed 
on the 850 lesions from the validation set for model selec-
tion, and report the AUC computed for the 600 lesions from 
the test set.

Results

Model Performance

We report the model’s performance on the test set consist-
ing of 600 lesions which are present on 534 images from 
260 patients. There are 44 images containing more than 
one lesion, and 14 images have both benign and malignant 
lesions. We emphasize that if we were to use deep learn-
ing methods that provide only breast-level risk estimation, 
it would be impossible to tell which lesion is the one with 
higher risk of malignancy.
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Both model components, floc , which takes patches as 
inputs, and the aggregation network fagg , are selected accord-
ing to their performance on the validation set. The best per-
forming aggregation network using embedding maps and sali-
ency maps achieved an AUC of 0.799±0.002 on the test set. 
In Table 2, we include more results on the portion of unnec-
essary biopsies that can be avoided while missing a given 
portion of malignancies when using the model’s prediction 
as a second reader to assist radiologists. It can help to further 
reduce 1.7% unnecessary biopsies in addition to cases that 
radiologists can easily exclude as benign or normal and not 
needing additional imaging, while catching all malignancies. 
According to the estimated yearly cost related with unneces-
sary biopsies [7, 8], it can be translated to saving more than a 
million dollars each year in the US for breast care. If reducing 
biopsies is prioritized further, up to 13.5% could be avoided 
while only missing 1% of malignancies and up to 23.1% could 
be avoided while only missing 2% of malignancies.

Ablation Experiments

We conduct the following experiments to justify the choice 
of model architecture, to verify impact of transfer learning, 

and to elaborate the importance of utilizing both local fine 
details and global image context in identifying malignant 
lesions.

Architecture Search. To choose the architecture for floc , 
we considered a number of ResNet [36] and DenseNet [31] 
variants. These architectures use skip connections, which 
improve information flow between layers, and allow for 
effective training of very deep networks. They both achieved 
strong results across a wide range of image classification 
tasks [37–39]. The specific ResNet and DenseNet variants 
we experimented with are: ResNetV2-50, ResNetV2-101, 
ResNetV2-152, DenseNet-121, DenseNet-161, and 
DenseNet-169. We compared the performance of floc when 
being parameterized as the above architectures. The results are 
shown in Fig. 6. In this experiment, we did not consider global 
context and used the predictions made by floc for each lesion.

Transfer Learning. Transfer learning by pretraining the 
network on a different task is widely adopted to improve 
neural networks’ performance. We experiment with ini-
tializing floc with weights from networks pretrained on the 
ImageNet ILSVRC-2012 dataset [33], and compare it to ini-
tializing the weights randomly using He initialization [40]. 
Since images from ImageNet are RGB while mammograms 

Fig. 5  Multiple patches are 
sampled to obtain a prediction 
for one lesion. In each black 
box, we present a biopsied 
finding from the test set and ten 
out of 100 patches used by the 
model to make a prediction for 
the finding. Lesions are marked 
in red (malignant) or green 
(benign) and the cropping win-
dows of the patches are marked 
by blue boxes on the image. 
Cropped patches are shown on 
the right

Table 2  True negative rate (TNR) achieved by our model when its 
false-negative rate (FNR) are 0.01, 0.02, 0.03 and 0.05 as we vary 
prediction threshold for assigning observations to a positive class 

indicating malignancy. The 95% confidence interval of the estimated 
TNR and the clinical meaning are also provided

clinical meaning FNR TNR 95% CI of TNR

1.7% unnecessary biopsies we can help to avoid while missing no malignancies 0.00 0.017 [−0.005, 0.040]

13.5% unnecessary biopsies we can help to avoid while missing 1% malignancies 0.01 0.135 [0.039, 0.232]
23.1% unnecessary biopsies we can help to avoid while missing 2% malignancies 0.02 0.231 [0.190, 0.273]
27.6% unnecessary biopsies we can help to avoid while missing 3% malignancies 0.03 0.276 [0.240, 0.312]
43.5% unnecessary biopsies we can help to avoid while missing 5% malignancies 0.05 0.435 [0.407, 0.562]
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are grayscale, we duplicated each patch across the three 
channels. The AUCs achieved by floc with or without using 
transfer learning are presented in Fig. 6. Without trans-
fer learning, ResNetV2-50 achieved the highest AUC of 
0.762±0.015, while DenseNet-121 achieved the lowest 
AUC of 0.748±0.098. When we applied transfer learning, 
the performance is improved for most of the architectures 
except ResNetV2-152, and DenseNet-169 becomes the best 
performer with 0.782±0.014 AUC. We conclude from these 
results that transfer learning from the ImageNet dataset [33] 
clearly improves our results, even though the natural image 
domain and the mammography image domain are so different.

Importance of Global Context. To assess the importance 
of global context in classifying lesions localized to small 
regions of the image, we performed further ablation experi-
ments. We trained networks using different combinations of 
saliency maps, location indicator map and embedding maps as 
inputs. Selected maps are concatenated along the last dimen-
sion and used by the aggregation network. Table 3 presents the 
results when using all possible combinations. Since ImageNet-
pretrained DenseNet-161 as floc achieved the highest AUC on 
the validation set, we used it in this set of experiments.

As expected, for the task of classifying biopsy-confirmed 
lesions, most of the predictive power comes from local fea-
tures: the aggregation network trained with only embedding 
maps achieved an AUC of 0.778±0.002. In comparison, the 
network trained only with saliency maps achieved an AUC 
of 0.695±0.003, indicating that global context alone was not 
highly predictive. When we introduced location indicator 
maps together with saliency maps into the network, the AUC 
increased to 0.721±0.011. We observed that using loca-
tion indicator maps and embedding maps together does not 
improve performance. This is unsurprising since embedding 
maps contain the same location information conveyed by the 
location indicator maps. Finally, networks using the combi-
nation of embedding maps and saliency maps achieved an 
AUC of 0.799±0.002, which is the highest among all com-
binations. The fact that combining local features with global 
context outperformed each of them in isolation confirms the 
importance of the global image context in classifying lesions 
localized to small regions of the mammogram.

To further evaluate the impact of the global context in 
our task, we investigate the relation between the true nega-
tive rate (indicating biopsies that can help to avoid) and the 
false-negative rate (indicating missed malignancies). Spe-
cifically, we compare the aggregation network using only 
the ensemble maps and the aggregation network using both 
the ensemble maps and the saliency maps. Figure 7 visual-
izes this relationship. We considered scenarios when there 
are less than 5% malignancies missed. For all considered 
false-negative rates utilizing the saliency maps resulted in 
lower true negative rate.

Discussion

Regular screening mammography is widely acknowledged to  
be the best way to detect breast cancer early. However,  
mammogram-based diagnosis performed by radiologists suffers  

Fig. 6  Test performance in 
classifying biopsied findings, 
achieved by the DCNN, floc , 
when using different architec-
tures and weights initialization 
strategies

Table 3  Test performance of the aggregation network when using dif-
ferent information combinations as inputs. Models utilizing both local 
and global information achieved better performance than the counter-
parts using single type of maps

AUC 

location indicator maps 0.474 ± 0.031
embedding maps 0.778 ± 0.002
saliency maps 0.695 ± 0.003
location indicator maps + embedding maps 0.777 ± 0.002
location indicator maps + saliency maps 0.721 ± 0.011
embedding maps + saliency maps 0.799 ± 0.002
location indicator maps + saliency maps + embed-

ding maps
0.797 ± 0.001
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from a high false positive rate, resulting in both unnecessary 
imaging and tissue biopsies. Developing deep learning tech-
nologies to assist breast cancer screening is promising, but 
previous works in the literature rarely focused on reducing 
unnecessary biopsies. Besides achieving radiologist-level 
performance at detecting breast cancer in mammograms, 
deep learning models are expected to play a more important 
role in distinguishing whether a given lesion is malignant 
or benign. This distinction is highly beneficial for the case 
of suspicious-appearing but ultimately benign findings that 
result in unnecessary biopsies by the radiologist.

In this study, we presented a method to combine local features 
in small image patches with global context in high-resolution 
mammogram images. We showed that it is necessary to consider 
both fine details in a small region and the global image context 
to improve deep learning models’ performance when classify-
ing localized lesions on the high-resolution images, while previ-
ous works usually consider only image patches or downscaled 
mammogram images [12, 18, 41]. Our resulting deep learning 
model achieved an AUC of 0.799 ± 0.002 in classifying biopsy-
confirmed lesions as being malignant or benign. It can help to 
further reduce over 23% of unnecessary biopsies while missing 
only 2% of cancer as the second reader on regions that radiolo-
gists have low confidence on. Compared with works performing 
breast-level classification [12, 15–18, 30, 42], our model can pro-
vide prediction for each individual suspicious lesion, and there-
fore present precise guidance for follow-up procedure including 
biopsy and surgery.

We acknowledge some limitations of this work. For 
instance, we did not capture the levels of difficulty related 

to different types of cancer, which is clinically valuable. We 
leave this for future work. In addition, the context network we 
considered in the study did not perform cross-view reasoning, 
and we expect that networks utilizing all four standard views 
in a mammogram examination can introduce more complete 
information and result in more reliable cancer detection.

Conclusion

Besides performing breast-level classification, deep learn-
ing methods can help further reduce unnecessary biopsies 
by classifying suspicious small regions as being benign or 
malignant. Furthermore, incorporating global image context 
can improve the network’s ability to distinguish between 
localized benign and malignant lesions on high-resolution 
images. Future research on techniques for combining local 
information with global context may be promising for breast 
cancer screening.

References

 1. American Cancer Society: Cancer Facts and Figures. Atlanta, Ga: 
American Cancer Society, 2020.

 2. US Preventive Services Task Force: Medication Use to Reduce 
Risk of Breast Cancer: US Preventive Services Task Force Rec-
ommendation Statement. JAMA (2019), 322:857–867.

 3. Lee, C. S., Monticciolo, D. L., and Moy, L. Screening guidelines 
update for average-risk and high-risk women. AJR Am J Roent-
genol (2020), 214:316–323.

Fig. 7  True negative rate (TNR) 
and false negative rate (FNR) 
achieved by the aggregation 
network using ensemble maps 
or using both ensemble maps 
and saliency maps as we vary 
the prediction threshold for 
assigning observations to a 
given class

1421Journal of Digital Imaging  (2021) 34:1414–1423



 4. Monticciolo, D. L., Newell, M. S., Hendrick, R. E., Helvie, M. A., 
Moy, L., Monsees, B., Kopans, D., Eby, P. R., and Sickles, E. A. 
Breast cancer screening for average-risk women: Recommenda-
tions from the acr commission on breast imaging. J Am Coll Radiol 
(2017), 14:1137–1143.

 5. Oeffinger, K. C., Fontham, E. T. H., Etzioni, R., Herzig, A., Michaelson, 
J. S., Shih, Y.-C. T., Walter, L. C., Church, T. R., Flowers, C. R., 
LaMonte, S. J., Wolf, A. M. D., DeSantis, C., Lortet-Tieulent, J., 
Andrews, K., Manassaram-Baptiste, D., Saslow, D., Smith, R. A., 
Brawley, O. W., and Wender, R. Breast Cancer Screening for Women 
at Average Risk: 2015 Guideline Update From the American Cancer 
Society. JAMA (2015), 314:1599–1614.

 6. Lehman, C. D., Arao, R. F., Sprague, B. L., Lee, J. M., Buist, D. S., 
Kerlikowske, K., Henderson, L. M., Onega, T., Tosteson, A. N., 
Rauscher, G. H., et al. National performance benchmarks for mod-
ern screening digital mammography: update from the breast cancer 
surveillance consortium. Radiology (2017), 283:49–58.

 7. Ong, M.-S., and Mandl, K. D. National expenditure for false-
positive mammograms and breast cancer overdiagnoses estimated 
at $4 billion a year. Health affairs (2015), 34:576–583.

 8. Vlahiotis, A., Griffin, B., Stavros, A. T., and Margolis, J. Analysis 
of utilization patterns and associated costs of the breast imaging 
and diagnostic procedures after screening mammography. Clini-
coEconomics and outcomes research: CEOR (2018), 10:157.

 9. Chubak, J., Boudreau, D. M., Fishman, P. A., and Elmore, J. G. 
Cost of breast-related care in the year following false positive 
screening mammograms. Medical care (2010), 48:815.

 10. Fenton, J. J., Taplin, S. H., Carney, P. A., Abraham, L., Sickles, 
E. A., D’Orsi, C., Berns, E. A., Cutter, G., Hendrick, R. E., Barlow, 
W. E., et al. Influence of computer-aided detection on performance 
of screening mammography. N Engl J Med (2007), 356:1399–1409.

 11. Lehman, C. D., Wellman, R. D., Buist, D. S., Kerlikowske, K., 
Tosteson, A. N., and Miglioretti, D. L. Diagnostic accuracy of 
digital screening mammography with and without computer-aided 
detection. JAMA Intern Med (2015), 293:1828–1837.

 12. Aboutalib, S. S., Mohamed, A. A., Berg, W. A., Zuley, M. L., 
Sumkin, J. H., and Wu, S. Deep learning to distinguish recalled 
but benign mammography images in breast cancer screening. Clin 
Cancer Res (2018), 24:5902–5909.

 13. Kim, E.-K., Kim, H.-E., Han, K., Kang, B. J., Sohn, Y.-M., Woo, 
O. H., and Lee, C. W. Applying data-driven imaging biomarker in 
mammography for breast cancer screening: preliminary study. Sci 
Rep (2018), 8:1–8.

 14. Kyono, T., Gilbert, F. J., and van der Schaar, M. Mammo: A deep 
learning solution for facilitating radiologist-machine collaboration 
in breast cancer diagnosis. arXiv:1811.02661 (2018).

 15. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, 
N., Ashrafian, H., Back, T., Chesus, M., Corrado, G. C., Darzi, 
A., et al. International evaluation of an ai system for breast cancer 
screening. Nature (2020), 577:89–94.

 16. Shen, Y., Wu, N., Phang, J., Park, J., Liu, K., Tyagi, S., Heacock, 
L., Kim, S., Moy, L., Cho, K., et al. An interpretable classifier for 
high-resolution breast cancer screening images utilizing weakly 
supervised localization. arXiv:2002.07613 (2020).

 17. Wu, N., Phang, J., Park, J., Shen, Y., Huang, Z., Zorin, M., 
Jastrzebski, S., Févry, T., Katsnelson, J., Kim, E., et  al. 
Deep neural networks improve radiologists’ performance in 
breast cancer screening. IEEE Trans Med Imaging (2019), 
39:1184–1194.

 18. Zhu, W., Lou, Q., Vang, Y. S., and Xie, X. Deep multi-instance net-
works with sparse label assignment for whole mammogram classifica-
tion. In Proceedings of the International Conference on Medical Image 
Computing and Computer-Assisted Intervention (2017), pp. 603–611.

 19. Cohen, E. O., Tso, H. H., and Leung, J. W. Multiple bilateral 
circumscribed breast masses detected at imaging: Review of 

evidence for management recommendations. AJR Am J Roent-
genol (2020), 214:276–281.

 20. Leung, J. W., and Sickles, E. A. Multiple bilateral masses detected 
on screening mammography: assessment of need for recall imag-
ing. AJR Am J Roentgenol (2000), 175:23–29.

 21. Xi, P., Shu, C., and Goubran, R. Abnormality detection in mam-
mography using deep convolutional neural networks. In Proceed-
ings IEEE International Symposium on Medical Measurements 
and Applications (2018), pp. 1–6.

 22. Agarwal, R., Diaz, O., Lladó, X., Yap, M. H., and Martí, R. Auto-
matic mass detection in mammograms using deep convolutional 
neural networks. J Med Imaging (2019), 6:031409.

 23. Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., and Yu, Y. 
Cross-view correspondence reasoning based on bipartite graph 
convolutional network for mammogram mass detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (2020), pp. 3812–3822.

 24. Ribli, D., Horváth, A., Unger, Z., Pollner, P., and Csabai, I. Detect-
ing and classifying lesions in mammograms with deep learning. 
Sci Rep (2018), 8:1–7.

 25. Samala, R. K., Chan, H.-P., Hadjiiski, L., Helvie, M. A., Wei, J., 
and Cha, K. Mass detection in digital breast tomosynthesis: Deep 
convolutional neural network with transfer learning from mam-
mography. Med physics (2016), 43:6654–6666.

 26. He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-cnn. In 
Proceedings of the IEEE International Conference on Computer 
Vision (2017), pp. 2961–2969.

 27. Pereira, S. M. P., McCormack, V. A., Moss, S. M., and dos 
Santos Silva, I. The spatial distribution of radiodense breast 
tissue: a longitudinal study. Breast Cancer Res (2009), 11:R33.

 28. Wei, J., Chan, H.-P., Wu, Y.-T., Zhou, C., Helvie, M. A., Tsodikov, 
A., Hadjiiski, L. M., and Sahiner, B. Association of computerized 
mammographic parenchymal pattern measure with breast cancer 
risk: a pilot case-control study. Radiology (2011), 260:42–49.

 29. Conant, E. F., Barlow, W. E., Herschorn, S. D., Weaver, D. L., 
Beaber, E. F., Tosteson, A. N. A., Haas, J. S., Lowry, K. P., 
Stout, N. K., Trentham-Dietz, A., diFlorio Alexander, R. M., 
Li, C. I., Schnall, M. D., Onega, T., Sprague, B. L., and for 
the Population-based Research Optimizing Screening Through 
Personalized Regimen (PROSPR) Consortium. Association of 
Digital Breast Tomosynthesis vs Digital Mammography With 
Cancer Detection and Recall Rates by Age and Breast Density. 
JAMA Oncol (2019), 5:635–642.

 30. Shen, Y., Wu, N., Phang, J., Park, J., Kim, G., Moy, L., Cho, 
K., and Geras, K. J. Globally-aware multiple instance classi-
fier for breast cancer screening. In Proceedings of International 
Workshop on Machine Learning in Medical Imaging (2019), 
pp. 18–26.

 31. Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. 
Densely connected convolutional networks. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition 
(2017), pp. 4700–4708.

 32. Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. 
arXiv:1412.6980 (2014).

 33. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, 
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. 
Imagenet large scale visual recognition challenge. International 
journal of computer vision (2015), 115:211–252.

 34. Bergstra, J., and Bengio, Y. Random search for hyper-parameter 
optimization. Proc Mach Learn Res (2012), 13:281–305.

 35. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, 
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. Pytorch: 
An imperative style, high-performance deep learning library. In 
Proceedings of the Neural Information Processing Systems Con-
ference (2019), pp. 8026–8037.

1422 Journal of Digital Imaging  (2021) 34:1414–1423



 36. He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for 
image recognition. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (2016), pp. 770–778.

 37. Guan, Q., and Huang, Y. Multi-label chest X-ray image classifica-
tion via category-wise residual attention learning. Pattern Recogn. 
Lett. 130 (2020), 130:259–266.

 38. Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., 
Bourn, C., Turakhia, M. P., and Ng, A. Y. Cardiologist-level 
arrhythmia detection and classification in ambulatory electrocar-
diograms using a deep neural network. Nat Med (2019), 25:65.

 39. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers, 
R.  M. Chestx-ray8: Hospital-scale chest x-ray database and 
benchmarks on weakly-supervised classification and localization 
of common thorax diseases. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (2017), 
pp. 2097–2106.

 40. He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classifi-
cation. In Proceedings of the IEEE International Conference on 
Computer Vision (2015), pp. 1026–1034.

 41. Spanhol, F. A., Oliveira, L. S., Petitjean, C., and Heutte, L. Breast 
cancer histopathological image classification using convolutional 
neural networks. In Proceedings of the International Joint Confer-
ence on Neural Networks (2016), pp. 2560–2567.

 42. Elter, M., Schulz-Wendtland, R., and Wittenberg, T. The predic-
tion of breast cancer biopsy outcomes using two cad approaches 
that both emphasize an intelligible decision process. J Med Phys 
(2007), 34:4164–4172.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1423Journal of Digital Imaging  (2021) 34:1414–1423


	Reducing False-Positive Biopsies using Deep Neural Networks that Utilize both Local and Global Image Context of Screening Mammograms
	Abstract
	Introduction
	Materials and Methods
	Data
	The Proposed Method
	Model Training
	Model Evaluation

	Results
	Model Performance
	Ablation Experiments

	Discussion
	Conclusion
	References


